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Abstract: We consider the thermodynamic and stability problem of Kerr black holes arising from
the nonextensive/nonadditive nature of the Bekenstein-Hawking entropy formula. Nonadditive
thermodynamics is often criticized by asserting that the zeroth law cannot be compatible with
nonadditive composition rules, so in this work we follow the so-called formal logarithm method to
derive an additive entropy function for Kerr black holes satisfying also the zeroth law’s requirement.
Starting from the most general, equilibrium compatible, nonadditive entropy composition rule
of Abe, we consider the simplest, non-parametric approach that is generated by the explicit
nonadditive form of the Bekenstein-Hawking formula. This analysis extends our previous results
on the Schwarzschild case and shows that the zeroth law compatible temperature function in the
model is independent of the mass-energy parameter of the black hole. By applying the Poincaré
turning point method we also study the thermodynamic stability problem in the system.
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1. Introduction

After the finding of the Kerr solution [1], the mathematical and physical properties of the
corresponding black hole spacetimes have been widely investigated. As a culmination of the work
done in the first decade, the four laws of black hole mechanics were formulated by Bardeen, Carter
and Hawking [2]. These four laws show a striking similarity to the laws of thermodynamics and can
be summarized as the following:

• The zeroth law of black hole mechanics states that the surface gravity κ of a stationary black
hole is constant over the horizon, which is essentially the requirement of transitivity of the
equilibrium state.

• The first law manifests a relation between variations in the mass M, horizon area A and angular
momentum J if the black hole is perturbed,

δM =
κ

8π
δA + ΩHδJ,

where ΩH is the angular velocity of the horizon.
• The second law of black hole mechanics is Hawking’s area theorem which states that the surface

area of the event horizon never decreases with time,

δA ≥ 0.

• The third law is formulated by stating that it is impossible to achieve κ = 0 in a finite series of
physical processes.
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The close analogy between the four laws of black hole mechanics and the laws of ordinary
thermodynamics is intriguing. In this analogy, the mass of the black hole mathematically correspond
to the energy of a thermodynamic system, the area of the horizon to the entropy and the surface
gravity to the temperature. While the correspondence between mass and energy is a physical identity,
the other two correspondences are only analogy in classical general relativity. Classical black holes
have zero temperature and the area of the horizon has a dimension of length squared. With the
physical penetration of the black hole entropy by Bekenstein [3] and the semi-classical derivation of
black hole radiation by Hawking [4], we can treat black holes as thermodynamic systems with the
Bekenstein-Hawking entropy

SBH =
1
4

A,

at the Hawking temperature

TH =
κ

2π
.

Investigations in gravitating systems have pointed out that entropy functions with nonextensive
nature tend to appear in systems with long-range interactions like gravity (see e.g [5] and references
therein). The Bekenstein-Hawking black hole entropy seems also to be nonextensive because it
is proportional to the area of the horizon instead of being proportional to the black hole volume
(although the problem of how to compute the volume of a general black hole and how it is
related to the horizon area is also a nontrivial question [6]). The nonextensive nature of black hole
thermodynamics has been studied with many approaches and various methods [7–16], and in the
present paper we also consider a simple model to the Kerr problem that we have already investigated
for the Schwarzschild case [17]. The main idea behind this approach is to study the system in
equilibrium while also requiring to satisfy the zeroth law of thermodynamics.

As a fundamental formula, we start with the most general functional form of nonadditive
entropy composition rules (derived by Abe [18]) requiring only the existence of equilibrium in the
system. Assuming that the total entropy S(A, B) is given by the entropies of the subsystems S(A)

and S(B) as S(A, B) = f (S(A), S(B)) where f is a C2 class symmetric function, Abe derived the most
general pseudoadditivity rule for the entropy,

Hλ(S(A, B)) =
Hλ(S(A)) + Hλ(S(B)) + λHλ(S(A))Hλ(S(B))− Hλ(0)

1 + λHλ(0)
, (1)

where Hλ(S) is a differential function of S and λ ∈ R is a constant parameter. By setting Hλ(0) to
zero with the physical requirement of zero joint entropy for zero subsystem entropies, Abe’s equation
becomes

Hλ(S(A, B)) = Hλ(S(A)) + Hλ(S(B)) + λHλ(S(A))Hλ(S(B)). (2)

Obviously, for standard additive thermodynamic systems Hλ(S) is the identity function and the λ

parameter is zero. In more general cases however, equilibrium compatibility requires the nonadditive
entropy composition rules to satisfy eq. (2) for any thermodynamic system.

