Preprint
Article

New Micromechanical Model for Predicting Biaxial Tensile Moduli of Plain Weave Fabric Composites

This version is not peer-reviewed.

Submitted:

16 November 2016

Posted:

16 November 2016

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
This paper addresses a new micromechanical model to predict biaxial tensile moduli of plain weave fabric (PWF) composites by considering the interaction between the orthogonal interlacing strands. The two orthogonal yarns in micromechanical unit cell (UC) were idealized as the curved beams with a path depicted by using sinusoidal shape functions. The biaxial tensile moduli of PWF composites were derived by means of the minimum total complementary potential energy principle founded on micromechanics. The biaxial tensile tests were respectively conducted on the RTM-made EW220/5284 PWF composites at five biaxial loading ratios of 0, 1, 2, 3 and ∞ to validate the new model. The predictions from the new model were compared with experimental data and good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed model. Using the new model, the biaxial tensile moduli of plain weave fabric (PWF) composites could be predicted based only on the properties of basic woven fabric.
Keywords: 
Subject: 
Chemistry and Materials Science  -   Polymers and Plastics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated