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Abstract: Studies employing Arellano-Bond and Blundell-Bond GMM estimation for single linear
dynamic panel data models are growing exponentially in number. However, for researchers it
is hard to make a reasoned choice between many different possible implementations of these
estimators and associated tests. By simulation the effects are examined of many options regarding:
(i) reducing, extending or modifying the set of instruments; (ii) specifying the weighting matrix in
relation to the type of heteroskedasticity; (iii) using (robustified) 1-step or (corrected) 2-step variance
estimators; (iv) employing 1-step or 2-step residuals in Sargan-Hansen overall or incremental
overidentification restrictions tests. This is all done for models in which some regressors may be
either strictly exogenous, predetermined or endogenous. Surprisingly, particular asymptotically
optimal and relatively robust weighting matrices are found to be superior in finite samples to
ostensibly more appropriate versions. Most of the variants of tests for overidentification restrictions
show serious deficiencies. A recently developed modification of GMM is found to have great
potential when the cross-sectional heteroskedasticity is pronounced and the time-series dimension
of the sample not too small. Finally all techniques are employed to actual data and lead to some
profound insights.
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1. Introduction

One of the major attractions of analyzing panel data rather than single indexed variables is
that they allow to cope with the empirically very relevant situation of unobserved heterogeneity
correlated with included regressors. Econometric analysis of dynamic relationships on the basis
of panel data, where the number of surveyed individuals is relatively large while covering just a
few time periods, is very often based on GMM (generalized method of moments). Its reputation is
built on its claimed flexibility, generality, ease of use, robustness and efficiency. Widely available
standard software enables to estimate models including exogenous, predetermined and endogenous
regressors consistently, while allowing for semiparametric approaches regarding the presence of
heteroskedasticity and the type of distribution of the disturbances. This software also provides
specification checks regarding the adequacy of the internal and external instrumental variables
employed and the specific assumptions made regarding (absence of) serial correlation.

Popular are especially the GMM implementations put forward by Arellano and Bond [1].
However, practical problems have often been reported, such as vulnerability due to the abundance
of internal instruments, discouraging improvements of 2-step over 1-step GMM findings, poor size
control of test statistics, and weakness of instruments especially when the dynamic adjustment
process is slow (a root is close to unity). As remedies it has been suggested to reduce the number
of instruments by renouncing some valid orthogonality conditions, but also to extend the number of
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instruments by adopting more orthogonality conditions. Extra orthogonality conditions can be based
on certain homoskedasticity or stationarity assumptions or initial value conditions, see Blundell and
Bond [2]. By abandoning weak instruments finite sample bias may be reduced, whereas by extending
the instrument set with a few strong ones the bias may be further reduced and the efficiency enhanced.
Presently, it is not clear yet how practitioners can best make use of these suggestions, because no set of
preferred testing tools is yet available, nor a comprehensive sequential specification search strategy,
which in a systematic fashion allow to select instruments by assessing both their validity and their
strength, as well as to classify individual regressors accurately as relevant and either endogenous,
predetermined or strictly exogenous. Therefore it happens often that in applied research models
and techniques are selected simply on the basis of the perceived significance and plausibility of
their coefficient estimates, whereas it is well known that imposing invalid coefficient restrictions and
employing regressors wrongly as instruments will often lead to relatively small estimated standard
errors. Then, however, these provide misleading information on the actual precision of the often
seriously biased estimators.

The available studies on the performance of alternative inference techniques for dynamic
panel data models have obvious limitations when it comes to advising practitioners on the most
effective implementations of estimators and tests under general circumstances. As a rule, they
do not consider various empirically relevant issues in conjunction, such as: (i) occurrence and
the possible endogeneity of regressors additional to the lagged dependent variable, (ii) occurrence
of individual effect (non-)stationarity of both the lagged dependent variable and other regressors,
(iii) cross-section and/or time-series heteroskedasticity of the idiosyncratic disturbances, and (iv)
variation in signal-to-noise ratios and in the relative prominence of individual effects. For example:
the simulation results in Arellano and Bover [3], Hahn and Kuersteiner [4], Alvarez and Arellano
[5], Hahn et al. [6], Kiviet [7], Kruiniger [8], Okui [9], Roodman [10], Hayakawa [11] and Han
and Phillips [12] just concern the panel AR(1) model under homoskedasticity. Although an extra
regressor is included in the simulation studies in Arellano and Bond [1], Kiviet [13], Bowsher [14],
Hsiao et al. [15], Bond and Windmeijer [16], Bun and Carree [1718], Bun and Kiviet [19], Gouriéroux
et al. [20], Hayakawa [21], Dhaene and Jochmans [22], Flannery and Hankins [23], Everaert [24] and
Kripfganz and Schwarz [25], this regressor is (weakly-)exogenous and most experiments just concern
homoskedastic disturbances and stationarity regarding the impact of individual effects. Blundell
et al. [26] and Bun and Sarafidis [27] include an endogenous regressor, but their design does not
allow to control the degree of simultaneity; moreover, they stick to homoskedasticity. Harris et al.
[28] only examine the effects of neglected endogeneity. Heteroskedasticity is considered in a few
simulation experiments in Arellano and Bond [1] in the model with an exogenous regressor, and
just for the panel AR(1) case in Blundell and Bond [2]. Windmeijer [29] analyzes panel GMM
with heteroskedasticity, but without including a lagged dependent variable in the model. Bun
and Carree [30] and Juodis [31] examine effects of heteroskedasticity in the model with a lagged
dependent and a strictly exogenous regressor under stationarity regarding the effects. Moral-Benito
[32] examines stationary and nonstationary regressors in a dynamic model with heteroskedasticity,
but the extra regressor is predetermined or strictly exogenous. Moreover, his study is restricted to
time-series heteroskedasticity, while assuming cross-sectional homoskedasticity. In a micro context
cross-sectional heteroskedasticity seems more realistic to us, whereas it is also trickier when N is large
and T small.

So, knowledge is still scarce with respect to the performance of GMM when it is not only
needed to cope with genuine simultaneity (which we consider to be the core of econometrics),
but also because of occurrence of heteroskedasticity of unknown form. Moreover, many of the
simulation studies mentioned above did not systematically explore the effects of relevant nuisance
parameter values on the finite sample distortions to asymptotic approximations. We examine
estimating a prominent nuisance parameter, namely the variance of individual effects, which to
date has received surprisingly little attention in the literature. Regarding the performance of tests
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on the validity of instruments worrying results have been obtained in Bowsher [14] and Roodman
[10] for homoskedastic models. On the other hand Bun and Sarafidis [27] report reassuring results,
but these just concern models where T = 3. Hence, it would be useful to examine more cases over an
extended grid covering more dimensions. Our grid of examined cases will be much wider and have
more dimensions. Moreover, we will deliberately explore both feasible and unfeasible versions of
estimators and test statistics (in unfeasible versions particular nuisance parameter values are assumed
to be known). Therefore we will be able to draw more useful conclusions on what aspects do have
major effects on any inference inaccuracies in finite samples.

The data generating process designed here can be simulated for classes of models which may
include individual and time effects, a lagged dependent variable regressor and another regressor
which may be correlated with these and other individual effects and be either strictly exogenous or
jointly dependent with regard to the idiosyncratic disturbances, whereas the latter may show a form
of cross-section heteroskedasticity associated with both the individual effects. For a range of relevant
parameter values we will verify in moderately large samples the properties of alternative GMM
estimators, both 1-step and 2-step, focussing on alternative implementations regarding the weighting
matrix and corresponding corrections to variance estimates according to the often practiced approach
by Windmeijer [29]. This will include variants of the popular system estimator, which exploit as
instruments the first-difference of lagged internal variables for the untransformed model in addition
to lagged level internal variables as instruments for the model from which the individual effects have
been removed. We will examine cases where the extra instruments are (in)valid in order to verify
whether particular tests for overidentification restrictions have appropriate size and power, such
that with reasonable probabilities valid instruments will be recognized as appropriate and invalid
instruments will be detected and can be discarded. Moreover, following Kiviet and Feng [33], we
shall investigate a rather novel modification of the traditional GMM implementation which aims at
improving the strength of the exploited instruments in the presence of heteroskedasticity. Of course,
also the simulation design used here has its limitations. It has only one extra regressor next to the
lagged dependent variable, we only consider cross-sectional heteroskedasticity, and all basic random
terms have been drawn from the normal distribution. Moreover, the design does not accommodate
general forms of cross-sectional dependence between error terms. However, by including individual
and time specific effects particular simple forms of cross-sectional dependence are accommodated.

The structure of this study is as follows. In Section 2 we first present the major issues regarding
IV and GMM coefficient and variance estimation in linear models and on inference techniques on
establishing instrument validity and regarding the coefficient values by standard and by corrected
test statistics. Next in Section 3 the generic results of Section 2 are used to discuss in more detail
than provided elsewhere the various options for their implementation in linear models for single
dynamic simultaneous micro econometric panel data relationships with both individual and time
effects and some form of cross-sectional heteroskedasticity. In Section 4 the Monte Carlo design is
developed to analyze and compare the performance of alternative often asymptotically equivalent
inference methods in finite samples of empirically relevant parametrizations. Section 5 summarizes
the simulation results, from which some preferred techniques for use in finite samples of particular
models emerge, plus a warning regarding particular types of models that require more refined
methods yet to be developed. An empirical illustration, which involves data on labor supply earlier
examined by Ziliak [34], can be found in Section 6, where we also formulate a tentative comprehensive
specification search strategy for dynamic micro panel data models. Finally, in Section 7 the major
findings are summarized.

2. Basic GMM results for linear models

Here we present concisely the major generic results on IV and GMM inference for single
indexed data that could either represent time-series or a cross-section. First we define the model and
estimators, discuss some of their special properties and consider specific test situations. From these
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general findings for linear regressions the examined implementations for specific linear dynamic
panel data models follow easily in Section 3.

2.1. Model and estimators

Let the scalar dependent variable yi depend linearly on K regressors xi and an unobserved
disturbance term ui, and let there be L ≥ K variables zi (the instruments) that establish orthogonality
conditions such that

yi = x′i β0 + ui
E[zi(yi − x′i β0)] = 0

}
i = 1, ..., n. (1)

Here xi and β0 are K × 1 vectors, β0 containing the true values of the unknown coefficients, and zi
is an L × 1 vector. Applying the analogy principle, the method of moments (MM) aims to find an
estimator for model parameter β by solving the L sample moment equations

n−1Σn
i=1zi(yi − x′i β̂) = 0. (2)

Generally, these have a unique solution only when L = K and then yield

β̂ = (Σn
i=1zix′i)

−1Σn
i=1ziyi, (3)

provided the inverse exists. For L > K the MM recipe to find a unique estimator is: minimize with
respect to β the criterion function Σn

i=1[(yj − x′jβ)z
′
j]GΣN

i=1[zi(yi − x′i β)] for some weighting matrix G.
It can be shown that the asymptotically optimal choice for G is an expression which has a probability

limit that is proportional to the inverse of the asymptotic variance V of n−1/2Σn
i=1ziui

d→ N(0, V).
When ui ∼ iid(0, σ2

u) an optimal choice for G is proportional to the inverse of Σn
i=1ziz′i and the MM

estimator is
β̂ IV = [X′Z(Z′Z)−1Z′X]−1X′Z(Z′Z)−1Z′y, (4)

where y = (y1 · · · yn)′, X = (x1 · · · xN)
′ and Z = (z1 · · · zN)

′. But, when E(ziui) = 0 while u =

(u1 · · · un)′ ∼ (0, σ2
uΩ), where Ω has full rank and without loss of generality tr(Ω) = n, the optimal

choice for G is a matrix proportional to (Z′ΩZ)−1, yielding MM estimator

β̂GMM = [X′Z(Z′ΩZ)−1Z′X]−1X′Z(Z′ΩZ)−1Z′y. (5)

Note that for Ω = In the latter formula simplifies to β̂ IV . When L = K both β̂GMM and β̂ IV simplify
to (3) or (Z′X)−1Z′y.

When Ω is unknown and therefore (5) is unfeasible, one should use an informed guess Ω(0) to
obtain the 1-step estimator β̂

(1)
GMM, which is sub-optimal when Ω(0) 6= Ω, though consistent under the

assumptions made. Then the residuals

û(1) = y− Xβ̂
(1)
GMM (6)

are consistent for u, thus from them it should be possible to obtain an expression Ω̂(1) such that
plim n−1(Z′Ω̂(1)Z− Z′ΩZ) = O. Substituting in (5) yields the 2-step estimator

β̂
(2)
GMM = [X′Z(Z′Ω̂(1)Z)−1Z′X]−1X′Z(Z′Ω̂(1)Z)−1Z′y, (7)

which is asymptotically equivalent to β̂GMM and thus asymptotically optimal, given the L
instruments used.
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2.2. Some algebraic peculiarities

It is well-known and easy to prove that all the above method of moment estimators are invariant
to linear transformations of the matrix of instruments Z, as long as its rank is preserved.

Defining PZ = Z(Z′Z)−1Z′ and X̂ = PZX one finds β̂ IV = (X̂′X̂)−1X̂′y, which highlights its
two-stage least-squares character. Now suppose that X = (X1, X2) and Z = (Z1, Z2) with Z2 = X2

whereas Xβ = X1β1 + X2β2, where β1 and β2 have K1 and K2 elements respectively. Standard results
on partitioned regression yields

β̂1,IV = (X̂′1MX̂2
X̂1)

−1X̂′1MX̂2
y = (X′1PMX2 Z1 X1)

−1X′1PMX2 Z1 y, (8)

which is the IV estimator in the regression of y on just X1 using the L− K2 instruments MX2 Z1. This
result is known as partialling out the predetermined regressors X2. It follows from X̂2 = PZX2 = X2

which yields
MX̂2

X̂1 = MX2 PZX1 = MX2(PX2 + PMX2 Z1)X1 = PMX2 Z1 X1.

A similar result is not straight-forwardly available for GMM because of the following.
Let positive definite matrix Ω be factorized as follows

Ω−1 = Ψ′Ψ, so Ω = Ψ−1(Ψ′)−1. (9)

Now define
y∗ = Ψy, X∗ = ΨX, Z† = (Ψ′)−1Z, (10)

then

β̂GMM = [X∗′Z†(Z†′Z†)−1Z†′X∗]−1X∗′Z†(Z†′Z†)−1Z†′y∗

= (X∗′PZ† X∗)−1X∗′PZ† y∗,

so GMM is equivalent to IV using transformed variables, but where Z has been transformed
differently. Therefore, if X2 is such that X∗2 establishes valid instruments in the transformed model
y∗ = X∗β + u∗, where u∗ ∼ (0, σ2

u In), the regressors X∗2 are not used as instruments in GMM in its IV
interpretation. They would, though, if one would deliberately choose Z2 = Ω−1X2.

As is well-known and easily verified, linear transformations of the matrix of instruments of the
form Z� = ZC, where C is a full rank L× L matrix, have no effect on β̂ IV nor on β̂GMM. However, there
is not such invariance when the matrix Z is premultiplied by some transformation matrix, and hence
not the columns but the rows of Z are directly affected. It has been shown in Kiviet and Feng [33]
that such transformations, chosen in correspondence with the required transformation of the model
when Ω 6= In, may lead to modified GMM estimation achieving higher efficiency levels and better
results in finite samples than standard GMM, provided the validity of the transformed instruments is
maintained. We will examine here the effects of employing transformation Z∗ = ΨZ, which provides
the modified GMM estimator

β̂MGMM = [X′Ω−1Z(Z′Ω−1Z)−1Z′Ω−1X]−1X′Ω−1Z(Z′Ω−1Z)−1Z′Ω−1y. (11)

When this can be made feasible, it yields β̂
(2)
MGMM.

2.3. Particular test procedures

Inference on elements of β0 based on β̂
(2)
GMM of (7) requires an asymptotic approximation to its

distribution. Under correct specification the standard first-order approximation is

β̂
(2)
GMM

a∼ N(β0, σ̂2
u [X

′Z(Z′Ω̂(1)Z)−1Z′X]−1). (12)
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It allows testing general restrictions by Wald-type tests. For an individual coefficient, say β0k = e′K,kβ0,
where eK,k is a K × 1 vector with all elements zero except its kth element (1 ≤ k ≤ K) which is unity,
testing H0 : β0k = β0

k and allowing for one-sided alternatives, amounts to comparing test statistic

Wβk = (e′K,k β̂
(2)
GMM − β0

k)/{σ̂
2
ue′K,k[X

′Z(Z′Ω̂(1)Z)−1Z′X]−1eK,k}1/2 (13)

with the appropriate quantile of the standard normal distribution. Note that this test statistic is
actually an asymptotic t-test; in finite samples the type I error probability may deviate from the
chosen nominal level, also depending on whether σ̂2

u has been obtained from 1-step or from 2-step
residuals and any employed loss of degrees of freedom corrections. In fact it has been observed that
the consistent estimator of the variance of two-step GMM estimators V̂ar(β̂

(2)
GMM) given in (12) often

underestimates the finite sample variance, because in its derivation the randomness of Ω̂(1) is not
taken into account. Windmeijer [29] provides a corrected formula V̂arc(β̂

(2)
GMM), see Appendix A,

which can be used in the corrected t-test

Wc
βk

= (e′K,k β̂
(2)
GMM − β0

k)/{e
′
K,kV̂arc(β̂

(2)
GMM)eK,k}1/2. (14)

When L > K the overidentification restrictions can be tested by the Sargan-Hansen statistic

J(1)Z = n(û(1)′Z(Z′Ω̂(1)Z)−1Z′û(1))/(û(1)′û(1)), (15)

which under correct specification and valid instruments Z is distributed as χ2
L−K asymptotically.

Because Ω̂(1) is based on û(1), which relates to a consistent estimator, but not to an asymptotically
optimal estimator, it might be better to perform at least one further iteration and use

J(2)Z = n(û(2)′Z(Z′Ω̂(2)Z)−1Z′û(2))/(û(2)′û(2)), (16)

where û(2) = y − Xβ̂
(2)
GMM is used to construct Ω̂(2). When Z = (Zm Za), where Zm is an n × Lm

matrix with Lm ≥ K containing the instruments whose validity seems very likely, then, under the
maintained hypothesis E(Z′mu) = 0, one can test the validity of the L− Lm additional instruments Za

by the incremental test statistic

J I(2)Za
= n[û(2)′Z(Z′Ω̂(2)Z)−1Z′û(2)/(û(2)′û(2))− û(2)′

m Zm(Z′mΩ̂(2)
m Zm)

−1Z′mû(2)
m /(û(2)′

m û(2)
m )], (17)

which under correct specification of the model with valid instruments Z is distributed as χ2
L−Lm

asymptotically. Of course, û(2)
m and Ω̂(2)

m are obtained by just using the instruments Zm. Note that
for m = K we have J I(2)Za

= J(2)Z because in that case Z′mû(2)
m = 0. Hence, when m = K, explicit

specification of component Zm is meaningless.
In simulations it is interesting to examine as well unfeasible versions of the above test statistics,

which exploit information that is usually not available in practice. This will produce evidence on
what elements of the feasible asymptotic tests may cause any inaccuracies in finite samples. So, next
to (13), (16) and (17) we will also examine

W(u)
βk

= (e′K,k β̂GMM − β0
k)/{σ

2
ue′K,k[X

′Z(Z′ΩZ)−1Z′X]−1eK,k}1/2, (18)

J(u)Z = û′Z(Z′ΩZ)−1Z′û/σ2
u , where û = y− Xβ̂GMM, (19)

J I(u)Za
= [û′Z(Z′ΩZ)−1Z′û− û′mZm(Z′mΩZm)

−1Z′mûm]/σ2
u . (20)

Similar feasible and unfeasible implementations of t-tests and Sargan-Hansen tests for MGMM based
estimators follow straight-forwardly.
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3. Implementations for dynamic micro panel models

3.1. Model and assumptions

We consider the balanced linear dynamic panel data model (i = 1, ..., N; t = 1, ..., T)

yit = x′itβ + w′itγ + v′itδ + µ + τt + ηi + εit, (21)

where xit contains Kx ≥ 0 strictly exogenous regressors (excluding a constant and fixed time effects),
wit are Kw ≥ 0 predetermined regressors (probably including lags of the dependent variable and other
variables affected by lagged feedback from yit or just from εit), vit are Kv ≥ 0 endogenous regressors
(affected by instantaneous feedback from yit and therefore jointly dependent with yit), µ is an overall
constant, the τt are random or fixed time effects, the ηi are random individual specific effects (most
likely correlated with many of the regressors) such that

ηi ∼ iid(0, σ2
η), (22)

whereas
E(εit) = 0, E(ε2

it) = σ2
it, E(εitε js) = 0, E(ηiε jt) = 0, ∀i, j, t 6= s. (23)

The parameter vector τ could have all its elements equal and then will be absorbed by the
overall intercept µ of the model. However, it seems better to allow for time effects in addition to
an intercept, because this helps to underpin the assumption that both the idiosyncratic disturbances
and the individual effects have expectation zero. Note, though, that for identification at least one
restriction should be imposed on the T + 1 scalar parameters represented by µ and τ.

The classification of the regressors implies

E(xitεis) = 0, E(witεi,t+l) = 0, E(vitεi,t+1+l) = 0, ∀i, t, s, l ≥ 0. (24)

For the sake of simplicity we assume that all regressors are time varying and that the vectors xit, wit
or vit are defined for t = 1, ..., T. However, their elements may contain observations prior to t = 1
for regressors that are actually the lth order lag of a current variable. Only these lagged regressors
are observed from t = 1− l onwards. This means that all regressors in (21), be it current variables
or lags of them, have exactly T observations. So, any unbalancedness problems have been defined
away; moreover, no internal instrumental variables can be constructed involving observations prior
to those included in xi1, wi1 or vi1.

Stacking the T time-series observations of (21) the equation in levels can be written

yi = Xiβ + Wiγ + Viδ + ITτ + ιT(µ + ηi) + εi, (25)

where yi = (yi1 · · · yiT)
′, Xi = (xi1 · · · xiT)

′, Wi = (wi1 · · ·wiT)
′, Vi = (vi1 · · · viT)

′, τ = (τ1 · · · τT)
′ and

ιT is the T × 1 vector with all its elements equal to unity. We do allow Kx = 0, Kw = 0, Kv = 0, but
not all three at the same time, so

K = Kx + Kw + Kv > 0. (26)

We will focus on micro panels, where the number of time-series observations T is usually very
small, possibly a one digit number, and the number of cross-section units N is large, usually at least
several hundreds. Therefore asymptotic approximations will be for N → ∞ and T finite.
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3.2. Removing individual effects by first differencing

First we consider estimating the model by GMM following the approach propounded by
Arellano and Bond [1], see also Holtz-Eakin et al. [35]. To clarify this, and the consequences it may
have for the time-dummies, we introduce the matrices

DT =


−1 1 0 · · · 0

0 −1 1
...

...
. . . . . . 0

0 0 · · · −1 1

 and D∗T−1 =


1 0 0

−1 1
. . .

...
. . . 1 0

0 · · · −1 1

 , (27)

where DT is (T− 1)× T and D∗T−1 is its (T− 1)× (T− 1) submatrix after removing the first column.
By taking first differences the intercept and the individual effects are removed and one may estimate
the N sets of T − 1 equations DTyi = DTXiβ + DTWiγ + DTViδ + DTτ + DTεi. Denoting ỹi = DTyi,
X̃i = DTXi, W̃i = DTWi, Ṽi = DTVi, ε̃i = DTεi and τ̃ = DTτ, where τ̃t = τt − τt−1 for t = 2, ..., T, this
can compactly be expressed as ỹi = R̄iᾱ + ε̃i, where R̄i = (X̃i, W̃i, Ṽi, IT−1) and ᾱ = (β′, γ′, δ′, τ̃′)′.

However, the popular Stata package xtabond2 reparametrizes the time-effects differently (as we
found out by experimentation). It substitutes τ̃ = D∗T−1τ∗. Hence, τ∗t = τt − τ1 for t = 2, ..., T, and it
estimates

ỹi = R̃iα̃ + ε̃i, (28)

where R̃i = (X̃i, W̃i, Ṽi, D∗T−1) and α̃ = (β′, γ′, δ′, τ∗′)′. So, basically, it addresses the problem that not
all T time-dummy coefficients can be identified, by replacing the submatrix of regressors DT , which
has rank T − 1, by full rank matrix D∗T−1, so by simply removing its first column, with the effect that
coefficients τ∗ will be estimated.

Defining

QT =

(
0′

IT−1

)
and AT =


1 0 · · · 0
1 1 0
...

...
. . .

...
1 1 · · · 1

 , (29)

where QT is T × (T − 1) and AT is T × T lower-triangular, one easily finds that DTQT = D∗T−1 =

A−1
T−1. Instead of τ∗, one can directly estimate τ̃ = D∗T−1τ∗ by xtabond2 by replacing in the equation

in levels ITτ by ATτ∗∗, hence by replacing the time dummy variables by accumulated time dummies.
Here τ∗∗ = A−1

T τ = DT+1QT+1τ = DT+1(0, τ′)′ = (τ1, τ̃′)′. Note that DT AT = (0, IT−1). Hence,
IT−1τ̃ = τ̃ would remain, after removal of the first column, as in ỹi = R̄iᾱ + ε̃i. Of course, many more
different transformations of the T coefficients τ can be estimated, though, by taking first differences
only T − 1 linear transformations of them can be identified; by interpreting them appropriately no
fundamental differences emerge.

To construct a full column rank matrix of instrumental variables Z = (Z′1 · · · Z′N)′, which
expresses as many linearly independent orthogonality conditions as possible for (28), while restricting
ourselves to internal variables, i.e. variables occurring in (21), we define the following vectors

xT′
i = (x′i1· · · x′iT), wt′

i = (w′i1· · ·w′it), vt′
i = (v′i1· · · v′it). (30)

Without making this explicit in the notation it should be understood that these three vectors only
contain unique elements. Hence, if vector xis (or wis) contains for 1 < s ≤ T a particular value and
also its lag (which is not possible for vit), then this lag should be taken out since it already appears
in xi,s−1. Matrix Zi is of order (T − 1)× L and consists of four blocks (though some of these may be
void)

Zi = (Zx
i , Zw

i , Zv
i , D∗T−1). (31)
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The final block spans the same space as IT−1and could thus be replaced by IT−1. It is associated with
the fundamental moment conditions E(ε̃i) = 0. Therefore, it could form part of Zi even if one imposes
τ = 0. For the other blocks we have

Zx
i = IT−1 ⊗ xT′

i , Zw
i =

 w1′
i 0′ 0′

O
. . . O

0′ 0′ wT−1′
i

 , Zv
i =


0′ 0′ 0′

v1′
i 0′ 0′

O
. . . O

0′ 0′ vT−2′
i

 . (32)

The maximum possible number of columns of Zx
i is KxT(T− 1), for Zw

i it is KwT(T− 1)/2 and for Zv
i

it is Kv(T − 1)(T − 2)/2, thus

L ≤ (T − 1){T[Kx + (Kw + Kv)/2]− Kv + 1}, (33)

whereas MM estimation requires L ≥ K + T− 1. It follows from (23) and (24) that E(Z′i ε̃i) = 0 indeed.
In actual estimation one may use a subset of these instruments by taking the linear transformation
Z∗i = ZiC, where C is an L × L∗ matrix (with all its elements often being either zero, one or minus
one) of rank L∗ < L, provided L∗ ≥ K + T − 1. In the above we have implicitly assumed that the
variables are such that Z = (Z′1 · · · Z′N)′ will have full column rank, so another necessary condition is
N(T − 1) ≥ L∗. Of course, it is not required that individual blocks Zi have full column rank.

Despite its undesirable effect on the asymptotic variance of method of moments estimators,
reducing the number of instruments may improve estimation precision, because it may at the same
time mitigate estimation bias in finite samples, especially when weak instruments are being removed.
So, instead of including the block D∗T−1 or IT−1 in Zi one could – especially when the model has
no time-effects – replace it by IT−1ιT−1 = ιT−1. Regarding Zw

i and Zv
i two alternative instrument

reduction methods have been suggested, namely omitting long lags (see Bowsher 14, Windmeijer 29
and Bun and Kiviet 19) and collapsing (see Roodman 10, but also suggested in Anderson and Hsiao
36). Both are employed in Ziliak [34]; these two methods can also be combined.

Omitting long lags could be achieved by reducing Zw
i to, for instance,

w′i1 0′ 0′ 0′ 0′ 0′ 0′

0′ w′i1 w′i2 0′ 0′ 0′ 0′

0′ 0′ 0′ w′i2 w′i3 0′ 0′
...

...
... O′ O′

. . . O′ O′

0′ 0′ 0′ 0′ 0′ w′i,T−2 w′i,T−1

 (34)

and similar for Zv
i . The collapsed versions of Zw

i and of Zv
i can be denoted as

Z∗wi =


w′i1 0′ · · · 0′

w′i2 w′i1
...

...
. . . O

w′i,T−1 w′i,T−2 · · · w′i,1

 , Z∗vi =



0′ 0′ · · · 0′

v′i1 0′ 0′

v′i2 v′i1
...

...
. . . O

v′i,T−2 w′i,T−3 · · · v′i,1


. (35)

Collapsing can be combined with omitting long lags, if one removes all the columns of Z∗wi and
Z∗vi which have at least a certain number of zero elements (say 1 or 2 or more) in their top rows.
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In corresponding ways, the column space of Zx
i can be reduced by including in Zi either a limited

number of lags and leads, or the collapsed matrix

Z∗xi =


x′i2 x′i1 0′ · · · 0′

x′i3 x′i2 x′i1
...

...
...

. . . O
x′i,T x′i,T−1 x′i,T−2 · · · x′i,1

 , (36)

or just its first two or three columns – or what is often done in practice – simply the difference between
the first two columns, the Kx regressors (∆xi2, ..., ∆xiT)

′.
It seems useful to distinguish the following specific forms of instrument matrix reduction of

the case where all instruments associated with valid linear moment restrictions are being used. The
latter case we label as A (all); the reductions are labelled C (standard collapsing), L0, L1, L2, L3 (which
primarily restrict the lag length), and C0, C1, C2, C3 (which combine the two reduction principles). In
all the reductions we replace IT−1 by ιT−1 when the model does not include time-effects. Regarding
Zx

i , Zw
i and Zv

i different types of reductions can be taken, which we will distinguish by using for
example the characterization: Av, L2w, C1x etc. This leads to the particular reductions as indicated
and defined in Table 1.

Table 1. Definition of labels for particular instrument matrix reductions
Ax : Zx

i Aw : Zw
i Av : Zv

i
L0x : diag(x′i2, ..., x′iT) L0w : diag(w′i1, ..., w′i,T−1) L0v : [0, diag(vi1, ..., vi,T−2)]

′

L1x : diag(∆x′i2, ..., ∆x′iT) L1w : diag(w′i1, ∆w′i2, ..., ∆w′i,T−1) L1v : [0, diag(vi1, ∆vi2, ..., ∆vi,T−2)]
′

L2x : diag(x′i1, ..., x′i,T−1), L0x L2w : [0, diag(wi1, ..., wi,T−2)]
′, L0w L2v : [0, 0, diag(vi1, ..., vi,T−3)]

′, L0v

L3x : [0, diag(xi1, ..., xi,T−2)]
′, L2x L3w : [0, 0, diag(wi1, ..., wi,T−3)]

′, L2w L3v : [0, 0, 0, diag(vi1, ..., vi,T−4)]
′, L2v

Cx : Z∗xi Cw : Z∗wi Cv : Z∗vi
C0x : (xi2, ..., xiT)

′ C0w : (wi1, ..., wi,T−1)
′ C0v : (0, vi1, ..., vi,T−2)

′

C1x : (∆xi2, ..., ∆xiT)
′ C1w : (0, ∆wi2, ..., ∆wi,T−1)

′ C1v : (0, 0, ∆vi2, ..., ∆vi,T−2)
′

C2x : C0x, (xi1, ..., xi,T−1)
′ C2w : C0w,(0, wi1, ..., wi,T−2)

′ C2v : C0v,(0, 0, vi1, ..., vi,T−3)
′

C3x : C2x,(0, xi1, ..., xi,T−2)
′ C3w : C2w,(0, 0, wi1, ..., wi,T−3)

′ C3v : C2v,(0, 0, 0, vi1, ..., vi,T−4)
′

Note that for all three types of regressors L2, like L1, uses one extra lag compared to L0, but
does not impose the first-difference restrictions characterizing L1. We skipped a similar intermediary
case between L2 and L3. Self-evidently L2x can also be represented by combining diag(x′i1, ..., x′i,T−1)

with L1x, and similar for L2w and L2v. The reductions C0 and C1, which yield just one instrument
per regressor, constitute generalizations of the classic instruments suggested by Anderson and Hsiao
[36]. These may lead to just identified models where the number of instruments equals the number
of regressors which provokes the non-existence of moments problem. To avoid that, and also because
we suppose that in general some degree of overidentification will have advantages regarding both
estimation precision and the opportunity to test model adequacy, one may choose to restrict oneself
to the popular C1x and the reductions C and C3 as far as collapsing is concerned. In C3 just the first
three columns of the matrices in (35) and (36) are being used as instruments.

3.2.1. Alternative weighting matrices

We assumed in (23) that the εit are serially and cross-sectionally uncorrelated but may be
heteroskedastic. Let us define the matrix Ωi = diag(σ2

i1, ..., σ2
iT), thus εi ∼ (0, Ωi) and ε̃i = DTεi ∼

(0, DTΩiD′T). Under standard regularity we have

N−1/2ΣN
i=1Z′i ε̃i

d→ N(0, plim N−1ΣN
i=1Z′i DTΩiD′TZi). (37)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 December 2016                   doi:10.20944/preprints201612.0137.v1

Peer-reviewed version available at Econometrics 2017, 5, 14; doi:10.3390/econometrics5010014

http://dx.doi.org/10.20944/preprints201612.0137.v1
http://dx.doi.org/10.3390/econometrics5010014


11 of 52

Hence, the optimal GMM estimator of α̃ of (28) should use a weighting matrix such that its inverse has
probability limit proportional to plim N−1ΣN

i=1Z′i DTΩiD′TZi. This can be achieved by first obtaining
a consistent 1-step GMM estimator

̂̃α(1) = [(ΣN
i=1R̃′iZi)G(0)(ΣN

i=1Z′i R̃i)]
−1(ΣN

i=1R̃′iZi)G(0)(ΣN
i=1Z′i ỹi), (38)

which uses the weighting matrix

G(0) =
(

ΣN
i=1Z′i DT D′TZi

)−1
. (39)

This is already efficient if Ωi = σ2
ε IT ; otherwise, in a second step, the consistent 1-step residualŝ̃ε(1)i = ỹi − R̃î̃α(1) can be used to construct the asymptotically optimal weighting matrix

Ĝ(1)
a = (ΣN

i=1Z′î̃ε(1)i ̂̃ε(1)′i Zi)
−1. (40)

An alternative is using
Ĝ(1)

b = (ΣN
i=1Z′i Ĥ(1)b

i Zi)
−1, (41)

where Ĥ(1)b
i is the band matrix

Ĥ(1)b
i =



̂̃ε(1)i2 ̂̃ε(1)i2 ̂̃ε(1)i2 ̂̃ε(1)i3 0 · · · 0̂̃ε(1)i3 ̂̃ε(1)i2 ̂̃ε(1)i3 ̂̃ε(1)i3 ̂̃ε(1)i3 ̂̃ε(1)i4 0

0 ̂̃ε(1)i4 ̂̃ε(1)i3 ̂̃ε(1)i4 ̂̃ε(1)i4
. . . 0

...
. . . . . . . . .

...

0
. . . ̂̃ε(1)i,T−1

̂̃ε(1)i,T−1
̂̃ε(1)i,T−1

̂̃ε(1)iT

0 0 0 · · · ̂̃ε(1)iT ̂̃ε(1)i,T−1
̂̃ε(1)iT ̂̃ε(1)iT


. (42)

Both (NĜ(1)
a )−1 and (NĜ(1)

b )−1 have a probability limit equal to the limiting variance of (37). The
latter is less robust, but may converge faster when Ωi is diagonal indeed. On the other hand (41) may
not be positive definite, whereas (40) is.

For the special case Ωi = σ2
ε,i IT of cross-section heteroskedasticity but time-series

homoskedasticity, one could use
Ĝ(1)

c = (ΣN
i=1Z′i Ĥ(1)c

i Zi)
−1, (43)

with

Ĥ(1)c
i = σ̂

2,(1)
ε,i H = σ̂

2,(1)
ε,i



2 −1 0 · · · 0

−1 2
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . 2 −1

0 · · · 0 −1 2


, (44)

where H = DT D′T and

σ̂
2,(1)
ε,i = ̂̃ε(1)′i H−1̂̃ε(1)i /(T − 1). (45)

Of course, these N estimators are not consistent for T finite. However, a consistent estimator for
σ2

ε = N−1ΣN
i=1σ2

ε,i is given by

σ̂
2,(1)
ε = N−1ΣN

i=1σ̂
2,(1)
ε,i . (46)
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The three different weighting matrices can be used to calculate alternative ̂̃α(2)(j) estimators for
j ∈ {a, b, c} according to

̂̃α(2)(j) = [(ΣN
i=1R̃′iZi)Ĝ

(1)
j (ΣN

i=1Z′i R̃i)]
−1(ΣN

i=1R̃′iZi)Ĝ
(1)
j (ΣN

i=1Z′i ỹi). (47)

When the employed weighting matrix is asymptotically optimal indeed, the first-order asymptotic

approximation to the variance of ̂̃α(2)(j) is given by the inverse of the matrix in square brackets.
From this (corrected) t-tests are easily obtained, see Section 3.4. Matching implementations of
Sargan-Hansen statistics follow easily too, see Section 3.5. Note that estimators for σ2

ε,i or σ2
ε can

also be obtained by employing second-stage residuals.
Let ̂̃α represent any of the consistent estimators of α̃ mentioned above, and consider the

residuals û†
i = yi − (Xi, Wi, Vi, QT)̂̃α. From these we find µ̂ + τ1 = N−1T−1ΣN

i=1ι′T û†
i , giving ûi =

û†
i − µ̂ + τ1, which for N → ∞ converges to ui = ιTηi + εi. Since E(uiu′i) = σ2

ε,i IT + σ2
η ιT ι′T we have

plim N−1ΣN
i=1ûiû′i = σ2

ε IT + σ2
η ιT ι′T . This yields plim N−1ΣN

i=1ι′T ûiû′i ιT = Tσ2
ε + σ2

η T2 from which the

consistent estimator T−2N−1ΣN
i=1(ι

′
T ûi)

2 − T−1σ̂
2,(1)
ε for σ2

η follows. From simulations we established
that, especially when ση is relatively small, this estimator is often negative. An alternative more
satisfactory consistent estimator turns out to be

σ̂
2,(1)
η = T−1N−1ΣN

i=1û′i ûi − σ̂
2,(1)
ε . (48)

This does not hinge as much on the serial uncorrelatedness of the εit. However, estimator (48) can be
negative too, especially when ση/σε is small or T is very small. When this happens it seems reasonable

to set σ̂
2,(1)
η = 0. Note that this does not jeopardize the consistency of the estimator; therefore we

followed this approach in the simulations, rather then using the non-negative estimator N−1ΣN
i=1η̂2

i ,
where η̂i = T−1ΣT

t=1û†
it − µ̂ + τ1, since this is inconsistent, because E(η̂2

i ) 6= σ2
η .

3.3. Respecting the equation in levels as well

In this subsection we will examine whether the first-difference operation in the foregoing
subsection implied a loss of valid orthogonality conditions embodied by our initial assumptions made
in subsection 3.1.

Since τ = τ1ιT + QTτ∗, we can rewrite model (25) as

yi = Xiβ + Wiγ + Viδ + QTτ∗ + (µ + τ1 + ηi)ιT + εi

= Riα̃ + (µ + τ1)ιT + ui

= R∗i α̈ + ui, (49)

where Ri = (Xi, Wi, Vi, QT), R∗i = (Ri, ιT) and (K + T) × 1 vector α̈ = (α̃′, µ + τ1)
′; note that R̃i =

DT Ri.
Regressor ιT is a valid instrument for model (49). It embodies the single orthogonality condition

E[ΣT
t=1(ηi + εit)] = E[ΣT

t=1uit] = 0 (∀i), which is implied by the T + 1 assumptions E(ηi) = 0 and
E(εit) = 0 (for t = 1, ..., T) made in (22) and (23). These T + 1 assumptions can also be represented
(through linear transformation) by (i) E(ηi) = 0, (ii) E(∆εit) = 0 (for t = 2, ..., T) and (iii) E(ΣT

t=1uit) =

0. Because we cannot express ηi exclusively in observed variables and unknown parameters it is
impossible to convert (i) into a separate sample orthogonality condition. The T − 1 orthogonality
conditions (ii) are already employed by Arellano-Bond estimation, through including IT−1 or D∗T−1
in Zi of (31) for the equation in first differences. Orthogonality condition (iii), which is in terms of
the level disturbance, can be exploited by including the column ιT in the i-th block of an instrument
matrix for level equation (49). Apparently, this condition will get lost when estimation is just based
on the equation in first differences.
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Combining the T − 1 difference equations and the T level equations in a system yields

ÿi = R̈iα̈ + üi, (50)

for each individual i, where ÿi = (ỹ′i, y′i)
′, R̈i = (R̃∗′i , R∗′i )′, with R̃∗i = (R̃i, 0), so it is extended by

an extra column of zeros (to annihilate coefficient µ + τ1 in the equation in first differences), and
üi = (ε̃′i, u′i)

′. We find that E(ε̃iu′i) = E(Dεiε
′
i) = DΩi and E(uiu′i) = E[(ηiιT + εi)(ηiιT + εi)

′] =

σ2
η ιT ι′T + Ωi, so

E(üiü′i) =

(
DΩiD′ DΩi
ΩiD′ Ωi + σ2

η ιT ι′T

)
. (51)

Model (50) can be estimated by MM using the N(2T − 1)× (L + 1) matrix of instruments with
blocks

Z̈i =

(
Zi 0
O ιT

)
, (52)

provided N(2T − 1) ≥ L + 1 ≥ K + T. Since both R̈i and Z̈i contain a column (0′, ι′T)
′, and due to the

occurrence of the O-block in Z̈i, by a minor generalization of result (8) the IV estimator of α̈ obtained
by using instrument blocks Z̈i in (50) will be equivalent regarding α̃ with the IV estimator of equation
(28) using instruments with blocks Zi. That the same holds here for GMM under cross-sectional
heteroskedasticity when using optimal instruments is due to the very special shape of Z̈i and is
proved in Appendix B. Hence, there seems no good reason to estimate the system, just in order to
exploit the extra valid instrument (0′, ι′T)

′.

3.3.1. Effect stationarity

However, more valid internal instruments can be found for the equation in levels when some
of the regressors Xi, Wi or Vi are known to be uncorrelated (like ιT) with the individual effects, or
(which is more general) have time-invariant correlation with the individual effects. Then, after first
differencing, these explanatory variables will be uncorrelated with ηi. Let r�it = (x�′it , w�′

it , v�′it )
′ contain

the K� = K�
x + K�

w + K�
v unique elements of rit which are effect stationary, by which we mean that

E(ritηi) is time-invariant, so that

E(∆r�itηi) = 0, ∀i, t = 2, ..., T.

This implies that for the equation in levels the orthogonality conditions

E[∆x�it(ηi + εis)] = 0
E[∆w�

it(ηi + εi,t+l)] = 0
E[∆v�it(ηi + εi,t+1+l)] = 0

 ∀i, t > 1, s ≥ 1, l ≥ 0 (53)

hold. When w�
it includes yi,t−1, then apparently yit is effect stationary so that the adopted model (21)

suggests that all regressors in rit must be effect stationary, resulting in K� = K.
Like for the T − 1 conditions E(∆εit) = 0 discussed below equation (49), many of the

conditions (53) are already implied by the orthogonality conditions E(Z′i ε̃i) = 0 for the equation
in first-differences. In Appendix C we demonstrate that a matrix Z̃s

i of instruments can be designed
for the equation in levels (49) just containing instruments additional to those already exploited by
E(Z′i ε̃i) = 0, whilst E[Z̃s′

i (ηiιT + εi)] = 0. This is the T × L� matrix

Z̃s
i = (Z̃x

i , Z̃w
i , Z̃v

i , ιT), (54)
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where L� = K�(T − 1)− K�
v + 1, with

Z̃x
i =


0′ 0′ · · · 0′

∆x�′i2 0′ · · · 0′

0′ ∆x�′i3 0′
...

. . .
0′ 0′ ∆x�′iT

 , Z̃w
i =


0′ 0′ · · · 0′

∆w�′
i2 0′ · · · 0′

0′ ∆w�′
i3 0′

...
. . .

0′ 0′ ∆w�′
iT

 ,

Z̃v
i =


0′ · · · 0′

0′ · · · 0′

∆v�′i2 0′

. . .
0′ ∆v�′i,T−1

 .

Under effect stationarity of the K� variables (53) the system (50) can be estimated while
exploiting the matrix of instruments

Z̈s
i =

(
Zi O
O Z̃s

i

)
. (55)

If one decides to collapse the instruments included in Zi, it seems reasonable to collapse Z̃s
i as well

and replace it by

Z̈∗si =


0′ 0′ 0′ 1

∆x�′i2 ∆w�′
i2 0′ 1

∆x�′i3 ∆w�′
i3 ∆v�′i2 1

...
...

...
...

∆x�′iT ∆w�′
iT ∆v�′i,T−1 1

 . (56)

Note that Z̈∗si has L� = K� + 1 columns.

3.3.2. Alternative weighting matrices under effect stationarity

For the above system we have

N−1/2ΣN
i=1Z̈s′

i üi
d→ N(0, plim N−1ΣN

i=1Φi), (57)

with

Φi =

(
Z′i DΩiD′Zi Z′i DΩiZ̃s

i
Z̃s′

i ΩiD′Zi Z̃s′
i (Ωi + σ2

η ιT ι′T)Z̃s
i

)
. (58)

Hence a feasible initial weighting matrix is given by

S(0)(q) = [ΣN
i=1Φ(0)

i (q)]−1, (59)

where

Φ(0)
i (q) =

(
Z′i DD′Zi Z′i DZ̃s

i
Z̃s′

i D′Zi Z̃s′
i (IT + qιT ι′T)Z̃s

i

)
,
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with q some nonnegative real value. Weighting matrix S(0)(q) would be optimal if Ωi = σ2
ε IT with

q = σ2
η /σ2

ε . For any nonnegative q a consistent 1-step GMM system estimator is given by

̂̈α(1)(q) = [(ΣN
i=1R̈′iZ̈

s
i )S

(0)(q)(ΣN
i=1Z̈s′

i R̈i)]
−1(ΣN

i=1R̈′iZ̈
s
i )S

(0)(q)(ΣN
i=1Z̈s′

i ÿi). (60)

Next, in a second step, the consistent 1-step residuals ̂̈u(1)
i = ÿi − R̈î̈α(1)(q) can be used to

construct the asymptotically optimal weighting matrix

Ŝ(1)
a = (ΣN

i=1Z̈s′
i
̂̈u(1)

i ̂̈u(1)′
i Z̈s

i )
−1, (61)

where ̂̈u(1)
i = (̂ε̃

s(1)′
i , ûs(1)′

i )′ with ̂̃εs(1)
i = ỹi − R̃∗i ̂̈α(1)(q) and ûs(1)

i = yi − R∗i ̂̈α(1)(q). However, several
alternatives are possible. Consider weighting matrix

Ŝ(1)
b =

[
ΣN

i=1

(
Z′i Ĥs(1)

i Zi Z′i D̂
s(1)
i Z̃s

i

Z̃s′
i D̂s(1)′

i Zi Z̃s′
i ûs(1)

i ûs(1)′
i Z̃s

i

)]−1

, (62)

where Ĥs(1)
i is self-evidently like Ĥ(1)b

i but on the basis of the residuals ̂̃εs(1)
i , and

D̂s(1)
i =



̂̃εs(1)
i2 ûs(1)

i1
̂̃εs(1)

i2 ûs(1)
i2 0 · · · 0 0

0 ̂̃εs(1)
i3 ûs(1)

i2
̂̃εs(1)

i3 ûs(1)
i3 0

...
. . . . . . . . .

...
...

. . . . . . . . .
...

0
. . . ̂̃εs(1)

i,T−1ûs(1)
i,T−1

̂̃εs(1)
i,T−1ûs(1)

iT

0 0 0 · · · 0 ̂̃εs(1)
iT ûs(1)

iT


. (63)

For the special case σ2
ε Ωi = σ2

ε,i IT of cross-section heteroskedasticity and time-series homoskedasticity
one can use the weighting matrix

Ŝ(1)
c =

[
ΣN

i=1σ̂
2,s(1)
ε,i

(
Z′i HZi Z′i DZ̃s

i

Z̃s′
i D′Zi Z̃s′

i [IT + (σ̂
2,(1)
η /σ̂

2,s(1)
ε,i )ιT ι′T ]Z̃

s
i

)]−1

, (64)

where

σ̂
2,s(1)
ε,i = ̂̃εs(1)′

i H−1̂̃εs(1)
i /(T − 1), (65)

σ̂
2,s(1)
η = T−1N−1ΣN

i=1ûs(1)′
i ûs(1)

i − N−1ΣN
i=1σ̂

2,s(1)
ε,i . (66)

For j ∈ {a, b, c} three alternative 2-step system estimators

̂̈α(2)(j) = [(ΣN
i=1R̈′iZ̈

s
i )Ŝ

(1)
j (ΣN

i=1Z̈s′
i R̈i)]

−1(ΣN
i=1R̈′iZ̈

s
i )Ŝ

(1)
j (ΣN

i=1Z̈s′
i ÿi) (67)

are obtained, where the inverse matrix expression can be used again to estimate the variance of ̂̈α(2)(j)
if all employed moment conditions are valid.

3.4. Coefficient restriction tests

Simple Student-type coefficient test statistics can be obtained from 1-step and 2-step AB and
BB estimation for the different weighting matrices considered. The 1-step estimators can be used in
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combination with a robust variance estimate (which takes possible heteroskedasticity into account).
The 2-step estimators can be used in combination with the standard or a corrected variance estimate.1

When testing particular coefficient values, the relevant element of estimator ̂̃α(1) given in (38)
should under homoskedasticity be scaled by the corresponding diagonal element of the standard
expression for its estimated variance given by

V̂ar(̂̃α(1)) = N−1ΣN
i=1σ̂

2,(1)
ε,i Ψ, with Ψ = [(ΣN

i=1R̃′iZi)G(0)(ΣN
i=1Z′i R̃i)]

−1, (68)

where σ̂
2,(1)
ε,i is given in (45). Its robust version under cross-sectional heteroskedasticity uses for j ∈

{a, b, c}
V̂ar(j)(̂̃α(1)) = Ψ(ΣN

i=1R̃′iZi)G(0)[Ĝ(1)
j ]−1G(0)(ΣN

i=1Z′i R̃i)Ψ. (69)

However, under heteroskedasticity the estimators ̂̃α(2)(j) given in (67) are more efficient. The standard
estimator for their variance is

V̂ar(̂̃α(2)(j) ) = [(ΣN
i=1R̃′iZi)Ĝ

(1)
j (ΣN

i=1Z′i R̃i)]
−1. (70)

The corrected version V̂arc(̂̃α(2)(j) ) requires derivation for k = 1, ..., K− 1 of the actual implementation
of matrix ∂Ω(β)/∂βk of Appendix A which is here N(T − 1) × N(T − 1). We denote its i-th block
as ∂Ω̃(j)i(α̃)/∂α̃k. For the a-type weighting matrix2 the relevant T − 1× T − 1 matrix ∂ε̃i ε̃

′
i/∂α̃k with

ε̃i = ỹi − R̃iα̃, is −(ε̃iR̃′ik + R̃ik ε̃′i), where R̃ik denotes the k-th column of R̃i. For weighting matrix b it
simplifies to the matrix consisting of the main diagonal and the two first sub-diagonals of −(ε̃iR̃′ik +
R̃ik ε̃′i) with all other elements zero. And ∂Ω̃(c)i(α̃)/∂α̃k = −2[ε̃′i H

−1R̃ik/(T − 1)]H. So, we find

V̂arc(̂̃α(2)(j) ) = V̂ar(̂̃α(2)(j) ) + F̂(j)V̂ar(̂̃α(2)(j) ) + V̂ar(̂̃α(2)(j) )F̂(j) + F̂(j)V̂ar(j)(̂̃α(1))F̂′(j), (71)

with the k-th column of F̂(j) given by

F̂(j)·k = −V̂ar(̂̃α(2)(j) )(Σ
N
i=1R̃′iZi)Ĝ

(1)
j

(
ΣN

i=1Z′i
∂Ω̃(j)i(α̃)

∂α̃k

∣∣∣∣∣̂̃α(1) Zi

)
Ĝ(1)

j (ΣN
i=1Z′î̃ε(2)i ). (72)

All above expressions become a bit more complex when considering Blundell-Bond estimation
of the K coefficients α̈. The suboptimal 1-step estimator (60) of α̈ should not be used for testing, unless
in combination with

V̂ar(̂̈α(1)) = Φ(ΣN
i=1R̈′iZ̈

s
i )S

(0)(q)[S(0)(σ̂
2,s(1)
η /σ̂

2,s(1)
ε )]−1S(0)(q)(ΣN

i=1Z̈s′
i R̈i)Φ, (73)

under homoskedasticity, or a robust variance estimator, which is

V̂ar(j)(̂̈α(1)) = Φ(ΣN
i=1R̈′iZ̈

s
i )S

(0)(q)[Ŝ(1)
j ]−1S(0)(q)(ΣN

i=1Z̈s′
i R̈i)Φ, (74)

where Φ = [(ΣN
i=1R̈′iZ̈

s
i )S

(0)(q)(ΣN
i=1Z̈s′

i R̈i)]
−1. It seems better of course to use the efficient estimator̂̈α(2)(j) of (67). The standard expression for its estimated variance is

V̂ar(̂̈α(2)(j) ) = [(ΣN
i=1R̈′iZ̈

s
i )Ŝ

(1)
j (ΣN

i=1Z̈s′
i R̈i)]

−1. (75)

1 Many authors and the Stata xtabond2 package confusingly address the corrected 2-step variance as robust.
2 This is the only variant considered in Windmeijer [29].
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Their corrected versions can be obtained by a formula similar to (71) upon changing α̃ in α̈ and F̂(j)·k
of (72) in

F̂(j)·k = −V̂ar(̂̈α(2)(j) )(Σ
N
i=1R̈′iZ̈

s
i )Ŝ

(1)
j

(
ΣN

i=1Z̈s′
i

∂Ω̈(j)i(α̈)

∂α̈k

∣∣∣∣∣̂̈α(1) Z̈s
i

)
Ŝ(1)

j (ΣN
i=1Z̈s′

i
̂̈ε(2)i ), (76)

where the block of ∂Ω̈(j)i(α̈)/∂α̈k corresponding to the equation in first differences is similar as before,
but with an extra column and row of zeros for the intercept. The block corresponding to the equation
in levels we took for weighting matrices a and b equal to ∂uiu′i/∂α̈k = −(uiR̄∗′ik + R̄∗iku′i), and for type
c

∂{ε̃′i H−1 ε̃i/(T − 1) + ΣN
i=1[(ι

′
Tui)

2 − u′iui]/[NT(T − 1)]}IT/∂α̈k,

for which the first term yields −2[(ε̃′i H
−1R̃ik)/(T − 1)]IT , and the second gives

−2{ΣN
i=1(ι

′
TuiR̄∗′ik ιT − R̄∗′ik ui)/[NT(T − 1)]}IT .

For the nondiagonal upperblock of ∂Ω̈(j)i(α̈)/∂α̈k we took in cases a and b ∂ε̃iu′i/∂α̃k = −(ε̃iR̄∗′ik +

R̃iku′i) and for the derivative with respect to the intercept −ε̃iι
′
T . In case c it is −2[(ε̃′i H

−1R̃ik)/(T −
1)]D and a zero matrix for the derivative with respect to the intercept.

3.5. Tests of overidentification restrictions

Using Arellano-Bond and Blundell-Bond type estimation, many options exist with respect to
testing the overidentification restrictions. These options differ in the residuals and weighting matrices
being employed. After 1-step Arellano-Bond estimation, see (38) and (45), we have test statistic

JAB(1,0) = (ΣN
i=1
̂̃ε(1)′i Zi)(ΣN

i=1Z′i HZi)
−1(ΣN

i=1Z′î̃ε(1)i )/(N−1ΣN
i=1σ̂

2,(1)
i ), (77)

which is only valid in case of homoskedasticity. Alternatively, after 1-step estimation the
heteroskedasticity-robust test statistics

JAB(1,1)
j = (ΣN

i=1
̂̃ε(1)′i Zi)Ĝ

(1)
j (ΣN

i=1Z′î̃ε(1)i ), j ∈ {a, b, c} (78)

may be used, where Ĝ(1)
j is given in (40), (41) and (43).

From (67) one may obtain 2-step residuals ̂̃ε(2)i(j) = ỹi − R̃∗i ̂̈α(2)(j) , and from these overidentification
restrictions test statistics can be calculated too, which may differ depending on whether the j-th
weighting matrix is now obtained still from 1-step or already from 2-step residuals. This leads to

JAB(2,h)
j = (ΣN

i=1
̂̃ε(2)′a,i Zi)Ĝ

(h)
j (ΣN

i=1Z′î̃ε(2)a,i ), for h ∈ {1, 2} (79)

where the 2-step weighting matrices are either Ĝ(2)
a = (ΣN

i=1Z′î̃ε(2)i(a)
̂̃ε(2)′i(a)Zi)

−1, Ĝ(2)
b =

(ΣN
i=1Z′i Ĥ(2)b

i Zi)
−1 or Ĝ(2)

c = (ΣN
i=1σ̂

2,(2)
ε,i(c)Z

′
i HZi)

−1, and Ĥ(2)b
i is like Ĥ(1)b

i of (42), though using ̂̃ε(2)i(b)

instead of ̂̃ε(1)i ; furthermore σ̂
2,(2)
ε,i(c) =

̂̃ε(2)′i(c) H−1̂̃ε(2)i(c)/(T − 1).
Exploiting effect stationarity of a subset of the regressors by estimating the Blundell-Bond system

leads to the 1-step test statistics

JBB(1,0) = (ΣN
i=1
̂̈u(1)′

i Z̈s
i )S

(0)(σ̂
2,s(1)
η /σ̂

2,s(1)
ε )(ΣN

i=1Z̈s′
i
̂̈u(1)

i )/σ̂
2,s(1)
ε , (80)

JBB(1,1)
j = (ΣN

i=1
̂̈u(1)′

i Z̈s
i )Ŝ

(1)
j (ΣN

i=1Z̈s′
i
̂̈u(1)

i ), j ∈ {a, b, c} (81)
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where σ̂
2,s(1)
ε = ΣN

i=1σ̂
2,s(1)
ε,i /N and S(0)(·) and Ŝ(1)

j can be found in (59), (61), (62) and (64). Defining

the various 2-step residuals and variance estimators as ̂̈u(2)
i(j) = ÿi − R̈î̈α(2)(j) = (̂ε̃

s(2)′
i(j) , ûs(2)′

i(j) )′ and σ̂
2,s(2)
ε,i(j)

and σ̂
2,(2)
η(j) similar to (65) and (66) though obtained from the appropriate two-step residuals ̂̃εs(2)

i(j) =

ỹi − R̃∗i ̂̈α(2)(j) and ûs(2)
i(j) = yi − R∗i ̂̈α(2)(j) , the statistics to be used after 2-step estimation are

JBB(2,h)
j = (ΣN

i=1
̂̈u(2)′

i(j) Z̈s
i )Ŝ

(h)
j (ΣN

i=1Z̈s′
i
̂̈u(2)

i(j)), (82)

where Ŝ(2)
a and Ŝ(2)

b are like Ŝ(1)
a and Ŝ(1)

b , except that they use ̂̈u(2)
i(a) and ̂̈u(2)

i(b) instead of ̂̈u(1)
i . With

respect to Ŝ(2)
c one can use

Ŝ(2)
c =

[
ΣN

i=1σ̂
2,s(2)
ε,i(j)

(
Z′i HZi Z′i DZ̃s

i

Z̃s′
i D′Zi Z̃s′

i [IT + (σ̂
2,(2)
η(c) /σ̂

2,s(2)
ε,i(c) )ιT ι′T ]Z̃

s
i

)]−1

.

Under their respective null hypotheses the tests based on Arellano-Bond estimation follow
asymptotically χ2 distributions with L − K − T + 1 degrees of freedom, whereas the tests based on
Blundell-Bond estimates have L + L� − K − T degrees of freedom3. Self-evidently tests on the effect
stationarity related orthogonality conditions are given by

JES(1,0) = JBB(1,0) − JAB(1,0), (83)

JES(l,h)
j = JBB(l,h)

j − JAB(l,h)
j , 0 < l ≤ h ∈ {1, 2}, j ∈ {a, b, c} (84)

and should be compared with a χ2 critical value for L� − 1 degrees of freedom.4

3.6. Modified GMM

In the special case that panel model (25) has cross-sectional heteroskedasticity and no time-series
heteroskedasticity, hence

σ2
ε Ωi = σ2

ε,i IT , with ΣN
i=1σ2

ε,i = σ2
ε N, (85)

we can easily employ MGMM estimator (11). However, because H−1 is not a lower-triangular
matrix, not all instruments σ−2

ε,i H−1Zi would be valid for the equation in first-differences. This
problem can be avoided by using, instead of first-differencing, the forward orthogonal deviation
(FOD) transformation for removing the individual effects. Let

B =



T−1
T 0 0 · · · 0
0 T−2

T−1 0 · · · 0
... 0

. . . . . .
...

...
...

. . . 2
3 0

0 0 · · · 0 1
2



1/2 

1 − 1
T−1 · · · · · · − 1

T−1 − 1
T−1

0 1 − 1
T−2 · · · − 1

T−2 − 1
T−2

...
...

. . . . . .
...

...

0 0
. . . 1 − 1

2 − 1
2

0 0 · · · 0 1 −1


, (86)

3 Package xtabond2 for Stata always reports JAB(1,0) after Arellano-Bond estimation, which is inappropriate when there

is heteroskedasticity. After requesting for robust standard errors in 1-step estimation it presents also JAB(2,1)
a instead of

JAB(1,1)
a . Requesting 2-step estimation also presents both JAB(1,0) and JAB(2,1)

a . Blundell-Bond estimation yields JBB(1,0)

and JBB(2,1), although a version of JBB(1,0) is reported that does not use weighting matrix S(0)(σ̂
2,s(1)
η /σ̂

2,s(1)
ε ), but S(0)(0),

which is only valid under homoskedasticity and σ2
η = 0. Package xtabond2 addresses overidentification tests after 1-step

estimation always as "Sargan test" and after 2-step estimation as "Hansen test".
4 By specifying instruments in separate groups, xtabond2 presents for each separate group the corresponding incremental J

test. However, not the version as defined in (17), but an asymptotically equivalent one as suggested in Hayashi [37, p.220]
which will never be negative.
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and ε̌i = Bεi. Then BιT = 0 and Bui = ε̌i ∼ (0, σ2
ε,i IT−1) provided (85) holds, whereas E(Z′i ε̌i) = 0 for

Zi given by (31). Hence, premultiplying model yi = Riα̃ + (µ + τ1 + ηi)ιT + εi by B yields

y̌i = Řiα̃ + ε̌i, (87)

where y̌i = Byi and Ři = BRi. Estimating this by GMM, but using an instrument matrix
with components σ−2

ε,i Zi, yields the unfeasible MABu estimator for the model with cross-sectional
heteroskedasticity, which is

̂̃αMABu = [(ΣN
i=1σ−2

ε,i Ř′iZi)(ΣN
i=1σ−2

ε,i Z′i Zi)
−1(ΣN

i=1σ−2
ε,i Z′i Ři)]

−1×

(ΣN
i=1σ−2

ε,i Ř′iZi)(ΣN
i=1σ−2

ε,i Z′i Zi)
−1(ΣN

i=1σ−2
ε,i Z′i y̌i). (88)

Note that the exploited moment conditions are here E(σ−2
ε,i Z′i ε̌i) = σ−2

ε,i E(Z′i ε̌i) = 0. For σ2
ε,i > 0 these

are intrinsically equivalent with E(Z′i ε̌i) = 0, but they induce the use of a different set of instruments
yielding a different estimator. That it is most likely that the unfeasible standard AB estimator ABu,
which uses instruments σε,iZi for regressors σ−1

ε,i Ři, will generally exploit weaker instruments than
MABu, which uses σ−1

ε,i Zi for regressors σ−1
ε,i Ři, should be intuitively obvious.

To convert this into a feasible procedure, one could initially assume that all σ2
ε,i are equal.

Then the first-step MGMM estimator ̂̃α(1)MAB is numerically equivalent to AB1 of (38), provided all
instruments are being used.5 Next, exploiting (45), the feasible 2-step MAB estimator can be obtained
by

̂̃α(2)MAB = [(ΣN
i=1Ř′iZi/σ̂

2,(1)
ε,i )(ΣN

i=1Z′i Zi/σ̂
2,(1)
ε,i )−1(ΣN

i=1Z′i Ři/σ̂
2,(1)
ε,i )]−1×

(ΣN
i=1Ř′iZi/σ̂

2,(1)
ε,i )(ΣN

i=1Z′i Zi/σ̂
2,(1)
ε,i )−1(ΣN

i=1Z′i y̌i/σ̂
2,(1)
ε,i ). (89)

Modifying the system estimator is more problematic, primarily because the inverse of the matrix
Var(ui) = Σi = σ2

ε,i IT + σ2
η ιT ι′T , which is Σ−1

i = σ−2
ε,i [IT + (T + σ2

ε,i/σ2
η)
−1ιT ι′T ], is nondiagonal. So,

although E(Z̃s′
i ui) = 0, surely E(Z̃s′

i Σ−1
i ui) 6= 0. However, as an unfeasible modified system estimator

we can combine estimation of the model for y̌i using instruments σ−2
ε,i Zi with estimation of the model

for yi using instruments (σ2
ε,i + σ2

η)
−1Z̃s

i . So, the system is then given by the model

...
y i =

...
Riα̈ +

...
u i, (90)

where
...
y i = (y̌′i, y′i)

′,
...
Ri = (Ř∗′i , R∗′i )′, with Ř∗i = (Ři, 0), and

...
u i = (ε̌′i, u′i)

′.
For the 1-step estimator we could again choose some nonnegative value q and calculate the 1-step

estimator BB1 given in (60) in order to find residuals and obtain the estimators σ̂
2,s(1)
ε,i and σ̂

2,s(1)
η of

(65) and (66). Building on E(
...
u i

...
u ′i) and instrument matrix block

...
Zi, given by

E(
...
u i

...
u ′i) = σ2

ε,i

(
IT−1 B
B′ IT + (σ2

η /σ2
ε,i)ιT ι′T

)
and

...
Zi =

(
σ̂
−2,s(1)
ε,i Zi O

O (σ̂
2,s(1)
ε,i + σ̂

2,s(1)
η )−1Z̃s

i

)
,

one obtains weighting matrix

ŜB(1)
c =

[
ΣN

i=1

(
σ̂
−2,s(1)
ε,i Z′i Zi (σ̂

2,s(1)
ε,i + σ̂

2,s(1)
η )−1Z′i BZ̃s

i

(σ̂
2,s(1)
ε,i + σ̂

2,s(1)
η )−1Z̃s′

i B′Zi (σ̂
2,s(1)
ε,i + σ̂

2,s(1)
η )−2Z̃s′

i [σ̂
2,s(1)
ε,i IT + σ̂

2,s(1)
η ιT ι′T ]Z̃

s
i

)]−1

,

(91)

5 Proved in Arellano and Bover [3].
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which can be exploited in the feasible 2-step MGMM system estimator MBB

̂̈α(2)MBB = [(ΣN
i=1

...
R′i

...
Zi)Ŝ

B(1)
c (ΣN

i=1
...
Z′i

...
Ri)]

−1(ΣN
i=1

...
R′i

...
Zi)Ŝ

B(1)
c (ΣN

i=1
...
Z′i

...
y i). (92)

For both ̂̃α(2)MAB and ̂̈α(2)MBB relevant t-test and Sargan-Hansen test statistics can be constructed.
Regarding the latter we will just examine

JMAB = (ΣN
i=1
̂̌ε(2)′i Zi/σ̂

2,s(1)
ε,i )(ΣN

i=1Z′i Zi/σ̂
2,s(1)
ε,i )−1(ΣN

i=1Z′î̌ε(2)i /σ̂
2,s(1)
ε,i ), (93)

where ̂̌ε(2)i = y̌i − Řî̃α(2)MGMMch, and

JMBB = (ΣN
i=1

.̂..
u (2)′

i
...
Zs

i )Ŝ
(1)
c (ΣN

i=1
...
Zs′

i
.̂..
u (2)

i ), (94)

with
.̂..
u (2)

i =
...
y i −

...
Rî̈α(2)MBB = (̂ε̌

s(2)′
i ûs(2)′

i )′. Under their respective null hypotheses these follow
asymptotically χ2 distributions with L−K− T + 1 and L+ L�−K degrees of freedom. Self-evidently,
the test on the effect stationarity related orthogonality conditions is given by

JESM = JMBB− JMAB. (95)

4. Simulation design

We will examine the stable dynamic simultaneous heteroskedastic DGP (i = 1, ..., N, t = 1, ..., T)

yit = µy + γyi,t−1 + βxit + σηη◦i + σεω
1/2
i ε◦it (|γ| < 1). (96)

Here β has just one element relating to the for each i stable autoregressive regressor

xit = µx + ξxi,t−1 + πηη◦i + πλλ◦i + σvω1/2
i v◦it, where (97)

v◦it = ρvεε
◦
it + (1− ρ2

vε)
1/2ζ◦it, (98)

with |ξ| < 1 and |ρvε| < 1. All random drawings η◦i , ε◦it, λ◦i , ζ◦it are I ID(0, 1) and mutually
independent. Parameter ρvε indicates the correlation between the cross-sectionally heteroskedastic
disturbances εit = σεω

1/2
i ε◦it and vit = σvω1/2

i v◦it, which are both homoskedastic over time. How we
did generate the values ω1, ..., ωN and the start-up values xi,0 and yi,0 and chose relevant numerical
values for the other eleven parameters will be discussed extensively below.

Note that in this DGP xit is either strictly exogenous (ρvε = 0) or otherwise endogenous6; the
only weakly exogenous regressor is yi,t−1. Regressor xit may be affected contemporaneously by two
independent individual specific effects when πη 6= 0 and πλ 6= 0, but also with delays if ξ 6= 0. The
dependent variable yit may be affected contemporaneously by the (standardized) individual effect
η◦i , both directly and indirectly; directly if ση 6= 0, and indirectly via xit when βπη 6= 0. However, η◦i
will also have delayed effects on yit, when γ 6= 0 or ξβπη 6= 0, and so has λ◦i when ξβπλ 6= 0.

For the cross-sectional heteroskedasticity we follow an approach similar to Kiviet and Feng [33].
It is determined by both η◦i and λ◦i , the two standardized individual effects, and is thus associated
with the regressors xit and yi,t−1. It follows a lognormal pattern when both η◦i and δ◦i are standard
normal, because we take

ωi = ehi(θ), with hi(θ) = −θ2/2 + θ[κ1/2η◦i + (1− κ)1/2λ◦i ] ∼ NID(−θ2/2, θ2), (99)

6 If we would strictly follow the notation of the earlier sections the coefficient β should actually be called δ when ρvε 6= 0.
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Table 2. Heteroskedasticity quantiles and moments of ω1/2
i for different values of θ

|θ| ωi ω1/2
i

q0.01 q0.5 q0.99 q0.01 q0.5 q0.99 E(ω1/2
i ) St.Dev.(ω1/2

i )
.1 .789 .995 1.256 .888 .998 1.121 .999 .050
.3 .476 .956 1.921 .690 .978 1.386 .989 .149
.5 .276 .883 2.824 .525 .939 1.681 .969 .246
.7 .154 .783 3.989 .391 .885 1.997 .941 .340
1.0 .059 .607 6.211 .243 .779 2.492 .882 .470
1.3 .021 .430 8.840 .145 .655 2.973 .810 .587
1.6 .007 .278 11.498 .082 .527 3.391 .726 .688
2.0 .001 .135 14.192 .036 .368 3.767 .607 .795

where 0 ≤ κ ≤ 1. This establishes a lognormal distribution with E(ωi) = 1 and Var(ωi) = eθ2 − 1. So,
for θ = 0 the εit and vit are homoskedastic. The seriousness of the heteroskedasticity increases with
the absolute value of θ. Obviously, for κ = 0 the error components ηi and εit are independent (like η◦i
and ε◦it), but not for 0 < κ ≤ 1. From hi(θ)/2 ∼ NID(−θ2/4, θ2/4) it follows that ω1/2

i = ehi(θ)/2 is
lognormally distributed too, hence E(σεω

1/2
i ) = σεe−θ2/8 and Var(σεω

1/2
i ) = σ2

ε (1− e−θ2/4). Table 2
presents some quantiles and moments of the distributions of ωi and ω1/2

i (taken as the positive square
root of ωi) in order to disclose the effects of parameter θ. It shows that θ ≥ 1 implies pretty serious
heteroskedasticity, whereas it may be qualified mild when θ ≤ 0.3, say.

Without loss of generality we may chose σε = 1 and µy = µx = 0. Note that (96) implicitly
specifies τ1 = 0, τ∗ = 0. All simulation results refer to estimators where these T restrictions have
been imposed (there are no time effects), but µy = µx = 0 have not been imposed. Hence, when
estimating the model in levels ιT is one of the regressors. Moreover, we may always include IT−1 in
Zi and ιT in Z̃s

i in order to exploit the fundamental moment conditions E(ε̃it) = 0 (for t = 2, ..., T) and
E[∑T

t=1(ηi + εit)] = 0 for i = 1, ..., N.
Apart from values for θ and κ, we have to make choices on relevant values for eight more

parameters. We could choose γ ∈ {0.2, 0.5, 0.8}, which covers a broad range of adjustment processes
for dynamic behavioral relationships, and ξ ∈ {0.5, 0.8, 0.95} to include less and more smooth xit
processes. Next, interesting values should be given to the remaining six parameters, namely β, ση ,
πη , πλ, σv and ρvε. We will do this by choosing relevant values for six alternative more meaningful
notions, which are all functions of some of the eight DGP parameters and allow to establish relevant
numerical values for them, as suggested in Kiviet [38].

The first three notions will be based on (ratios of) particular variance components of the long-run
stationary path of the process for xit. Using lag-operator notation and assuming that v◦it′ (and ε◦it′)

exist for t′ = −∞, ...., 0, 1, ..., T, we find7 that the long-run path for xit consists of three mutually
independent components, namely

xit = (1− ξ)−1πηη◦i + (1− ξ)−1πλλ◦i + σvω1/2
i (1− ξL)−1v◦it. (100)

The third component, the accumulated contributions of v◦it, is a stationary AR(1) process with variance
σ2

v ωi/(1 − ξ2). Approximating N−1ΣN
i=1ωi by 1, the average variance is σ2

v /(1 − ξ2). The other
two components have variances π2

η/(1− ξ)2 and π2
λ/(1− ξ)2 respectively, so the average long-run

variance of xit equals
V̄x = (1− ξ)−2(π2

η + π2
λ) + (1− ξ2)−1σ2

v . (101)

7 Note that (1− ξL)−1 = 1 + ξL + ξ2L2 + ... and therefore (1− ξL)−1η◦i = ∑∞
j=0 ξ jη◦i = η◦i /(1− ξ).
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A first characterization of the xit series can be obtained by setting V̄x = 1. This is an innocuous
normalization, because β is still a free parameter. As a second characterization of the xit series, we
can choose what we call the (average) effects variance fraction of xit, given by

EVFx = (1− ξ)−2(π2
η + π2

λ)/V̄x, (102)

with 0 ≤ EVFx ≤ 1, for which we could take, say, EVFx ∈ {0, 0.3, 0.6}. To balance the two individual
effect variances we define for the case EVFx > 0 what we call the individual effect fraction of η◦i in xit
given by

IEFη
x = π2

η/(π2
η + π2

λ). (103)

So IEFη
x , with 0 ≤ IEFη

x ≤ 1, expresses the fraction due to πλη◦i of the (long-run) variance of xit
stemming from the two individual effects. We could take, say, IEFη

x ∈ {0, 0.3, 0.6}.
From these three characterizations we obtain

πλ = (1− ξ)[(1− IEFη
x )EVFx]

1/2, (104)

πη = (1− ξ)[IEFη
x EVFx]

1/2, (105)

σv = [(1− ξ2)(1− EVFx)]
1/2. (106)

For all three we will only consider the nonnegative root, because changing the sign would have no
effects on the characteristics of xit, as we will generate the series η◦i , ε◦it, λ◦i and ζ◦it from symmetric
distributions. The above choices regarding the xit process have the following implications for the
average correlations between xit and its two constituting effects:

ρ̄xη = πη/(1− ξ) = [(1− IEFη
x )EVFx]

1/2, (107)

ρ̄xλ = πλ/(1− ξ) = [IEFη
x EVFx]

1/2. (108)

Now the xit series can be generated upon choosing a value for ρvε. This we obtain from
E(xitεit) = σεσvρvεωi, which on average is σvρvε. Hence, fixing the average simultaneity8 to ρ̄xε, we
should choose

ρvε = ρ̄xε/σv. (109)

In order that both correlations are smaller than 1 in absolute value an admissibility restriction has to
be satisfied, namely ρ̄2

xε ≤ σ2
v , giving

ρ̄2
xε ≤ (1− ξ2)(1− EVFx). (110)

When choosing EVFx = 0.6 and ξ = 0.8 we should have |ρ̄xε| ≤ 0.379. That we should not exclude
negative values of ρ̄xε will become obvious in due course. For the moment it seems interesting to
examine, say, ρ̄xε ∈ {−0.3, 0, 0.3}.

8 Such control is not exercised in the simulation designs of Blundell et al. [26] and Bun and Sarafidis [27]. They do consider
simultaneity, but its magnitude has not been mentioned and it is not kept constant over different designs.
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The remaining choices concern β and ση which both directly affect the DGP for yit. Substituting
(100) and (98) in (96) we find that the long-run stationary path for yit entails four mutually
independent components, since

yit = β(1− γL)−1xit + (1− γ)−1σηη◦i + σεω
1/2
i (1− γL)−1ε◦it

= (1− γ)−1(1− ξ)−1{[βπη + (1− ξ)ση ]η
◦
i + βπλλ◦i }

+ βσvω1/2
i (1− γL)−1(1− ξL)−1v◦it + σεω

1/2
i (1− γL)−1ε◦it

= (1− γ)−1(1− ξ)−1{[βπη + (1− ξ)ση ]η
◦
i + βπλλ◦i }

+
βσv(1− ρ2

vε)
1/2ω1/2

i
(1− γL)(1− ξL)

ζ◦it +
[βρvεσv + (1− ξL)σε]ω

1/2
i

(1− γL)(1− ξL)
ε◦it (111)

The second term of the final expression constitutes for each i an AR(2) process and the third one an
ARMA(2,1) process. The variance of yit has four components given by (derivations in Appendix D)

Vη = (1− γ)−2(1− ξ)−2[βπη + (1− ξ)ση ]
2

Vλ = (1− γ)−2(1− ξ)−2β2π2
λ

Vζ(i) =
β2σ2

v (1− ρ2
vε)(1 + γξ)

(1− γ2)(1− ξ2)(1− γξ)
ωi

Vε(i) =
[(1 + βρvεσv)2 + ξ2](1 + γξ)− 2ξ(1 + βρvεσv)(γ + ξ)

(1− γ2)(1− ξ2)(1− γξ)
ωi.

Averaging the last two over all i yields V̄ζ and V̄ε. For the average long-run variance of yit we then
can evaluate

V̄y = Vη + Vλ + V̄ζ + V̄ε. (112)

When choosing fixed values for ratios involving these components to obtain values for β and ση

we will run into the problem of multiple solutions. On the other hand, the four components of (112)
have particular invariance properties regarding the signs of β, ση and ρvε, since changing the sign of
all three yields exactly the same value of V̄y. We coped with this as follows. Although we note that
Vη does depend on βπη , we set ση simply by fixing the direct cumulated effect impact of η◦i on yit
relative to the current noise σε = 1. This is

DENη
y = ση/(1− γ). (113)

Because the direct and indirect (via xit) effects from η◦i may have opposite signs, DENη
y could be given

negative values too, but we restricted ourselves to DENη
y ∈ {1, 4}, yielding

ση = (1− γ)DENη
y . (114)

Finally we fix a signal-noise ratio, which gives a value for β. Because under simultaneity the noise
and current signal conflate, we focus on the case where ρxε = 0. Then we have

V̄ζ = [(1− γ2)(1− ξ2)(1− γξ)]−1β2σ2
v (1 + γξ), V̄ε = (1− γ2)−1.

Leaving the variance due to the effects aside, the average signal variance is V̄ζ + V̄ε − 1, because the
current average noise variance is unity. Hence, we may define a signal-noise ratio as

SNR = V̄ζ + V̄ε − 1 =
β2(1− EVFx)(1 + γξ)

(1− γ2)(1− γξ)
+

γ2

(1− γ2)
, (115)
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where we have substituted (106). For this we may choose, say, SNR ∈ {2, 3, 5}, in order to find

β =

[
1− γξ

1 + γξ

SNR− γ2(SNR + 1)
1− EVFx

]1/2

. (116)

Note that here another admissibility restriction crops up, namely

γ2 ≤ SNR/(SNR + 1). (117)

However, for |γ| ≤ 0.8 this is satisfied for SNR ≥ 1.78. From (116) we only examined the positive
root.

Instead of fixing SNR another approach would be to fix the total multiplier

TM = β/(1− γ), (118)

which would directly lead to a value for β, given γ. However, different TM values will then lead to
different SNR values, because

SNR = TM2(1− EVFx)
(1− γ)(1 + γξ)

(1 + γ)(1− γξ)
+

γ2

(1− γ2)
. (119)

At this stage it is hard to say what would yield more useful information from the Monte Carlo, fixing
TM or SNR. Keeping both constant for different γ and some other characteristics of this DGP is out of
the question. We chose to fix SNR = 3. which yields TM values in the range 1.5-1.8. When comparing
with results for TM = 1 we did not note substantial principle differences.

For all different design parameter combinations considered, which involve sample size N ∈
{200, 1000} and T ∈ {3, 6, 9}, we used the very same realizations of the underlying standardized
random components η◦i , λ◦i , ε◦it and ζ◦it over the respective 10000 replications that we performed.
At this stage, all these components have been drawn from the standard normal distribution. To
speed-up the convergence of our simulation results, in each replication we have modified the N
drawings η◦i and λ◦i such, that they have sample mean zero, sample variance 1 and sample correlation
zero. This rescaling is achieved by replacing the N draws η◦i first by [η◦i − N−1ΣN

i=1η◦i ] and next by
η◦i /[N−1ΣN

i=1(η
◦
i )

2]1/2, and by replacing the λ◦i by the residuals obtained after regressing λ◦i on η◦i and
an intercept, and next scaling them by taking λ◦i /[N−1ΣN

i=1(λ
◦
i )

2]1/2. In addition, we have rescaled
in each replication the ωi by dividing them by N−1ΣN

i=1ωi, so that the resulting ωi have sum N as
they should in order to avoid that presence of heteroskedasticity is conflated with larger or smaller
average disturbance variance.

In the simulation experiments we will start-up the processes for xit and yit at pre-sample period
s < 0 by taking xis = 0 and yi,s = 0 and next generate xit and yit for the indices t = s + 1, ..., T. The
data with time-indices s, ...,−1 will be discarded when estimating the model. We suppose that for
s = −50 both series will be on their stationary track from t = 0 onwards. When taking s = −1 or −2
the initial values yi0 and xi1 will be such that effect-stationarity has not yet been achieved. Due to the
fixed zero startups (which are equal to the unconditional expectations) the (cross-)autocorrelations of
the xit and yit series have a very peculiar start then too, so such results regarding effect nonstationarity
will certainly not be fully general, but for s close to zero they mimic in a particular way the situation
that the process started only very recently.

Another simple way to mimic a situation in which lagged first-differenced variables are invalid
instruments for the model in levels can be designed as follows. Equations (100) and (111) highlight
that in the long-run ∆xit and ∆yit are uncorrelated with the effects η◦i and λ◦i . This can be undermined
by perturbing xi0 and yi0 as obtained from s = −50 in such a way that we add to them the values

φ− 1
1− ξ

(πηη◦i + πλλ◦i ) and
φ− 1

(1− γ)(1− ξ)
{[βπη + (1− ξ)ση ]η

◦
i + βπλλ◦i }, (120)
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respectively. Note that for φ = 1 effect stationarity is maintained, whereas for 0 ≤ φ < 1 the
dependence of xi0 and yi0 on the effects is mitigated in comparison to the stationary track (upon
maintaining stationarity regarding ε◦it and ζ◦it), whereas for φ > 1 this dependence is inflated. Note
that this is a straight-forward generalization of the approach followed in Kiviet [7] for the panel AR(1)
model.

5. Simulation results

To limit the number of tables we proceed as follows. Often we will first produce results on
unfeasible implementations of the various inference techniques in relatively simple DGPs. These
exploit the true values of ω1, ..., ωN , σ2

ε and σ2
η instead of their estimates. Although this information is

generally not available in practice, only when such unfeasible techniques behave reasonably well in
finite samples it seems useful to examine in more detail the performance of feasible implementations.
Results for the unfeasible Arellano and Bond [1] and Blundell and Bond [2] GMM estimators are
denoted as ABu and BBu respectively. Their feasible counterparts are denoted as AB1 and BB1 for
the 1-step (which under homoskedasticity are equivalent to their unfeasible counterparts) and AB2
and BB2 for the 2-step estimators. For 2-step estimators the lower case letters a, b or c are used (as
in for instance AB2c) to indicate which type of weighting matrix has been exploited, as discussed in
sections 3.2.1 and 3.3.2. For corresponding MGMM implementations these acronyms are preceded by
the letter M. Under homoskedasticity their unfeasible implementation has been omitted when this is
equivalent to GMM. In BB estimation we have always used q = 1.

First in subsection 5.1 we will discuss the results for DGPs in which the initial conditions are such
that BB estimation will be consistent and more efficient than AB, and subsequently in 5.2 the situation
where BB is inconsistent is examined. Within these subsections we will examine different parameter
value combinations for the DGP. We will start by presenting results for a reference parametrization
(indicated P0) which has been chosen such that the model has in fact four parameters less, by taking
ρ̄xε = 0 (xit is strictly exogenous), EVFx = 0 (hence πλ = πη = 0, so xit is neither correlated with λi
nor with ηi) and κ = 0 (any cross-sectional heteroskedasticity is just related with λi). These choices
(implying that any heteroskedasticity will be unrelated to the regressor xit) may (hopefully) lead to
results where little difference between unfeasible and feasible estimation will be found and where
test sizes are relatively close to the nominal level of 5%. Next we will discuss the effects of settings (to
be labelled P1, P2 etc.) which deviate from this reference parametrization P0 in one or more aspects
regarding the various correlations and variance fractions and ratios. In P0 the relationship for yit will
be characterized by DENη

y = 1 (the impact on yit of the individual effect ηi and of the idiosyncratic
disturbance εit have equal variance). The two remaining parameters have been held fixed over all
cases examined (including P0); the xit series has autoregressive coefficient ξ = 0.8 and regarding yit
we take SNR = 3 (excluding the impacts of the individual effects, the variance of the explanatory
part of yit is three times as large as σ2

ε ).
In section 3.2 we already indicated that we will examine implementations of GMM where

all internal instruments associated with linear moment conditions will be employed (A), but also
particular reductions based either on collapsing (C) or omitting long lags (L3, etc.), or a combination
(C3, etc.). On top of this we will also distinguish situations that may lead to reductions of the
instruments that are being used, because the regressor xit in model (96), which will either be
strictly exogenous or endogenous with respect to εit, might be rightly or wrongly treated as either
strictly exogenous, or as predetermined (weakly exogenous), or as endogenous. These three distinct
situations will be indicated by the letters X, W and E respectively. So, in parametrization P0, where
xit is strictly exogenous, the instruments used by either A, C or, say, L2, are not the same under the
situations X, W and E. This is hopefully clarified in the next paragraph.

Since we assume that for estimation just the observations yi0, ..., yiT and xi1, ..., xiT are available,
the number of internal instruments that are used under XA (all instruments, xit treated as strictly
exogenous) for estimation of the equation in first differences is: T − 1 (time-dummies) + T(T − 1)/2
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(lags of yit) + (T − 1)T (lags and leads of xit). This yields {11, 50, 116} instruments for T = {3, 6, 9}.
Under WA this is {8, 35, 80} and under EA {6, 30, 72}. From section 3.3.1 it follows that for BB
estimation this number of instruments increases with 1 (intercept) + T − 1 (when yi,t−1 is supposed
to be effect stationary) + T − 1 (when xi,t is supposed to be effect stationary) −1 (when xit is treated
as endogenous). This implies for T = {3, 6, 9} a total of {5, 11, 17} extra instruments under XA and
WA, and of {4, 10, 16} under EA, whereas these extra instruments will be valid in section 5.1 below
and invalid in section 5.2.

For the tables to follow we always examine the three values γ ∈ {0.2, 0.5, 0.8} for the dynamic
adjustment coefficient at the three sample size values T ∈ {3, 6, 9} while mostly N = 200, as
in the classic Arellano and Bond [1] study. This is done for both θ = 0 (homoskedasticity) and
θ = 1 (substantial cross-sectional heteroskedasticity). Tables have a code which starts by the design
parametrization, followed by the character u or f, indicating whether the table contains unfeasible
or feasible results. Because of the many feasible variants not all results can be combined in just one
table. Therefore, the f is followed by c, t or J, where c indicates that the table just contains results
on coefficient estimates, which are estimated bias, standard deviation (Stdv) and RMSE (root mean
squared error; below often loosely addressed as precision); t refers to estimates of the actual rejection
probabilities of tests on true coefficient values; and J indicates that the table only contains results on
Sargan-Hansen tests. Next, after a bar (-), the earlier discussed code for how regressor xit is actually
treated when selecting the instruments is given, followed by the type of instrument reduction.

5.1. DGPs under effect stationarity

Here we focus on the case where BB is consistent and more efficient than AB, since s = −50 and
φ = 1.

5.1.1. Results for the reference parametrization P0

Table 3, with code P0u-XA, gives results for unfeasible GMM coefficient estimators, unfeasible
single coefficient tests, and for unfeasible Sargan-Hansen tests for the reference parametrization P0
when xit is (correctly) treated as strictly exogenous and all available instruments are being used.
Table 4 (P0fc-XA) presents a selection of feasible counterparts regarding the coefficient estimators.
Under homoskedasticity we see that for γ̂ABu = γ̂AB1 its bias (which is negative), stdv and thus its
RMSE increase with γ and decrease with T, whereas the bias of β̂ABu = β̂AB1 is moderate and its
RMSE, although decreasing in T, is almost invariant with respect to β. The BBu coefficient estimates
are superior indeed, the more so for larger γ values (as is already well-known), but less so for β.
As already conjectured in section 3.6 under cross-sectional heteroskedasticity both ABu and BBu are
substantially less precise than under homoskedasticity. However, modifying the instruments under
cross-sectional heteroskedasticity as is done by MABu and MBBu yields considerable improvements
in performance both in terms of bias and RMSE. In fact, the precision of the unfeasible modified
estimators under heteroskedasticity comes very close to their counterparts under homoskedasticity.

The simulation results for feasible estimation do not contain the b variant of the weighting
matrix9 because it is so bad, whereas both the a and c variants yield RMSE values very close to
their unfeasible counterparts, under homoskedasticity as well as heteroskedasticity. Although the
best unfeasible results under heteroskedasticity are obtained by MBBu, this does not fully carry over
to MBB, because for T small and also for moderate T and large γ, BB2c performs much better. The
performance of MAB and AB2c is rather similar, whereas we established that their unfeasible variants
differ a lot when γ is large. Apparently, the modified estimators can be much more vulnerable when

9 The b variant differs from a only for T > 3 and may then be not positive definite. For T = 6, 9 it proved to be so bad for
both AB and BB that we discarded it completely from the presented tables.
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Table 5. P0ft-XA∗
Feasible t-test Arellano-Bond: actual significance level

θ = 0 θ = 1
ρ̄xε = 0.0

L γ AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW MAB

T = 3 11 0.20 0.062 0.064 0.057 0.084 0.062 0.065 0.059 0.213 0.088 0.070 0.134 0.074 0.082 0.067 0.556
0.50 0.072 0.072 0.065 0.093 0.071 0.073 0.069 0.237 0.104 0.086 0.150 0.083 0.101 0.083 0.584
0.80 0.120 0.119 0.114 0.144 0.104 0.121 0.114 0.348 0.190 0.172 0.248 0.146 0.192 0.166 0.697

T = 6 50 0.20 0.061 0.063 0.052 0.159 0.061 0.058 0.053 0.246 0.091 0.067 0.354 0.077 0.078 0.066 0.201
0.50 0.078 0.078 0.071 0.182 0.071 0.076 0.071 0.299 0.123 0.098 0.395 0.096 0.108 0.091 0.241
0.80 0.191 0.183 0.176 0.317 0.142 0.182 0.174 0.547 0.329 0.285 0.617 0.234 0.299 0.267 0.465

T = 9 116 0.20 0.073 0.074 0.062 0.324 0.070 0.069 0.064 0.272 0.101 0.075 0.689 0.095 0.087 0.075 0.154
0.50 0.098 0.096 0.090 0.358 0.084 0.096 0.090 0.344 0.149 0.117 0.728 0.139 0.130 0.115 0.198
0.80 0.255 0.242 0.239 0.552 0.192 0.246 0.235 0.653 0.411 0.367 0.893 0.376 0.396 0.366 0.460

L β AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW MAB

T = 3 11 1.43 0.052 0.052 0.051 0.073 0.053 0.057 0.052 0.216 0.070 0.065 0.117 0.062 0.071 0.056 0.586
0.93 0.051 0.052 0.051 0.073 0.053 0.057 0.051 0.215 0.073 0.065 0.118 0.062 0.072 0.055 0.582
0.31 0.050 0.051 0.050 0.072 0.052 0.055 0.050 0.214 0.068 0.062 0.116 0.061 0.072 0.057 0.581

T = 6 50 1.43 0.051 0.055 0.050 0.145 0.055 0.056 0.051 0.222 0.068 0.059 0.315 0.060 0.068 0.057 0.210
0.93 0.054 0.054 0.052 0.145 0.055 0.058 0.053 0.225 0.069 0.061 0.315 0.062 0.069 0.058 0.216
0.31 0.054 0.054 0.054 0.144 0.052 0.059 0.054 0.232 0.066 0.064 0.317 0.058 0.070 0.058 0.229

T = 9 116 1.43 0.050 0.052 0.048 0.296 0.057 0.054 0.051 0.232 0.068 0.057 0.652 0.067 0.067 0.055 0.138
0.93 0.053 0.055 0.052 0.298 0.057 0.058 0.054 0.241 0.072 0.064 0.657 0.071 0.070 0.059 0.145
0.31 0.057 0.056 0.058 0.297 0.057 0.061 0.057 0.241 0.069 0.069 0.654 0.066 0.071 0.061 0.153

Feasible t-test Blundell-Bond: actual significance level
θ = 0 θ = 1

ρ̄xε = 0.0
L γ BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW MBB

T = 3 16 0.20 0.051 0.056 0.041 0.093 0.059 0.058 0.050 0.196 0.076 0.051 0.158 0.064 0.073 0.058 0.494
0.50 0.056 0.057 0.046 0.098 0.057 0.062 0.056 0.209 0.079 0.056 0.165 0.067 0.080 0.065 0.503
0.80 0.066 0.065 0.048 0.103 0.057 0.055 0.043 0.251 0.100 0.071 0.208 0.073 0.087 0.065 0.595

T = 6 61 0.20 0.042 0.052 0.034 0.178 0.056 0.045 0.038 0.206 0.074 0.048 0.389 0.067 0.059 0.046 0.160
0.50 0.053 0.060 0.044 0.184 0.054 0.052 0.042 0.248 0.092 0.064 0.413 0.073 0.069 0.052 0.167
0.80 0.116 0.122 0.100 0.217 0.061 0.063 0.046 0.424 0.218 0.161 0.562 0.129 0.079 0.054 0.261

T = 9 133 0.20 0.049 0.056 0.041 0.364 0.054 0.050 0.042 0.221 0.076 0.051 0.735 0.072 0.057 0.043 0.119
0.50 0.063 0.070 0.056 0.381 0.058 0.056 0.044 0.279 0.108 0.078 0.767 0.101 0.063 0.048 0.121
0.80 0.173 0.176 0.156 0.506 0.109 0.066 0.049 0.552 0.313 0.249 0.894 0.282 0.074 0.049 0.167

L β BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW MBB

T = 3 16 1.43 0.051 0.054 0.052 0.083 0.056 0.058 0.053 0.210 0.070 0.061 0.147 0.064 0.073 0.058 0.571
0.93 0.050 0.053 0.051 0.084 0.055 0.057 0.052 0.214 0.070 0.061 0.148 0.064 0.073 0.058 0.564
0.31 0.048 0.051 0.049 0.087 0.056 0.059 0.054 0.217 0.072 0.062 0.155 0.065 0.078 0.064 0.626

T = 6 61 1.43 0.048 0.052 0.047 0.166 0.055 0.053 0.049 0.216 0.069 0.053 0.371 0.059 0.064 0.052 0.200
0.93 0.051 0.055 0.050 0.166 0.053 0.054 0.049 0.223 0.069 0.058 0.376 0.063 0.064 0.051 0.205
0.31 0.053 0.055 0.053 0.169 0.055 0.053 0.050 0.229 0.068 0.060 0.388 0.064 0.064 0.054 0.221

T = 9 133 1.43 0.047 0.051 0.046 0.342 0.052 0.051 0.047 0.220 0.067 0.054 0.717 0.064 0.060 0.049 0.128
0.93 0.050 0.052 0.049 0.349 0.053 0.053 0.049 0.232 0.070 0.060 0.718 0.067 0.061 0.050 0.132
0.31 0.055 0.055 0.055 0.356 0.056 0.056 0.051 0.234 0.070 0.066 0.730 0.066 0.063 0.054 0.144

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 1.0, EVFx = 0.0, ρ̄xε = 0.0, ξ = 0.8, κ = 0.00,
σε = 1, q = 1, φ = 1.0. These yield the DGP parameter values: πλ = 0.00, πη = 0.00, σv = 0.60, ση = 1.0 ∗ (1− γ), ρvε = 0.0 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).

the variances of the error components, σ2
ε,i and σ2

η , are unknown, probably because their estimates
have to be inverted in (89) and (91).

From the type I error estimates for unfeasible single coefficient tests in Table 3 we see that the
standard test procedures work pretty well for all techniques regarding β, but with respect to γ ABu
fails for larger γ. This gets even worse under heteroskedasticity, but less so for MABu. For BBu and
MBBu the results are reasonable. Here the test seems to benefit from the smaller bias of BBu. For
the feasible variants we find in Table 5 (P0ft-XA) that under homoskedasticity AB1 has reasonable
actual significance level for β, but for γ only when it is small. The same holds for AB2c. Under
heteroskedasticity AB2c overrejects, especially for γ or T large, but only mildly so for tests on β.
Both AB2a and MAB overreject enormously. Employing the Windmeijer [29] correction mitigates the
overrejection probabilities in many cases, but not in all. AB2cW has appropriate size for tests on β,
but for tests on γ the size increases both with γ and with T from 7% to 37% over the grid examined.
Since the test based on ABu shows a similar pattern, it is self-evident that a correction which just
takes the randomness of AB1 into account cannot be fully effective. Oddly enough the Windmeijer
correction is occasionally more effective for the heavily oversized AB2a than for the less oversized
AB2c. Under homoskedasticity both BB2c and BB2cW behave very reasonable, both for tests on β

and on γ. Under heteroskedasticity BB2cW is still very reasonable, but all other implementations
fail in some instances, especially for tests on γ when γ or T are large. The failure of BB1 under
heteroskedasticity is self-evident, see (73).

Regarding the unfeasible J tests Table 3 shows reasonable size properties under
homoskedasticity, especially for JBBu, but less so for the incremental test on effect stationarity
when γ is large. Under heteroskedasticity this problem is more serious, though less so for the
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unfeasible modified procedure. Heteroskedasticity and γ large lead to underrejection of the JABu
test, especially when T is large too. Turning now to the many variants of feasible J tests, of which
only some10 are presented in Table 6 (P0fJ-XA), we first focus on JAB. Under homoskedasticity
JAB(1,0) behaves reasonable, though when applied when θ = 1 it rejects with high probability (thus
detecting heteroskedasticity instead of instrument invalidity, probably due to underestimation of the
variance of the still valid moment conditions). Of the JAB(1,1) tests, both for θ = 0 and θ = 1, the c
variant severely underrejects when T = 9 (when there is an abundance of instruments), but less so
than the a version. Such severe underrejection had already been noted by Bowsher [14]. An almost
similar pattern we note for JAB(2,1) and JAB(2,2). Test JMAB overrejects severely for T = 3 and
underrejects otherwise. Turning now to feasible JBB tests we find that JBB(1,0) underrejects when
θ = 0 and, like JAB(1,0), rejects with high probability when θ = 1. Both the a and c variants of test
JBB(1,1), like JAB(1,1), have rejection probabilities that are not invariant with respect to T, γ and θ.
The c variants seem the least vulnerable, and therefore also yield an almost reasonable incremental
test JES(1,1), although it underrejects when θ = 0 and overrejects when θ = 1 for γ = 0.8. For JBB(2,1)

and JBB(2,2) too the c variant has rejection probabilities which vary the least with T, γ and θ, but
they are systematically below the nominal significance level, which is also the case for the resulting
incremental tests. Oddly enough, the incremental tests resulting from the a variants have type I error
probabilities reasonably close to 5%, despite the serious underrejection of both the JAB and JBB tests
from which they result.