Maybe the most well-known example for a nonstandard case was proposed by Tsallis in 1988
[19], where he introduced an entropic function

Sq =
1−∑ pq

i
q− 1

, (3)

by generalizing the Boltzmann-Gibbs formula SBG = −∑i pi ln pi. Based on his nonadditive entropy
Sq, Tsallis has also generalized the standard Boltzmann-Gibbs theory to nonextensive statistical
mechanics [20]. It is easy to see that the Tsallis entropy recovers the Boltzmann-Gibbs entropy for
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q→ 1, and when we consider two independent systems A and B, the Tsallis entropy of the composed
system satisfies

Sq(A, B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B). (4)

Therefore the Tsallis composition rule (4) satisfies Abe’s formula (2) when Hλ(S) is the identity
function and λ = 1− q, so it is an equilibrium compatible nonadditive composition rule.

One of the crucial criticism of nonextensive thermodynamics is that the transitivity property
of thermal equilibrium and the definition of an empirical temperature (i.e. the zeroth law of
thermodynamics) do not seem to be compatible with nonadditive entropy composition rules. In
standard thermodynamics the empirical temperature is defined as

1
T

=
∂S
∂E

. (5)

This definition is derived from total energy conservation and maximum entropy postulate in the
system with the assumption of additivity of these two thermodynamic variables. In a recent
paper [21], Biró and Ván generalized this derivation to the case of nonadditive composition laws
of the entropy and the energy functions as well. In their analysis, by keeping the maximum
entropy principle and the total energy conservation, they found that a new, zeroth law compatible
temperature can be obtained from the more general definition

1
T

=
∂L(S)
∂L̂(E)

, (6)

where L and L̂ are the so-called formal logarithm functions of the nonadditive thermal variables, which
map the original (nonadditive) composition laws to additive ones, i.e.

L(S(A, B)) = L(S(A)) + L(S(B)), (7)

L̂(E(A, B)) = L̂(E(A)) + L̂(E(B)). (8)

It can be easily shown that the formal logarithm of the Tsallis entropy (3)

L(Sq) =
1

1− q
ln[1 + (1− q)Sq] ≡ SR, (9)

is another well-known parametric generalization of the Boltzmann-Gibbs formula, namely the Rényi
entropy function

SR =
1

1− q
ln ∑

i
pq

i , (10)

which has been introduced by the Hungarian mathematician, Alfréd Rényi in the middle of the last
century [22,23]. According to the properties of the formal logarithm mapping, and as opposed to
the Tsallis formula, the Rényi entropy is additive for factorizing probabilities, so the corresponding
temperature function (obtained by assuming energy additivity in the system)

1
TR

=
∂L(Sq)

∂E
=

∂SR

∂E
, (11)

is a well defined empirical temperature which is compatible with all laws of thermodynamics,
including the zeroth’s law as well.

Recently, based on the above formal logarithm approach to the nonextensive problem of black
hole thermodynamics, we investigated the thermodynamic [24] and stability [25] properties of the
Schwarzschild solution. In the analysis of [24], we regarded the Bekenstein-Hawking entropy of
black hole event horizons as a nonextensive Tsallis entropy, which, for small energies and for small
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parameter values (λ = 1− q), was assumed to follow the nonadditive Tsallis composition law (4).
As a result, the corresponding zeroth law compatible entropy function became the Rényi entropy,
and the resulting temperature exhibited some interesting features. Most notably, we observed that
the relation between the temperature and the mass-energy parameter of the black hole had the same
form as the one obtained from a black hole in AdS space by using the original Boltzmann-Gibbs
entropy formula. The temperature has a minimum in both cases, and from the temperature –
mass-energy relation we could derive a correspondence between the nonextensitivity parameter (λ)
of the Schwarzschild-Rényi model and the AdS curvature parameter.

