Climate simulations in West Africa have been attributed with large uncertainties. Global climate projections are not consistent with changes in observations at the regional or local level of the Niger basin, making management of hydrological projects in the basin uncertain. This study evaluates the potential of using the quantile mapping bias correction to improve the Coupled Model Intercomparison Project (CMIP5) outputs for use in hydrology impact studies. Rainfall and temperature projections from 8 CMIP5 Global Climate Models (GCM) were bias corrected using the quantile mapping approach. Impacts of climate change was evaluated with bias corrected rainfall, temperature and potential evapotranspiration (PET). The IHACRES hydrological model was adapted to the Niger basin and used to simulate impacts of climate change on discharge under present and future conditions. Bias correction significantly improved the accuracy of rainfall and temperature simulations compared to observations. Nash coefficient (NSE) for monthly rainfall comparisons of 8 GCMs to the observed was improved by bias correction from 0.69 to 0.84. The standard deviations among the 8 GCM rainfall data were significantly reduced from 0.13 to 0.03. Increasing rainfall, temperature, PET and river discharge were projected for all GCMs used in this study under the RCP8.5 scenario. These results will help improving projections and contribute to the development of sustainable climate change adaptation strategies.
Keywords:
Subject: Environmental and Earth Sciences - Environmental Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.