From Table 7 it can be seen that in the base case P0 estimation of σε (which has true value 1) is
pretty accurate for all techniques and T and γ values, but less so under heteroskedasticity when T is
small and γ large. Estimation of ση is much more problematic. Only when γ is moderate, estimation
bias is moderate too. The bias can exceed 100% when γ is large and T is small, and gets even worse
under heteroskedasticity. Employing BB mitigates this bias.

When treating regressor xit as predetermined (P0-WA, not presented here), whereas it is strictly
exogenous, fewer instruments are being used. Since the ones that are now abstained from are most
probably the strongest ones regarding ∆xit, it is no surprise that in the simulation results we note that
especially the standard deviation of the β coefficient suffers. Also the rejection probabilities of the

10 A full set of Monte Carlo results can be obtained from the authors upon request. Below various results will be discussed in
the text without referring to a table presented here, simply because we did not find it worthwhile to include it in the paper
respecting reasonable space limitations.

Table 6. P0fJ-XA∗

Feasible Sargan-Hansen test: rejection probability
d f θ = 0

ρ̄xε = 0.0
AB BB Inc γ JAB(2,1)

a JBB(2,1)
a JES(2,1)

a JAB(2,1)
c JBB(2,1)

c JES(2,1)
c JMAB JMBB JESM

T = 3 9 13 4 0.20 0.047 0.050 0.053 0.043 0.033 0.030 0.244 0.304 0.306
0.50 0.050 0.051 0.052 0.044 0.034 0.025 0.246 0.328 0.327
0.80 0.061 0.055 0.047 0.055 0.035 0.021 0.251 0.381 0.375

T = 6 48 58 10 0.20 0.034 0.038 0.068 0.026 0.025 0.030 0.032 0.386 0.439
0.50 0.037 0.039 0.062 0.027 0.023 0.023 0.033 0.391 0.442
0.80 0.046 0.042 0.056 0.031 0.022 0.013 0.039 0.404 0.452

T = 9 114 130 16 0.20 0.007 0.002 0.056 0.021 0.023 0.033 0.022 0.409 0.466
0.50 0.007 0.002 0.053 0.021 0.021 0.026 0.022 0.411 0.467
0.80 0.009 0.002 0.048 0.025 0.019 0.014 0.026 0.416 0.471

d f θ = 1
ρ̄xε = 0.0

AB BB Inc γ JAB(2,1)
a JBB(2,1)

a JES(2,1)
a JAB(2,1)

c JBB(2,1)
c JES(2,1)

c JMAB JMBB JESM

T = 3 9 13 4 0.20 0.036 0.035 0.047 0.037 0.034 0.041 0.278 0.569 0.557
0.50 0.041 0.035 0.045 0.042 0.038 0.042 0.280 0.594 0.581
0.80 0.057 0.041 0.045 0.061 0.047 0.047 0.300 0.620 0.608

T = 6 48 58 10 0.20 0.016 0.015 0.054 0.020 0.022 0.028 0.037 0.727 0.754
0.50 0.018 0.016 0.051 0.023 0.020 0.027 0.036 0.730 0.756
0.80 0.024 0.017 0.048 0.033 0.028 0.027 0.042 0.738 0.761

T = 9 114 130 16 0.20 0.001 0.000 0.046 0.015 0.017 0.032 0.024 0.764 0.788
0.50 0.001 0.000 0.044 0.017 0.015 0.025 0.023 0.766 0.788
0.80 0.001 0.000 0.038 0.025 0.019 0.020 0.027 0.770 0.791

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 1.0, EVFx = 0.0,
ρ̄xε = 0.0, ξ = 0.8, κ = 0.00, σε = 1, q = 1, φ = 1.0. These yield the DGP parameter values: πλ = 0.00, πη = 0.00,
σv = 0.60, ση = 1.0 ∗ (1− γ), ρvε = 0.0 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).
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various tests differ slightly between implementations WA and XA, but not in a very systematic way
as it seems. When treating xit as endogenous (P0-EA) the precision of the estimators gets worse, with
again no striking effects on the performance of test procedures under their respective null hypotheses.
Upon comparing for P0 the instrument set A (and set C) with the one where Ax (Cx) is replaced by
C1x it has been found that the in practice quite popular choice C1x yields often slightly less efficient
estimates for β, but much less efficient estimates for γ.

When xit is again treated as strictly exogenous, but the number of instruments is reduced by
collapsing the instruments stemming from both yit and xit, then we note from Table 8 (P0fc-XC, just
covering θ = 1) a mixed picture regarding the coefficient estimates. Although any substantial bias
always reduces by collapsing, standard errors always increase at the same time, leading either to
an increase or a decrease in RMSE. Decreases occur for the AB estimators of γ, especially when γ

is large; for β just increases occur. A noteworthy reduction in RMSE does show up for BB2a when
γ is large, T = 9 and θ = 1, but then the RMSE of BB2c using all instruments is in fact smaller.
However, Table 9 (P0ft-XC) shows that collapsing is certainly found to be very beneficial for the type
I error probability of coefficient tests, especially in cases where collapsing yields substantially reduced
coefficient bias. The AB tests benefit a lot from collapsing, especially the c variant, leaving only little
room for further improvement by employing the Windmeijer correction. After collapsing AB1 works
well under homoskedasticity, and also under heteroskedasticity provided robust standard errors are
being used, where the c version is clearly superior to the a version. AB2c has appropriate type I
error probabilities, except for testing γ when it is 0.8 at T = 3 and θ = 1 (which is not repaired by a
Windmeijer correction either), and is for most cases superior to AB2aW. After collapsing BB2a shows
overrejection which is not completely repaired by BB2aW when θ = 1. BB2c and BB2cW generally
show lower rejection probabilities, with occasionally some underrejection. Tests based on MAB and
MBB still heavily overreject. Table 10 (P0fJ-XC) shows that by collapsing the JAB and JBB tests suffer
much less from underrejection when T is larger than 3. However, both the a and c versions of the J(2,1)

and J(2,2) tests usually still underreject, mostly by about 1 or 2 percentage points. Good performance is
shown by JES(2,1)

a and JES(2,1)
c . Table 11 (P0fσ-XC) shows that collapsing reduces the bias in estimates

of ση substantially, although the bias is still huge when γ is large and T small, especially for AB and
more so under heteroskedasticity.

When xit is still correctly treated as strictly exogenous but for the level instruments just a few
lags or first differences are being used (XL0 ... XL3) for both yit and xit then we find the following.
Regarding feasible AB and BB estimation collapsing (XC) always gives smaller RMSE values than XL0
and XL1 (which is much worse than XL0), but this is not the case for XL2 and XL3. Whereas XC yields

Table 7. P0fσ-XA∗
Standard errors of error components eta and epsilon

θ = 0 θ = 1
ρ̄xε = 0.0 Bias σ̂η Bias σ̂ε Bias σ̂η Bias σ̂ε

L γ ση AB1 AB2a AB2c AB1 AB2a AB2c AB1 AB2a AB2c MAB AB1 AB2a AB2c MAB

T = 3 11 0.20 0.80 0.025 0.024 0.025 -0.007 -0.006 -0.007 0.053 0.043 0.048 0.049 -0.016 -0.013 -0.015 -0.015
0.50 0.50 0.050 0.049 0.049 -0.011 -0.011 -0.011 0.106 0.086 0.095 0.099 -0.024 -0.020 -0.022 -0.023
0.80 0.20 0.224 0.228 0.223 -0.033 -0.033 -0.033 0.413 0.377 0.390 0.402 -0.063 -0.056 -0.060 -0.061

T = 6 50 0.20 0.80 0.013 0.013 0.013 -0.003 -0.002 -0.003 0.027 0.022 0.023 0.019 -0.006 -0.005 -0.006 -0.005
0.50 0.50 0.027 0.027 0.026 -0.005 -0.005 -0.005 0.057 0.046 0.048 0.042 -0.011 -0.009 -0.010 -0.008
0.80 0.20 0.127 0.129 0.126 -0.019 -0.019 -0.019 0.244 0.214 0.219 0.202 -0.036 -0.032 -0.032 -0.030

T = 9 116 0.20 0.80 0.010 0.010 0.010 -0.001 -0.001 -0.001 0.020 0.019 0.017 0.013 -0.004 -0.003 -0.003 -0.002
0.50 0.50 0.019 0.020 0.019 -0.003 -0.003 -0.003 0.040 0.037 0.034 0.027 -0.006 -0.006 -0.005 -0.004
0.80 0.20 0.092 0.094 0.092 -0.012 -0.012 -0.012 0.172 0.162 0.154 0.134 -0.022 -0.021 -0.020 -0.017

L γ ση BB1 BB2a BB2c BB1 BB2a BB2c BB1 BB2a BB2c MBB BB1 BB2a BB2c MBB

T = 3 11 0.20 0.80 0.008 0.006 0.005 -0.004 -0.003 -0.003 0.026 0.015 0.012 0.016 -0.012 -0.008 -0.008 -0.009
0.50 0.50 0.021 0.012 0.009 -0.006 -0.004 -0.004 0.051 0.028 0.016 0.013 -0.016 -0.010 -0.008 -0.006
0.80 0.20 0.090 0.049 0.037 -0.016 -0.008 -0.006 0.176 0.114 0.072 0.097 -0.031 -0.019 -0.011 0.007

T = 6 50 0.20 0.80 0.003 0.002 -0.000 -0.001 -0.001 -0.001 0.014 0.009 0.000 0.005 -0.005 -0.004 -0.002 -0.003
0.50 0.50 0.013 0.005 -0.000 -0.003 -0.001 -0.001 0.034 0.022 0.001 0.005 -0.008 -0.006 -0.002 -0.003
0.80 0.20 0.069 0.029 0.003 -0.011 -0.006 -0.002 0.141 0.102 0.011 -0.022 -0.023 -0.017 -0.005 0.001

T = 9 116 0.20 0.80 0.002 0.002 -0.001 -0.001 -0.001 -0.000 0.011 0.010 -0.001 0.004 -0.003 -0.003 -0.001 -0.002
0.50 0.50 0.010 0.008 -0.002 -0.002 -0.001 -0.000 0.027 0.024 -0.001 0.005 -0.005 -0.005 -0.001 -0.002
0.80 0.20 0.061 0.045 0.000 -0.008 -0.006 -0.001 0.119 0.110 0.004 -0.001 -0.017 -0.015 -0.003 -0.002

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 1.0, EVFx = 0.0, ρ̄xε = 0.0, ξ = 0.8, κ = 0.00,
σε = 1, q = 1, φ = 1.0. These yield the DGP parameter values: πλ = 0.00, πη = 0.00, σv = 0.60, ση = 1.0 ∗ (1− γ),
ρvε = 0.0 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).
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Table 8. P0fc-XC∗
Feasible coefficient estimators for Arellano-Bond (θ = 1)

ρ̄xε = 0.0 AB1 AB2a AB2c MAB
L γ Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE

T = 3 6 0.20 -0.010 0.090 0.090 -0.010 0.086 0.086 -0.013 0.087 0.088 -0.010 0.086 0.086
0.50 -0.019 0.118 0.120 -0.018 0.113 0.114 -0.022 0.114 0.116 -0.018 0.113 0.115
0.80 -0.065 0.217 0.227 -0.062 0.207 0.216 -0.074 0.206 0.219 -0.065 0.210 0.220

T = 6 12 0.20 -0.006 0.049 0.050 -0.004 0.046 0.046 -0.006 0.047 0.048 -0.004 0.039 0.040
0.50 -0.011 0.059 0.060 -0.007 0.054 0.055 -0.010 0.056 0.057 -0.007 0.047 0.047
0.80 -0.035 0.094 0.100 -0.026 0.088 0.092 -0.033 0.089 0.095 -0.024 0.074 0.078

T = 9 18 0.20 -0.005 0.037 0.037 -0.003 0.033 0.034 -0.004 0.035 0.035 -0.002 0.027 0.027
0.50 -0.009 0.042 0.043 -0.006 0.038 0.039 -0.007 0.040 0.041 -0.004 0.031 0.031
0.80 -0.024 0.061 0.066 -0.017 0.056 0.059 -0.021 0.058 0.062 -0.014 0.045 0.047

L β Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE

T = 3 6 1.43 0.004 0.181 0.181 0.003 0.172 0.172 0.002 0.174 0.174 0.004 0.159 0.159
0.93 0.003 0.180 0.180 0.002 0.172 0.172 0.002 0.174 0.174 0.004 0.159 0.159
0.31 0.001 0.179 0.179 -0.001 0.171 0.171 -0.001 0.173 0.173 0.000 0.158 0.158

T = 6 12 1.43 0.004 0.110 0.111 0.000 0.102 0.102 0.003 0.106 0.106 0.002 0.079 0.079
0.93 0.004 0.109 0.109 0.000 0.101 0.101 0.003 0.105 0.105 0.002 0.077 0.077
0.31 0.001 0.109 0.109 -0.001 0.101 0.101 0.000 0.105 0.105 0.001 0.076 0.076

T = 9 18 1.43 0.003 0.084 0.084 0.000 0.075 0.075 0.002 0.080 0.080 0.001 0.056 0.056
0.93 0.003 0.083 0.083 0.001 0.074 0.074 0.002 0.079 0.079 0.002 0.055 0.055
0.31 0.001 0.082 0.082 -0.001 0.073 0.073 0.000 0.078 0.078 0.000 0.053 0.053

Feasible coefficient estimators for Blundell-Bond (θ = 1)

ρ̄xε = 0.0 BB1 BB2a BB2c MBB
L γ Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE

T = 3 9 0.20 -0.005 0.078 0.078 -0.002 0.074 0.074 -0.004 0.075 0.075 0.001 0.076 0.076
0.50 -0.011 0.092 0.093 -0.007 0.086 0.086 -0.008 0.087 0.088 0.010 0.101 0.101
0.80 -0.037 0.129 0.134 -0.024 0.123 0.126 -0.025 0.126 0.128 0.052 0.204 0.210

T = 6 15 0.20 -0.004 0.046 0.046 -0.001 0.042 0.042 -0.002 0.044 0.044 -0.001 0.036 0.036
0.50 -0.007 0.052 0.052 -0.002 0.047 0.047 -0.003 0.048 0.049 0.001 0.041 0.041
0.80 -0.021 0.071 0.074 -0.010 0.063 0.063 -0.011 0.065 0.066 0.022 0.064 0.067

T = 9 21 0.20 -0.003 0.035 0.035 -0.001 0.031 0.031 -0.001 0.033 0.033 -0.001 0.026 0.026
0.50 -0.006 0.038 0.039 -0.002 0.034 0.034 -0.003 0.036 0.036 -0.001 0.028 0.028
0.80 -0.016 0.051 0.053 -0.007 0.044 0.045 -0.007 0.047 0.047 0.003 0.038 0.038

L β Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE

T = 3 9 1.43 0.004 0.170 0.170 0.001 0.162 0.162 0.005 0.163 0.163 0.007 0.157 0.157
0.93 0.006 0.168 0.168 0.004 0.158 0.158 0.009 0.160 0.160 0.024 0.154 0.156
0.31 0.008 0.172 0.172 0.007 0.164 0.164 0.010 0.165 0.166 0.052 0.180 0.188

T = 6 15 1.43 0.004 0.107 0.107 0.002 0.098 0.098 0.004 0.102 0.102 0.002 0.078 0.078
0.93 0.005 0.105 0.105 0.003 0.095 0.096 0.006 0.100 0.100 0.005 0.076 0.076
0.31 0.004 0.106 0.106 0.003 0.097 0.097 0.005 0.101 0.101 0.014 0.076 0.077

T = 9 21 1.43 0.003 0.082 0.082 0.002 0.073 0.073 0.003 0.078 0.078 0.001 0.056 0.056
0.93 0.004 0.080 0.080 0.003 0.071 0.071 0.005 0.075 0.075 0.002 0.054 0.054
0.31 0.003 0.079 0.080 0.003 0.070 0.070 0.004 0.075 0.075 0.005 0.053 0.053

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 1.0, EVFx = 0.0, ρ̄xε = 0.0,
ξ = 0.8, κ = 0.00, σε = 1, q = 1, φ = 1.0. These yield the DGP parameter values: πλ = 0.00, πη = 0.00, σv = 0.60,
ση = 1.0 ∗ (1− γ), ρvε = 0.0 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).

Table 9. P0ft-XC∗
Feasible t-test: actual significance level (θ = 1)

Arellano-Bond Blundell-Bond
ρ̄xε = 0.0

L γ AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW L γ BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW

T = 3 6 0.20 0.192 0.073 0.051 0.097 0.071 0.059 0.055 9 0.20 0.196 0.070 0.046 0.110 0.066 0.058 0.051
0.50 0.198 0.079 0.058 0.100 0.072 0.066 0.061 0.50 0.201 0.071 0.046 0.109 0.067 0.064 0.056
0.80 0.230 0.110 0.091 0.132 0.094 0.102 0.095 0.80 0.218 0.079 0.046 0.131 0.071 0.063 0.055

T = 6 12 0.20 0.208 0.070 0.047 0.120 0.062 0.048 0.046 15 0.20 0.203 0.066 0.043 0.129 0.060 0.048 0.046
0.50 0.206 0.069 0.049 0.121 0.061 0.050 0.048 0.50 0.203 0.067 0.043 0.127 0.058 0.048 0.045
0.80 0.239 0.090 0.067 0.139 0.071 0.072 0.069 0.80 0.225 0.081 0.050 0.135 0.062 0.049 0.045

T = 9 18 0.20 0.216 0.070 0.047 0.148 0.064 0.051 0.048 21 0.20 0.208 0.067 0.047 0.153 0.063 0.050 0.048
0.50 0.216 0.071 0.049 0.144 0.064 0.054 0.053 0.50 0.209 0.069 0.047 0.155 0.059 0.049 0.047
0.80 0.233 0.090 0.068 0.165 0.068 0.068 0.066 0.80 0.225 0.078 0.054 0.160 0.058 0.049 0.045

L β AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW L β BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW

T = 3 6 1.43 0.212 0.069 0.063 0.091 0.068 0.068 0.061 9 1.43 0.210 0.068 0.062 0.104 0.066 0.069 0.062
0.93 0.211 0.066 0.061 0.089 0.067 0.066 0.059 0.93 0.213 0.068 0.061 0.105 0.068 0.068 0.062
0.31 0.206 0.066 0.059 0.089 0.064 0.061 0.054 0.31 0.215 0.070 0.062 0.111 0.073 0.072 0.064

T = 6 12 1.43 0.215 0.064 0.054 0.114 0.062 0.058 0.055 15 1.43 0.214 0.065 0.056 0.124 0.063 0.062 0.058
0.93 0.217 0.065 0.054 0.114 0.062 0.056 0.055 0.93 0.216 0.066 0.056 0.125 0.064 0.062 0.057
0.31 0.214 0.065 0.052 0.116 0.064 0.055 0.053 0.31 0.217 0.068 0.054 0.128 0.065 0.060 0.058

T = 9 18 1.43 0.221 0.064 0.051 0.135 0.058 0.055 0.054 21 1.43 0.220 0.065 0.052 0.147 0.059 0.056 0.054
0.93 0.222 0.063 0.052 0.138 0.059 0.054 0.053 0.93 0.219 0.063 0.052 0.149 0.059 0.055 0.053
0.31 0.219 0.063 0.052 0.139 0.057 0.053 0.051 0.31 0.221 0.064 0.053 0.150 0.057 0.056 0.054

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 1.0, EVFx = 0.0, ρ̄xε = 0.0, ξ = 0.8, κ = 0.00, σε = 1, q = 1,
φ = 1.0. These yield the DGP parameter values: πλ = 0.00, πη = 0.00, σv = 0.60, ση = 1.0 ∗ (1− γ), ρvε = 0.0 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).

smaller bias, XL2 and XL3 often reach smaller Stdv and RMSE. Especially regarding β XL3 performs
better than XL2. Probably due to the smaller bias of XC it is more successful in mitigating size
problems of coefficient tests than XL0 through XL3. The effects on J tests is less clear-cut. Combining
collapsing with restricting the lag length we find that XC2 and XC3 are in some aspects slightly worse
but in others occasionally better than XC for P0. We also examined the hybrid instrumentation which
seems popular amongst practitioners where Cw is combined with L1x (see Table 1). Especially for γ
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Table 10. P0fJ-XC∗

Feasible Sargan-Hansen test: rejection probability
d f θ = 1

ρ̄xε = 0.0
AB BB Inc γ JAB(2,1)

a JBB(2,1)
a JES(2,1)

a JAB(2,1)
c JBB(2,1)

c JES(2,1)
c

T = 3 4 6 2 0.20 0.037 0.037 0.045 0.042 0.040 0.044
0.50 0.040 0.037 0.042 0.045 0.042 0.042
0.80 0.048 0.040 0.041 0.054 0.048 0.046

T = 6 10 12 2 0.20 0.032 0.030 0.048 0.036 0.035 0.042
0.50 0.031 0.029 0.046 0.037 0.037 0.044
0.80 0.037 0.035 0.047 0.040 0.040 0.053

T = 9 16 18 2 0.20 0.027 0.027 0.047 0.033 0.034 0.050
0.50 0.029 0.028 0.046 0.034 0.032 0.049
0.80 0.032 0.030 0.051 0.035 0.036 0.054

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3,
DENy = 1.0, EVFx = 0.0, ρ̄xε = 0.0, ξ = 0.8, κ = 0.00, σε = 1, q = 1, φ = 1.0.
These yield the DGP parameter values: πλ = 0.00, πη = 0.00, σv = 0.60,
ση = 1.0 ∗ (1− γ), ρvε = 0.0 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).