In [25], we investigated the thermodynamic stability of the problem. In the standard picture,
the Schwarzschild black hole seems to be thermodynamically unstable in the canonical treatment
because the heat capacity is always negative in the Bekenstein-Hawking approach. However the
standard stability analysis of extensive systems is generally not applicable to black holes since it
strongly depends on the additivity of the entropy function [26]. To avoid the inapplicability of the
standard Hessian analysis to nonadditive systems, Kaburaki et al. [27] used the Poincaré turning
point method [28] to investigate the thermodynamic stability of black holes. This method is a
topological approach which does not depend on the additivity of the entropy function, and it has been
widely applied to problems in astrophysical and gravitating systems [26,27,29–31] where, as we have
already mentioned, entropy functions with nonextensive nature tend to appear frequently due to the
long-range interaction property of the gravitational field. By applying the Poincaré approach one can
easily separate stable and unstable configurations for cases of a one-parameter series of equilibria.
Here we briefly summarize the essence of this method as we will also use it in the next section. For
more details however, please consult with the original references.

Suppose Z(xi, y) is a distribution function whose extrema ∂Z/∂xi = 0 define stable equilibrium
configurations if the extremal value of Z is a maximum. Consider now the equilibrium value Z(y) =
Z[Xi(y), y], where Xi(y) is a solution of ∂Z/∂xi = 0. If the derivative function dZ/dy plotted versus y
has the topology of a continuous and differentiable curve, it can be shown that stability changes will
occur only at points where the tangents of the curve are vertical. The distribution function Z is called
Massieu function, y is called control parameter, and the points with vertical tangents are called turning
points. The branch with negative slope near the turning point is always unstable, while the branch
with positive slope near the turning point is more stable.

In our Schwarzschild-Rényi approach, we could apply both thermodynamic stability analysis
methods since the entropy function given by the formal logarithm approach is an additive function. In
[25], first we investigated the question of a pure, isolated black hole in the microcanonical ensemble.
We showed that these configurations are stable against spherically symmetric perturbations, just
like in the classical picture. Next we also investigated the problem of a black hole surrounded by
a bath of thermal radiation in the canonical treatment. We found that in contrast to the standard
picture, Schwarzschild black holes can be in stable equilibrium with thermal radiation at a fixed
temperature in the Rényi approach. We observed that a stability change occurs at a certain value of
the mass-energy parameter which belongs to the minimum temperature solution. Smaller mass black
holes are unstable while larger mass black holes become stable in this model. These results are similar
to the ones obtained by Hawking and Page in AdS space within the standard Boltzmann entropy
approach [32]. Motivated by this similarity, we also investigated the question of a possible phase
transition in the canonical picture and found, that a Hawking-Page-like black hole phase transition
occurs in a very similar manner as in AdS space. The corresponding critical temperature depends
only on the Rényi entropy parameter.

To extend the above studies on the Schwarzschild-Rényi model, we have also examined the
thermodynamic and stability properties of Kerr black holes within the Tsallis-Rényi approach [33].
We analyzed the thermodynamic stability of the problem in both the microcanonical and canonical
ensemble and found a stability change in the latter case. We showed that a Hawking-Page-like phase
transition and a first order small black hole/large black hole transition occur in this system analogous
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to the ones of rotating black holes in AdS space [34–36]. By this we confirmed the similarity between
the Rényi-asymptotically flat and Boltzmann-AdS approaches to black hole thermodynamics in the
rotating case as well.