Table 11. P0fσ-XC∗
Standard errors of error components ηi and εit

θ = 0 θ = 1
ρ̄xε = 0.0 Bias σ̂η Bias σ̂ε Bias σ̂η Bias σ̂ε

L γ ση AB1 AB2a AB2c AB1 AB2a AB2c AB1 AB2a AB2c MAB AB1 AB2a AB2c MAB

T = 3 6 0.20 0.80 0.017 0.018 0.018 -0.004 -0.004 -0.004 0.037 0.035 0.040 0.032 -0.010 -0.009 -0.011 -0.010
0.50 0.50 0.029 0.030 0.032 -0.006 -0.006 -0.006 0.070 0.063 0.072 0.061 -0.013 -0.012 -0.014 -0.013
0.80 0.20 0.152 0.155 0.159 -0.014 -0.013 -0.015 0.306 0.284 0.305 0.291 -0.027 -0.026 -0.031 -0.027

T = 6 12 0.20 0.80 0.005 0.005 0.005 -0.001 -0.001 -0.001 0.013 0.009 0.012 0.007 -0.003 -0.002 -0.003 -0.002
0.50 0.50 0.010 0.010 0.010 -0.001 -0.001 -0.001 0.025 0.017 0.022 0.013 -0.004 -0.003 -0.004 -0.003
0.80 0.20 0.034 0.034 0.036 -0.005 -0.004 -0.005 0.097 0.074 0.091 0.059 -0.011 -0.008 -0.011 -0.009

T = 9 18 0.20 0.80 0.003 0.003 0.003 -0.000 -0.000 -0.000 0.008 0.006 0.007 0.004 -0.001 -0.001 -0.001 -0.001
0.50 0.50 0.006 0.006 0.006 -0.001 -0.000 -0.001 0.016 0.010 0.013 0.007 -0.002 -0.001 -0.002 -0.001
0.80 0.20 0.015 0.014 0.016 -0.002 -0.002 -0.003 0.053 0.034 0.044 0.021 -0.006 -0.004 -0.006 -0.004

L γ ση BB1 BB2a BB2c BB1 BB2a BB2c BB1 BB2a BB2c MBB BB1 BB2a BB2c MBB

T = 3 6 0.20 0.80 0.008 0.008 0.008 -0.003 -0.002 -0.003 0.023 0.017 0.019 0.012 -0.009 -0.006 -0.007 -0.006
0.50 0.50 0.016 0.014 0.014 -0.004 -0.003 -0.004 0.040 0.027 0.028 0.009 -0.011 -0.008 -0.009 -0.001
0.80 0.20 0.073 0.056 0.061 -0.010 -0.007 -0.008 0.158 0.120 0.124 0.149 -0.021 -0.014 -0.015 0.027

T = 6 12 0.20 0.80 0.003 0.002 0.002 -0.001 -0.000 -0.001 0.009 0.004 0.005 0.003 -0.003 -0.002 -0.002 -0.002
0.50 0.50 0.006 0.003 0.004 -0.001 -0.000 -0.001 0.017 0.007 0.009 0.001 -0.004 -0.002 -0.002 -0.001
0.80 0.20 0.017 0.005 0.010 -0.003 -0.002 -0.002 0.059 0.026 0.031 -0.045 -0.008 -0.004 -0.005 0.008

T = 9 18 0.20 0.80 0.002 0.001 0.001 -0.000 -0.000 -0.000 0.006 0.003 0.003 0.002 -0.001 -0.001 -0.001 -0.001
0.50 0.50 0.004 0.002 0.003 -0.000 -0.000 -0.000 0.011 0.005 0.005 0.003 -0.002 -0.001 -0.001 -0.001
0.80 0.20 0.008 -0.001 0.003 -0.002 -0.000 -0.001 0.033 0.009 0.011 -0.018 -0.005 -0.002 -0.002 0.001

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 1.0, EVFx = 0.0, ρ̄xε = 0.0, ξ = 0.8, κ = 0.00,
σε = 1, q = 1, φ = 1.0. These yield the DGP parameter values: πλ = 0.00, πη = 0.00, σv = 0.60, ση = 1.0 ∗ (1− γ),
ρvε = 0.0 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).

this leads to loss of estimator precision without any other clear advantages, so it does not outperform
the XC results for P0. From examining P0-WC (and P0-EC) we find that in comparison to P0-WA
(P0-EA) there is often some increase in RMSE, but the size control of especially the t-tests is much
better.

Summarizing the results for P0 on feasible estimators and tests we note that when choosing
between different possible instrument sets a trade off has to be made between estimator precision
and test size control. For both some form of reduction of the instrument set is often but not always
beneficial. Not one single method seems superior irrespective of the actual values of γ, β and T. Using
all instruments is not necessarily a bad choice; also XC, XL3 and XC3 often work well. To mitigate
estimator bias and foster test size control while not sacrificing too much estimator precision using
collapsing (C) for all regressors seems a reasonable compromise, as far as P0 is concerned. Coefficient
and J tests based on the modified estimator using its simple feasible implementation examined here
behave so poorly, that in the remainder we no longer mention its results.

5.1.2. Results for alternative parametrizations

Next we examine a series of alternative parametrizations where each time we just change one of
the parameter values of one of the already examined cases. In P1 we increase DENη

y from 1 to 4 (hence,
substantially increasing the relative variance of the individual effects). We note that for P1-XA (not
tabulated here) all estimators regarding γ are more biased and dispersed than for P0-XA, but there is
little or no effect on the β estimates. For both T and γ large this leads to serious overrejection for the
unfeasible coefficient tests regarding γ, in particular for ABu. Self-evidently, this carries over to the
feasible tests and, although a Windmeijer correction has a mitigating effect, the overrejection remains
often serious for both AB and BB based tests. Tests on β based on AB behave reasonable, apart from
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not robustified AB1 and AB2a. For the latter a Windmeijer correction proves reasonably effective.
When exploiting the effect stationarity the BB2c implementation seems preferable. The unfeasible
J tests show a similar though slightly more extreme pattern as for P0-XA. Among the feasible tests
both serious underrejection and overrejection occurs. As far as the incremental tests concerns JES(2,2)

c
behaves remarkably well.

In Tables 12, 13, 14 and 15 (P1fj-XC, j = c,t,J,σ) we find that collapsing leads again to reduced
bias, slightly deteriorated precision though improved size control (here all unfeasible tests behave
reasonably well). All feasible AB1R and AB2W tests have reasonable size control, apart from tests
on γ when T is small and γ large. These give actual significance levels close to 10%. BB2cW seems
slightly better than BB2aW. The 1-step J tests show some serious overrejection whereas the 2-step J
tests behave quite satisfactorily. The increase of ση has an adverse effect on its estimate when using
uncollapsed BB for γ small, but collapsing substantially reduces the bias in ση estimates.

Table 12. P1fc-XC∗
Feasible coefficient estimators for Arellano-Bond (θ = 1)

ρ̄xε = 0.0 AB1 AB2a AB2c MAB
L γ Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE

T = 3 6 0.20 -0.017 0.134 0.135 -0.020 0.127 0.129 -0.021 0.126 0.128 -0.017 0.132 0.134
0.50 -0.036 0.175 0.179 -0.038 0.167 0.171 -0.041 0.164 0.169 -0.035 0.172 0.176
0.80 -0.131 0.303 0.330 -0.134 0.298 0.326 -0.135 0.284 0.315 -0.136 0.298 0.328

T = 6 12 0.20 -0.009 0.062 0.063 -0.007 0.058 0.058 -0.008 0.058 0.059 -0.006 0.052 0.053
0.50 -0.017 0.077 0.079 -0.014 0.072 0.074 -0.016 0.072 0.074 -0.011 0.065 0.066
0.80 -0.061 0.126 0.139 -0.053 0.121 0.133 -0.056 0.117 0.130 -0.049 0.113 0.123

T = 9 18 0.20 -0.006 0.044 0.044 -0.005 0.040 0.040 -0.005 0.041 0.042 -0.004 0.035 0.035
0.50 -0.012 0.052 0.053 -0.009 0.048 0.049 -0.010 0.049 0.050 -0.007 0.041 0.042
0.80 -0.040 0.081 0.090 -0.032 0.077 0.084 -0.035 0.076 0.083 -0.028 0.070 0.075

L β Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE

T = 3 6 1.43 0.005 0.182 0.182 0.002 0.174 0.174 0.003 0.176 0.176 0.007 0.161 0.161
0.93 0.003 0.181 0.181 0.000 0.174 0.174 0.001 0.175 0.175 0.006 0.159 0.159
0.31 -0.002 0.177 0.177 -0.006 0.171 0.171 -0.004 0.172 0.172 -0.002 0.157 0.157

T = 6 12 0.20 0.004 0.110 0.110 0.002 0.103 0.103 0.004 0.106 0.106 0.003 0.080 0.080
0.93 0.004 0.109 0.109 0.001 0.102 0.102 0.004 0.105 0.105 0.004 0.078 0.078
0.31 0.000 0.108 0.108 -0.002 0.102 0.102 -0.001 0.105 0.105 0.002 0.076 0.076

T = 9 18 1.43 0.003 0.084 0.084 0.001 0.076 0.076 0.003 0.081 0.081 0.002 0.057 0.057
0.93 0.004 0.083 0.083 0.001 0.075 0.075 0.003 0.079 0.079 0.003 0.055 0.055
0.31 0.000 0.082 0.082 -0.001 0.074 0.074 -0.000 0.078 0.078 0.001 0.053 0.053

Feasible coefficient estimators for Blundell-Bond (θ = 1)

ρ̄xε = 0.0 BB1 BB2a BB2c MBB
L γ Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE

T = 3 9 0.20 0.023 0.125 0.128 0.018 0.114 0.116 0.016 0.114 0.115 0.021 0.123 0.124
0.50 0.011 0.124 0.125 0.012 0.124 0.124 0.010 0.126 0.126 0.017 0.129 0.130
0.80 -0.022 0.142 0.144 -0.015 0.148 0.149 -0.016 0.153 0.154 0.031 0.190 0.193

T = 6 15 0.20 0.007 0.061 0.062 0.004 0.053 0.054 0.002 0.055 0.055 0.002 0.049 0.049
0.50 0.002 0.064 0.064 0.004 0.061 0.061 0.002 0.063 0.063 0.001 0.056 0.056
0.80 -0.016 0.078 0.080 -0.005 0.075 0.075 -0.009 0.078 0.078 0.008 0.079 0.080

T = 9 21 0.20 0.003 0.044 0.044 0.002 0.038 0.038 -0.000 0.039 0.039 0.000 0.033 0.033
0.50 -0.001 0.046 0.046 0.002 0.042 0.042 -0.001 0.044 0.044 -0.001 0.037 0.037
0.80 -0.014 0.056 0.058 -0.004 0.053 0.053 -0.007 0.055 0.056 -0.002 0.050 0.050

L β Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE

T = 3 9 1.43 -0.010 0.185 0.185 -0.000 0.175 0.175 0.000 0.174 0.174 -0.009 0.171 0.171
0.93 -0.003 0.176 0.176 -0.000 0.170 0.170 0.000 0.170 0.170 -0.001 0.163 0.163
0.31 0.004 0.174 0.174 0.002 0.167 0.167 0.003 0.168 0.168 0.019 0.167 0.168

T = 6 15 1.43 -0.002 0.112 0.112 -0.000 0.103 0.103 0.001 0.106 0.106 -0.001 0.082 0.082
0.93 0.001 0.108 0.108 0.001 0.101 0.101 0.002 0.104 0.104 0.000 0.079 0.079
0.31 0.003 0.106 0.107 0.002 0.100 0.100 0.003 0.103 0.103 0.004 0.077 0.077

T = 9 21 1.43 -0.001 0.086 0.086 -0.000 0.076 0.076 0.001 0.081 0.081 -0.000 0.058 0.058
0.93 0.002 0.082 0.082 0.001 0.074 0.074 0.002 0.078 0.078 0.000 0.056 0.056
0.31 0.002 0.080 0.080 0.002 0.073 0.073 0.002 0.076 0.076 0.001 0.054 0.054

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 4.0, EVFx = 0.0, ρ̄xε = 0.0,
ξ = 0.8, κ = 0.00, σε = 1, q = 1, φ = 1.0. These yield the DGP parameter values: πλ = 0.00, πη = 0.00, σv = 0.60,
ση = 4.0 ∗ (1− γ), ρvε = 0.0 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).

For C3 reasonably similar results are obtained, but those for L3 are generally slightly less
attractive.

In P2 we increase EVFx from 0 to 0.6, upon having again IEFη
x = 0 (hence, xit is still uncorrelated

with effect ηi though correlated with effect λi, which determines any heteroskedasticity). This leads
to increased β values. Results for P2-XA show larger absolute values for the standard deviations
of the β estimates than for P0-XA, but they are almost similar in relative terms. The patterns in
the rejection probabilities under the respective null hypotheses are hardly affected, and P2-XC shows
again improved behavior of the test statistics due to reduced estimator bias, whereas the RMSE values
have slightly increased. Under P2 ση estimates are more biased than under P0.
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Table 13. P1ft-XC∗
Feasible t-test: actual significance level (θ = 1)

Arellano-Bond Blundell-Bond
ρ̄xε = 0.0

L γ AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW L γ BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW

T = 3 6 0.20 0.165 0.075 0.064 0.099 0.072 0.068 0.063 9 0.20 0.118 0.087 0.068 0.132 0.080 0.085 0.065
0.50 0.179 0.082 0.073 0.106 0.076 0.080 0.073 0.50 0.138 0.083 0.063 0.146 0.093 0.097 0.077
0.80 0.236 0.134 0.130 0.165 0.111 0.137 0.130 0.80 0.144 0.063 0.034 0.141 0.088 0.088 0.069

T = 6 12 0.20 0.192 0.070 0.053 0.115 0.060 0.052 0.050 15 0.20 0.124 0.071 0.048 0.127 0.062 0.052 0.046
0.50 0.192 0.072 0.058 0.117 0.059 0.056 0.054 0.50 0.141 0.065 0.045 0.133 0.065 0.059 0.049
0.80 0.215 0.099 0.086 0.155 0.076 0.088 0.085 0.80 0.161 0.065 0.038 0.138 0.069 0.058 0.048

T = 9 18 0.20 0.201 0.070 0.054 0.140 0.063 0.055 0.053 21 0.20 0.138 0.064 0.047 0.150 0.062 0.052 0.048
0.50 0.201 0.071 0.057 0.140 0.063 0.058 0.055 0.50 0.155 0.065 0.045 0.153 0.060 0.051 0.046
0.80 0.225 0.095 0.084 0.174 0.067 0.078 0.076 0.80 0.175 0.068 0.042 0.157 0.061 0.053 0.044

L β AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW L β BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW

T = 3 6 1.43 0.207 0.066 0.060 0.086 0.065 0.065 0.058 9 1.43 0.176 0.068 0.058 0.097 0.065 0.065 0.058
0.93 0.204 0.064 0.057 0.086 0.065 0.061 0.055 0.93 0.191 0.066 0.056 0.097 0.066 0.066 0.059
0.31 0.195 0.061 0.051 0.083 0.061 0.057 0.050 0.31 0.208 0.069 0.057 0.103 0.068 0.067 0.059

T = 6 12 1.43 0.213 0.065 0.053 0.111 0.064 0.056 0.053 15 1.43 0.196 0.065 0.055 0.119 0.061 0.058 0.055
0.93 0.215 0.066 0.053 0.112 0.062 0.057 0.053 0.93 0.205 0.064 0.053 0.119 0.062 0.059 0.055
0.31 0.211 0.064 0.051 0.114 0.062 0.055 0.052 0.31 0.214 0.067 0.053 0.124 0.063 0.059 0.058

T = 9 18 1.43 0.219 0.063 0.051 0.131 0.060 0.053 0.052 21 1.43 0.200 0.063 0.053 0.139 0.061 0.056 0.052
0.93 0.219 0.063 0.051 0.131 0.057 0.054 0.052 0.93 0.207 0.064 0.054 0.141 0.061 0.055 0.053
0.31 0.215 0.063 0.050 0.130 0.056 0.052 0.051 0.31 0.217 0.063 0.054 0.141 0.060 0.054 0.052

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 4.0, EVFx = 0.0, ρ̄xε = 0.0, ξ = 0.8, κ = 0.00, σε = 1, q = 1,
φ = 1.0. These yield the DGP parameter values: πλ = 0.00, πη = 0.00, σv = 0.60, ση = 4.0 ∗ (1− γ), ρvε = 0.0 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).

Table 14. P1fJ-XC∗

Feasible Sargan-Hansen test: rejection probability
d f θ = 1

ρ̄xε = 0.0
AB BB Inc γ JAB(2,1)

a JBB(2,1)
a JES(2,1)

a JAB(2,1)
c JBB(2,1)

c JES(2,1)
c

T = 3 4 6 2 0.20 0.039 0.043 0.061 0.043 0.047 0.054
0.50 0.042 0.043 0.055 0.048 0.042 0.046
0.80 0.053 0.036 0.042 0.059 0.038 0.036

T = 6 10 12 2 0.20 0.035 0.036 0.055 0.039 0.041 0.053
0.50 0.034 0.035 0.052 0.039 0.042 0.054
0.80 0.043 0.035 0.044 0.045 0.042 0.044

T = 9 16 18 2 0.20 0.029 0.029 0.056 0.037 0.039 0.054
0.50 0.029 0.028 0.053 0.037 0.039 0.054
0.80 0.031 0.026 0.049 0.040 0.039 0.046

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3,
DENy = 4.0, EVFx = 0.0, ρ̄xε = 0.0, ξ = 0.8, κ = 0.00, σε = 1, q = 1, φ = 1.0.
These yield the DGP parameter values: πλ = 0.00, πη = 0.00, σv = 0.60,
ση = 4.0 ∗ (1− γ), ρvε = 0.0 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).