Abe’s general equilibrium compatible entropy composition formula (2), and the formal
logarithm approach is not restricted of course to the Tsallis-Rényi model only. In [21], Biró and
Ván has derived the formal logarithm map to all of those nonadditive entropy functions which
satisfy Abe’s composition law, and showed that the most general form of equilibrium and zeroth
law compatible entropy functions reads as

L(S) =
1
λ

ln[1 + λHλ(S)]. (12)

The Tsallis-Rényi model in this framework is an interesting approach to the nonextensive
problem of black hole thermodynamics, however there is another relevant nonadditive composition
rule which we should also consider in connection with the problem, namely the original nonadditive
composition rule arising from the Bekenstein-Hawking entropy expression. Indeed, we started with
the question of the nonextensivity/nonadditivity of the standard black hole entropy function, but we
haven’t discussed whether it can satisfy the equilibrium compatibility condition of Abe’s formula
yet. In a recent paper [17], we have investigated the thermodynamic and stability problem of a
Schwarzschild black hole by considering the nonadditive entropy composition rule that is emerging
from the Bekenstein-Hawking description. We showed that in this case the entropy composition rule
of the Schwarzschild problem takes the form

S(A, B) = S(A) + S(B) + 2
√

S(A)
√

S(B), (13)

which, as it can be easily verified, corresponds to the case of Hλ(S) =
√

S and λ = 0 in Abe’s
formula (2). Starting from this non-parametric composition rule of Schwarzschild black holes and
also applying the formal logarithm method of Biró and Ván, we investigated the thermodynamic and
stability of the problem. The new additive entropy function for the black hole was obtained as

S ≡ L(SBH) = 2
√

SBH, (14)

by mapping the composition law (13) to its formal logarithm. Assuming additivity of the energy
function E(A, B) = E(A) + E(B) in the system, we obtained the new, zeroth law compatible entropy
formula for Schwarzschild black holes as

S = 4
√

πE, (15)

which is a linear function of the mass-energy parameter. From definition (6), one obtains the
corresponding, zeroth law compatible temperature of the black hole as

T ≡ 1
S′(E)

=
1

4
√

π
, (16)

which is an energy independent constant. Therefore, in this model, all black hole has the same
temperature which is independent of their size or mass. In this case, the heat capacity of the hole
diverges and the Hessian method can not provide a definite result for the thermodynamic stability of
the problem. The Poincaré turning point method, on the other hand, can still be applied, and we could
show that pure isolated black holes are thermodynamically stable against spherically symmetric
perturbations within this approach.

In the present paper, we extend the non-parametric, zeroth law compatible approach to black
hole thermodynamics by considering the problem of rotating black holes. We study the function
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Hλ(S) arising from the Bekenstein-Hawking formula in the the Kerr case without any parameter
but satisfying Abe’s composition rule Hλ(SBH(A, B)) = Hλ(SBH(A)) + Hλ(SBH(B)). By regarding
this Hλ(SBH) as the new, additive entropy function of the Kerr black holes via the formal logarithm
approach, we investigate the thermodynamic and stability properties of the rotating problem.

2. Results

2.1. Kerr black holes

The spacetime metric of a rotating black hole is given by the Kerr solution

ds2 = −dt2 +
2Mr

Σ

(
dt− a sin2 θdφ

)2
+

Σ
∆

dr2 + Σdθ2 + (r2 + a2) sin θdφ2 , (17)

where
Σ = r2 + a2 cos2 θ, ∆ = r2 + a2 − 2Mr. (18)

Here, M is the mass-energy of the black hole and a is its rotational parameter. The thermodynamic
variables of the black hole can be expressed by the horizon radius r+ = M +

√
M2 − a2 and the

rotational parameter a. The mass-energy parameter can be written as

M =
r2
+ + a2

2r+
, (19)

the angular momentum of the black hole is

J =
a

2r+
(r2

+ + a2), (20)

and the angular velocity of the horizon is

Ω =
a

r2
+ + a2

. (21)

The Bekenstein-Hawking entropy is
SBH = π(r2

+ + a2), (22)

while the Hawking temperature of the black hole horizon is

TH =
1

2π

[
r+

r2
+ + a2

− 1
2r+

]
. (23)

The heat capacity at constant Ω is given by

CΩ = TH

(
∂SBH

∂TH

)
Ω
=

2πr2
+(a2 − r2

+)

r2
+ + a2

, (24)

and the heat capacity at constant J is

CJ = TH

(
∂SBH

∂TH

)
J
=

2π(r2
+ − a2)(r2

+ + a2)2

3a4 + 6r2
+a2 − r4

+

. (25)

We plotted the heat capacities CΩ and CJ as functions of h ≡ |a|r+ in Fig. 1. CΩ is negative for all h and

CJ diverges at h = hc =
√

2
3

√
3− 1. CJ is negative for h < hc and positive for h > hc. Kaburaki et

al. [27] considered the thermodynamic stability of standard Kerr black holes by using the Poincaré
turning point method. They concluded that isolated Kerr black holes are thermodynamically stable
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with respect to axisymmetric perturbations. They also found that faster rotating black holes (h > hc)
are more stable than slower rotating ones (h < hc) in a heat bath.

0.0 0.2 0.4 0.6 0.8 1.0

-20

-10

0

10

20

h

C
�r
+2

Figure 1. Plots of heat capacities CΩ (blue solid) and CJ (red dashed) as functions of h.

2.2. The formal logarithm approach

In order to extend the non-parametric results of the Schwarzschild problem obtained by the
formal logarithm approach, the following non-trivial equation has to be solved for Kerr black holes,

H(SBH(A, B)) = H(SBH(A)) + H(SBH(B)), (26)

where, and from now on, we omit the λ index of H for obvious reasons, and SBH is the
Bekenstein-Hawking entropy of Kerr black holes. Clearly the simple H(S) =

√
S Schwarzschild

solution is not working in the rotating case, but after some effort one can show that

H(S) ≡ L(SBH) =
2SBH√

SBH − πa2
= 2
√

π
r2
+ + a2

r+
, (27)

can describe the Kerr solution, where we have fixed the overall factor of S to reproduce the
Schwarzschild result (14) in the a → 0 limit. Comparing this result with the mass-energy parameter
of the black hole (19), we can conclude that the new, equilibrium and zeroth law compatible entropy
function of Kerr black holes obtained by the formal logarithm method based on the nonadditive and
non-parametric approach arising from the Bekenstein-Hawking model is the same linear function of
the energy,

S = 4
√

πE, (28)

as in the Schwarzschild problem. By assuming energy additivity in the system as before, the
corresponding zeroth law compatible temperature function from (6) becomes

T =
1

4
√

π
, (29)

which is again the same energy independent constant that we obtained in the Schwarzschild case.
Furthermore, both heat capacities, CΩ and CJ diverge, and the entropy and temperature functions
versus the energy of the hole are plotted in Figs. 2 and 3 respectively.
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Figure 2. Entropy vs. mass-energy, standard (black solid) and formal logarithm (red dashed)
approaches.
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Figure 3. Temperature vs. mass-energy, standard (black solid) and formal logarithm (red dashed)
approaches.

2.3. Stability analysis

Although the new, formal logarithmic entropy function (27) of Kerr black holes is additive for
composition, the Hessian method for stability analysis can not be used because, just like in the
Schwarzschild problem, the heat capacities are divergent. Nevertheless, the Poincaré method can still
provide information about the stability of the system. In cases when the black holes are isolated from
their surroundings, the thermodynamic problem can be described in the microcanonical ensemble.
Here the Massieu function of the system is the entropy function, and the corresponding control
parameters are the mass-energy, M and the angular momentum, J. The derivative functions are
β = 1

T = ∂S
∂M and −α = Ω

T = ∂S
∂J , and we plotted the β(M) stability curves at constant J and the
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−α(J) stability curves at constant M on Figs. 4 and 5, respectively. One can see on the plots that in the
standard thermodynamic treatment there are no turning points on the curves, therefore, Kaburaki et
al. [27] concluded that isolated Kerr black holes are stable against axisymmetric perturbations.

In the case of the formal logarithm approach, the stability curve β(M) is simply a horizontal line
while−α(J) is a monotonically decreasing convex curve. There are no turning points (i.e. points with
vertical tangents) on these curves either, so based on these results we can conclude that isolated Kerr
black holes are thermodynamically stable against axisymmetric perturbations in the formal logarithm
approach as well.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0
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20

30

40

50
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Β

Figure 4. Plots of stability curves β(M) at fixed J of standard (black solid) and formal logarithm (red
dashed) approaches in the microcanonical treatment. By rotating the figure clockwise with π

2 , the
stability curves of the canonical treatment can be obtained, i.e. −M(β) at fixed J.
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Figure 5. Plots of stability curves−α(J) at fixed M of standard (black solid) and formal logarithm (red
dashed) approaches in the microcanonical treatment.
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The canonical ensemble depicts the system of a black hole in equilibrium with an infinite
reservoir of thermal radiation at constant temperature. The Massieu function in this case is Ψ(β, J) =
S − βM and the control parameters are β and J. The pair of conjugate variables are the functions
−M(β) at fixed J and −α(J) at fixed β. The stability curve −M(β) at constant J for the standard case
can be obtained by clockwise rotating Fig. 4 with π/2. The stability curve −α(J) at fixed β in the
standard treatment is plotted in Fig. 6. In this case, the stability curve exhibits a turning point where
a stability change occurs in the system. Based on these observations, Kaburaki et al. [27] concluded
that fast rotation can stabilize black holes in a heat bath.

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

-30

-25

-20

-15

-10

-5

0

J

-
Α

Figure 6. Stability curve −α(J) at fixed β of the standard case in the canonical treatment.

For the formal logarithm approach, the Massieu function Ψ turns out to be identically zero in
the canonical case, so we can conclude that all black hole configurations are equally probable or
improbable in this model.

3. Discussion

In this paper we considered an equilibrium and zeroth law compatible approach to the
thermodynamic and stability problem of rotating black holes in standard 4 dimensions. The model
we adopted was based on the nonadditive entropy composition law of Kerr black holes arising from
the standard Bekenstein-Hawking entropy function. By solving Abe’s formula (2) for Hλ(S) with
zero λ parameter and applying the formal logarithm method of Biró and Ván [21], we derived the
following zeroth law compatible entropy function for Kerr black holes

L(SBH) = Hλ=0(SBH) =
2SBH√

SBH − πa2
. (30)

We showed that the above entropy expression is a linear function of the black hole’s energy, and also
that the corresponding temperature function must be a constant, i.e. independent of the mass-energy
parameter of the black hole. These results are exactly the same what we had previously found in
studying the Schwarzschild solution by using the same approach [17].

In the analysis of the thermodynamic stability problem, we have found some strange and
presumably unphysical results. These are e.g. diverging heat capacities, a horizontal stability curve
and a Massieu function which is always zero. Indeed, after some careful analysis of the present
model, one can show that the Hλ=0(SBH) function of the Bekenstein-Hawking entropy in the system
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is always the mass-energy parameter of the black hole up to some constant factor, so the new entropy
function can only result a constant temperature, no matter what complicated black hole spacetime
is considered. Comparing these findings with our previous results on the problem by using the
parametric Tsallis-Rényi approach [24,25,33], we conclude that the present non-parametric approach
to black hole thermodynamics based on the Bekenstein-Hawking entropy nonadditivity is most likely
an unrealistic one. Based on this conclusion it is more reasonable to further study the parametric,
λ 6= 0 case, where the zeroth law compatible temperature function of the system is not independent
of the black hole mass.

In the Tsallis-Rényi approach, the formal logarithm entropy function L(S) satisfies the triviality
condition L(0) = 0 and the leading order additivity L′(0) = 1 requirement. These conditions are
discussed in more detail by Biró and Ván in [21]. In the black hole problem however, the leading order
additivity condition L′(0) = 1 is not necessarily a natural choice when one considers the classical, not
the close to quantum limit of black holes. We intend to study this direction in our future investigations
by relaxing the leading order additivity condition.
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