Table 15. P1fσ-XC∗
Standard errors of error components ηi and εit

θ = 0 θ = 1
ρ̄xε = 0.0 Bias σ̂η Bias σ̂ε Bias σ̂η Bias σ̂ε

L γ ση AB1 AB2a AB2c AB1 AB2a AB2c AB1 AB2a AB2c MAB AB1 AB2a AB2c MAB

T = 3 6 0.20 3.20 0.050 0.053 0.053 -0.002 -0.002 -0.003 0.081 0.091 0.096 0.078 -0.006 -0.007 -0.008 -0.006
0.50 2.00 0.104 0.107 0.108 -0.006 -0.006 -0.007 0.177 0.184 0.193 0.168 -0.012 -0.013 -0.015 -0.012
0.80 0.80 0.490 0.510 0.498 -0.025 -0.025 -0.026 0.823 0.810 0.802 0.826 -0.040 -0.041 -0.044 -0.042

T = 6 12 0.20 3.20 0.020 0.020 0.020 -0.001 -0.000 -0.001 0.039 0.031 0.035 0.024 -0.002 -0.001 -0.002 -0.002
0.50 2.00 0.038 0.038 0.038 -0.002 -0.001 -0.002 0.074 0.061 0.069 0.049 -0.004 -0.003 -0.004 -0.003
0.80 0.80 0.143 0.147 0.144 -0.009 -0.009 -0.009 0.279 0.241 0.254 0.219 -0.016 -0.014 -0.016 -0.014

T = 9 18 0.20 3.20 0.012 0.013 0.012 -0.000 0.000 -0.000 0.027 0.019 0.022 0.015 -0.001 -0.001 -0.001 -0.001
0.50 2.00 0.023 0.023 0.023 -0.000 -0.000 -0.000 0.049 0.036 0.042 0.028 -0.002 -0.001 -0.002 -0.001
0.80 0.80 0.087 0.086 0.087 -0.004 -0.004 -0.004 0.172 0.139 0.151 0.121 -0.009 -0.007 -0.008 -0.006

L γ ση BB1 BB2a BB2c BB1 BB2a BB2c BB1 BB2a BB2c MBB BB1 BB2a BB2c MBB

T = 3 6 0.20 3.20 -0.105 -0.062 -0.058 0.014 0.007 0.006 -0.089 -0.068 -0.060 -0.081 0.009 0.005 0.004 0.008
0.50 2.00 -0.064 -0.054 -0.049 0.008 0.007 0.006 -0.036 -0.042 -0.033 -0.060 0.002 0.003 0.002 0.005
0.80 0.80 0.037 0.026 0.028 -0.004 -0.002 -0.002 0.134 0.102 0.112 0.054 -0.013 -0.008 -0.009 0.016

T = 6 12 0.20 3.20 -0.037 -0.008 -0.003 0.003 0.001 0.000 -0.027 -0.015 -0.006 -0.010 0.001 0.000 -0.001 -0.000
0.50 2.00 -0.024 -0.013 -0.006 0.002 0.001 0.001 -0.005 -0.016 -0.005 -0.005 0.000 0.001 -0.000 -0.000
0.80 0.80 0.021 -0.001 0.013 -0.001 0.001 -0.001 0.071 0.020 0.036 -0.039 -0.006 -0.001 -0.003 0.004

T = 9 18 0.20 3.20 -0.020 -0.003 0.002 0.001 0.000 0.000 -0.012 -0.006 0.001 -0.000 0.000 0.000 -0.000 -0.000
0.50 2.00 -0.011 -0.006 0.002 0.001 0.001 0.000 0.004 -0.006 0.003 0.004 -0.000 0.000 -0.000 -0.000
0.80 0.80 0.018 -0.001 0.013 -0.001 0.001 -0.000 0.059 0.015 0.028 0.007 -0.004 -0.000 -0.001 0.000

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 4.0, EVFx = 0.0, ρ̄xε = 0.0, ξ = 0.8, κ = 0.00,
σε = 1, q = 1, φ = 1.0. These yield the DGP parameter values: πλ = 0.00, πη = 0.00, σv = 0.60, ση = 4.0 ∗ (1− γ),
ρvε = 0.0 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).

In P3 we change IEFη
x from 0 to 0.3, while keeping EVFx = 0.6 (hence, realizing now dependence

between regressor xit and the individual effect ηi). Comparing the results for P3-XA with those for
P2-XA (which have the same β values) we find that all patterns are pretty similar. Also P3-XC follows
the P2-XC picture closely. Under P3 ση estimates are more biased than under P0.

P4 differs from P3 because κ = 0.25, thus now the heteroskedasticity is determined by ηi too.
This has a noteworthy effect on MBB estimation, a minor effect on JBB (and thus on JES) testing, and
almost no effect on ση estimation.
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Table 16. P5fc-EC∗
Feasible coefficient estimators for Arellano-Bond (θ = 1)

ρ̄xε = 0.3 AB1 AB2a AB2c MAB
L γ Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE

T = 3 4 0.20 -0.165 0.297 0.340 -0.169 0.298 0.343 -0.169 0.291 0.337 -0.178 0.287 0.338
0.50 -0.191 0.379 0.424 -0.197 0.372 0.421 -0.195 0.360 0.409 -0.204 0.357 0.412
0.80 -0.181 0.477 0.511 -0.195 0.474 0.513 -0.197 0.453 0.494 -0.197 0.443 0.485

T = 6 10 0.20 -0.097 0.101 0.140 -0.090 0.101 0.135 -0.099 0.099 0.141 -0.098 0.100 0.140
0.50 -0.104 0.111 0.152 -0.092 0.112 0.144 -0.096 0.108 0.144 -0.093 0.107 0.142
0.80 -0.091 0.126 0.155 -0.078 0.123 0.146 -0.083 0.121 0.147 -0.068 0.110 0.130

T = 9 16 0.20 -0.073 0.070 0.101 -0.062 0.066 0.091 -0.073 0.068 0.100 -0.060 0.062 0.086
0.50 -0.077 0.075 0.108 -0.063 0.072 0.096 -0.069 0.072 0.100 -0.056 0.065 0.086
0.80 -0.064 0.080 0.102 -0.050 0.076 0.091 -0.055 0.076 0.094 -0.039 0.063 0.074

L β Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE

T = 3 4 1.43 0.790 1.455 1.655 0.810 1.451 1.661 0.804 1.420 1.632 0.823 1.362 1.591
0.93 0.613 1.322 1.457 0.638 1.286 1.436 0.644 1.242 1.399 0.631 1.195 1.351
0.31 0.362 1.109 1.166 0.394 1.100 1.168 0.418 1.068 1.146 0.383 0.989 1.061

T = 6 10 1.43 0.409 0.432 0.595 0.399 0.437 0.591 0.420 0.423 0.596 0.381 0.395 0.548
0.93 0.324 0.362 0.486 0.307 0.364 0.476 0.314 0.351 0.471 0.264 0.309 0.406
0.31 0.178 0.283 0.334 0.170 0.276 0.324 0.179 0.273 0.326 0.121 0.216 0.247

T = 9 16 1.43 0.286 0.270 0.394 0.255 0.261 0.365 0.289 0.262 0.390 0.213 0.218 0.305
0.93 0.235 0.235 0.332 0.205 0.224 0.304 0.222 0.224 0.315 0.157 0.179 0.238
0.31 0.129 0.179 0.221 0.112 0.167 0.201 0.123 0.171 0.211 0.070 0.121 0.140

Feasible coefficient estimators for Blundell-Bond (θ = 1)

ρ̄xε = 0.0 BB1 BB2a BB2c MBB
L γ Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE

T = 3 7 0.20 -0.106 0.169 0.199 -0.102 0.179 0.206 -0.108 0.174 0.205 -0.089 0.187 0.207
0.50 -0.126 0.187 0.225 -0.117 0.195 0.228 -0.120 0.193 0.227 -0.089 0.187 0.207
0.80 -0.123 0.198 0.233 -0.112 0.209 0.237 -0.112 0.203 0.232 -0.063 0.257 0.265

T = 6 13 0.20 -0.066 0.080 0.104 -0.054 0.078 0.095 -0.064 0.079 0.102 -0.050 0.078 0.093
0.50 -0.073 0.086 0.113 -0.055 0.083 0.100 -0.060 0.084 0.103 -0.039 0.084 0.093
0.80 -0.064 0.089 0.110 -0.044 0.084 0.094 -0.047 0.086 0.098 -0.005 0.086 0.086

T = 9 19 0.20 -0.054 0.059 0.080 -0.042 0.056 0.070 -0.051 0.057 0.077 -0.037 0.050 0.063
0.50 -0.058 0.063 0.085 -0.042 0.059 0.072 -0.047 0.060 0.076 -0.031 0.052 0.061
0.80 -0.048 0.063 0.079 -0.031 0.057 0.065 -0.034 0.059 0.068 -0.012 0.050 0.052

L β Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE

T = 3 7 1.43 0.495 0.778 0.922 0.489 0.837 0.970 0.500 0.793 0.937 0.499 0.751 0.901
0.93 0.419 0.643 0.768 0.403 0.675 0.786 0.413 0.650 0.770 0.465 0.594 0.754
0.31 0.276 0.504 0.574 0.265 0.511 0.576 0.279 0.495 0.568 0.406 0.442 0.600

T = 6 13 1.43 0.284 0.321 0.429 0.247 0.318 0.403 0.276 0.315 0.419 0.219 0.297 0.369
0.93 0.244 0.278 0.370 0.202 0.270 0.337 0.216 0.268 0.344 0.162 0.238 0.288
0.31 0.151 0.216 0.264 0.125 0.203 0.238 0.135 0.203 0.243 0.116 0.159 0.196

T = 9 19 1.43 0.220 0.223 0.313 0.180 0.211 0.278 0.210 0.215 0.300 0.143 0.180 0.230
0.93 0.190 0.197 0.273 0.151 0.183 0.237 0.167 0.185 0.249 0.108 0.151 0.186
0.31 0.115 0.150 0.189 0.092 0.135 0.163 0.103 0.138 0.172 0.063 0.105 0.122

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 1.0, EVFx = 0.0, ρ̄xε = 0.3,
ξ = 0.8, κ = 0.00, σε = 1, q = 1, φ = 1.0. These yield the DGP parameter values: πλ = 0.00, πη = 0.00, σv = 0.60,
ση = 1.0 ∗ (1− γ), ρvε = 0.5 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).

P5 differs from P0 just in having ρ̄xε = 0.3, so xit is now endogenous with respect to εit. P5-EA
uses all instruments available when correctly taking the endogeneity into account. This leads to
very unsatisfactory results. The coefficient estimates of γ have serious negative bias, and those for β

positive bias, whereas the standard deviation is slightly larger than for P0-EA, which are substantially
larger than for P0-XA. All coefficient tests are very seriously oversized, also after a Windmeijer
correction, both for AB and BB. Tests JABu and JBBu show underrejection, whereas the matching
JES tests show serious overrejection when T is large, but the feasible 2-step variants are not all that
bad. From Tables 16, 17 and 18 (P5fj-EC, j = c,t,J) we see that most results which correctly handle
the simultaneity of xit are still bad after collapsing, especially for T small (where collapsing can only
lead to a minor reduction of the instrument set), although not as bad as those for P5-EA and larger
values of T. For P5-EC the rejection probabilities of the corrected coefficient tests are usually in the
10-20% range, but those of the 2-step J tests are often close to 5%. Under P5 estimates of σε and
ση are much more biased than under P0. Both AB and BB are inconsistent when treating xit either as
predetermined or as exogenous. For P5-WA and P5-XA the coefficient bias is almost similar but much
more serious than for P5-EA. For the inconsistent estimators the bias does not reduce when collapsing
the instruments. Because the inconsistent estimators have a much smaller standard deviation than
the consistent estimators practitioners should be warned never to select an estimator simply because
of its attractive estimated standard error. The consistency of AB and BB should be tested with the
Sargan-Hansen test.

In this study we did not examine the particular incremental test which focusses on the validity
of the extra instruments when comparing E with W or E with X. Here we just examine the rejection
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Table 17. P5ft-EC∗
Feasible t-test: actual significance level (θ = 1)

Arellano-Bond Blundell-Bond
ρ̄xε = 0.0

L γ AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW L γ BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW

T = 3 4 0.20 0.252 0.155 0.118 0.175 0.164 0.134 0.134 7 0.20 0.263 0.149 0.113 0.198 0.147 0.146 0.129
0.50 0.283 0.173 0.140 0.195 0.175 0.161 0.154 0.50 0.301 0.166 0.142 0.210 0.150 0.165 0.134
0.80 0.274 0.170 0.146 0.191 0.166 0.168 0.158 0.80 0.297 0.145 0.135 0.188 0.127 0.147 0.111

T = 6 10 0.20 0.420 0.250 0.196 0.316 0.203 0.225 0.211 13 0.20 0.359 0.195 0.140 0.247 0.141 0.159 0.143
0.50 0.404 0.231 0.204 0.289 0.177 0.203 0.187 0.50 0.367 0.193 0.163 0.236 0.129 0.149 0.130
0.80 0.340 0.173 0.157 0.220 0.127 0.154 0.147 0.80 0.332 0.153 0.130 0.185 0.098 0.109 0.098

T = 9 16 0.20 0.453 0.258 0.218 0.359 0.201 0.237 0.224 19 0.20 0.399 0.215 0.165 0.294 0.149 0.169 0.157
0.50 0.440 0.245 0.215 0.327 0.177 0.206 0.194 0.50 0.405 0.209 0.176 0.279 0.135 0.152 0.140
0.80 0.353 0.175 0.161 0.247 0.118 0.145 0.140 0.80 0.339 0.155 0.138 0.216 0.098 0.102 0.096

L β AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW L β BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW

T = 3 4 1.43 0.253 0.154 0.114 0.175 0.167 0.132 0.128 7 1.43 0.265 0.151 0.130 0.205 0.152 0.162 0.136
0.93 0.274 0.173 0.135 0.196 0.183 0.155 0.147 0.93 0.304 0.180 0.164 0.223 0.160 0.185 0.155
0.31 0.259 0.154 0.130 0.176 0.159 0.148 0.139 0.31 0.288 0.158 0.151 0.195 0.140 0.163 0.139

T = 6 10 1.43 0.429 0.255 0.217 0.336 0.219 0.243 0.227 13 1.43 0.381 0.215 0.179 0.280 0.165 0.194 0.168
0.93 0.413 0.234 0.207 0.305 0.195 0.218 0.202 0.93 0.387 0.213 0.192 0.266 0.157 0.185 0.168
0.31 0.319 0.154 0.136 0.213 0.138 0.149 0.140 0.31 0.330 0.165 0.146 0.226 0.135 0.146 0.139

T = 9 16 1.43 0.463 0.270 0.238 0.375 0.215 0.262 0.248 19 1.43 0.423 0.239 0.203 0.323 0.173 0.206 0.192
0.93 0.443 0.244 0.226 0.350 0.193 0.226 0.214 0.93 0.425 0.228 0.211 0.318 0.166 0.196 0.186
0.31 0.348 0.161 0.147 0.249 0.129 0.149 0.145 0.31 0.355 0.167 0.153 0.262 0.135 0.150 0.145

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 1.0, EVFx = 0.0, ρ̄xε = 0.3, ξ = 0.8, κ = 0.00, σε = 1, q = 1,
These yield the DGP parameter values: πλ = 0.00, πη = 0.00, σv = 0.60, ση = 1.0 ∗ (1− γ), ρvε = 0.5 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).

Table 18. P5fJ-EC∗

Feasible Sargan-Hansen test: rejection probability
d f θ = 1

ρ̄xε = 0.0
AB BB Inc γ JAB(2,1)

a JBB(2,1)
a JES(2,1)

a JAB(2,1)
c JBB(2,1)

c JES(2,1)
c

T = 3 2 4 2 0.20 0.036 0.042 0.068 0.032 0.045 0.072
0.50 0.044 0.050 0.074 0.038 0.055 0.077
0.80 0.067 0.057 0.069 0.061 0.064 0.074

T = 6 8 10 2 0.20 0.065 0.064 0.072 0.056 0.057 0.074
0.50 0.071 0.066 0.067 0.066 0.063 0.070
0.80 0.060 0.058 0.064 0.063 0.062 0.065

T = 9 14 16 2 0.20 0.063 0.058 0.063 0.053 0.058 0.072
0.50 0.063 0.056 0.066 0.060 0.062 0.072
0.80 0.053 0.048 0.061 0.053 0.056 0.066

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3,
DENy = 1.0, EVFx = 0.0, ρ̄xε = 0.3, ξ = 0.8, κ = 0.00, σε = 1, q = 1, φ = 1.0.
These yield the DGP parameter values: πλ = 0.00, πη = 0.00, σv = 0.60,
ση = 1.0 ∗ (1− γ), ρvε = 0.0 (and ρvε = 0.5, ρ̄xλ = 0.00).

probabilities of the overall overidentification J tests for case P5 using all instruments and can
compare the rejection frequencies when treating xit correctly as endogenous, or incorrectly as either
predetermined or exogenous. From Table 19 (P5fJ-jA, j = E,W,X) we find that size control for J(2,2)

can be slightly better than for J(2,1), whereas it is often slightly worse for J(1,1)
a . The detection of

inconsistency by J(2,1) has often a higher probability when the null hypothesis is W than when it
is X. The probability generally increases with T and with γ and is often better for the c variant than
for the a variant and slightly better for BB implementations than for AB implementations, whereas in
general heteroskedasticity mitigates the rejection probability. In the situation where all instruments
have been collapsed, where we already established that the J tests do have reasonable size control, we
find the following. For T = 3 and γ = 0.2 the rejection probability of the JAB and JBB tests does not
rise very much when ρ̄xε moves from 0 to 0.3, whereas for T = 9, ρ̄xε = 0.3 this rejection probability is
often larger than 0.7 when γ ≥ 0.5 and often larger than 0.9 for γ = 0.8. Hence, only for particular T,
γ and θ parametrizations the probability to detect inconsistency seems reasonable, whereas the major
consequence of inconsistency, which is serious estimator bias, is relatively invariant regarding T, γ

and θ.
Summarizing our results for effect stationary models we note the following. We established that

finite sample inaccuracies of the asymptotic techniques seriously aggravate when either ση/(1−γ)�
σε or under simultaneity. For both problems it helps to collapse instruments, and the first problem
is mitigated and the second problem detected with higher probability by instrumenting according to
W rather than X. Neglected simultaneity leads to seemingly accurate but seriously biased coefficient
estimators, whereas asymptotically valid inference on simultaneous dynamic relationships is often
not very accurate either. Even when the more efficient BB estimator is used with Windmeijer corrected
standard errors, the bias in both γ and β is very substantial and test sizes are seriously distorted. Some
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Table 19. P5fJ-jA∗, j = E,W,X
P5fJ-EA∗. Feasible Sargan-Hansen test: rejection probability

d f θ = 1
ρ̄xε = 0.3

AB BB Inc γ JAB(2,1)
a JBB(2,1)

a JES(2,1)
a JAB(2,1)

c JBB(2,1)
c JES(2,1)

c JAB(1,1)
a JBB(1,1)

a JES(1,1)
a JAB(2,2)

a JBB(2,2)
a JES(2,2)

a JAB(2,2)
c JBB(2,2)

c JES(2,2)
c

T = 3 4 7 3 0.20 0.052 0.047 0.059 0.039 0.040 0.053 0.074 0.074 0.079 0.052 0.048 0.059 0.043 0.040 0.053
0.50 0.065 0.057 0.064 0.043 0.048 0.063 0.088 0.094 0.091 0.066 0.057 0.066 0.047 0.045 0.057
0.80 0.083 0.065 0.068 0.058 0.055 0.069 0.111 0.108 0.107 0.088 0.066 0.070 0.061 0.047 0.062

T = 6 28 37 9 0.20 0.065 0.056 0.062 0.042 0.048 0.057 0.105 0.107 0.091 0.072 0.064 0.067 0.045 0.044 0.049
0.50 0.074 0.062 0.062 0.055 0.059 0.063 0.116 0.123 0.099 0.077 0.069 0.070 0.053 0.044 0.047
0.80 0.081 0.059 0.057 0.071 0.065 0.062 0.128 0.128 0.103 0.083 0.068 0.067 0.065 0.042 0.041

T = 9 70 85 15 0.20 0.030 0.018 0.049 0.046 0.054 0.060 0.055 0.050 0.074 0.040 0.033 0.065 0.048 0.049 0.046
0.50 0.032 0.021 0.048 0.060 0.070 0.073 0.055 0.055 0.082 0.042 0.036 0.067 0.053 0.050 0.048
0.80 0.032 0.016 0.043 0.070 0.078 0.067 0.059 0.054 0.086 0.042 0.033 0.065 0.058 0.044 0.041

P5fJ-XA∗. Feasible Sargan-Hansen test: rejection probability P5fJ-WA∗. Feasible Sargan-Hansen test: rejection probability
d f θ = 1 d f θ = 1

ρ̄xε = 0.3
AB BB Inc γ JAB(2,1)

a JBB(2,1)
a JES(2,1)

a JAB(2,1)
c JBB(2,1)

c JES(2,1)
c AB BB Inc γ JAB(2,1)

a JBB(2,1)
a JES(2,1)

a JAB(2,1)
c JBB(2,1)

c JES(2,1)
c

T = 3 9 13 4 0.20 0.103 0.128 0.103 0.088 0.133 0.124 6 10 4 0.20 0.110 0.130 0.099 0.077 0.111 0.112
0.50 0.108 0.136 0.103 0.098 0.149 0.131 0.50 0.120 0.155 0.115 0.095 0.142 0.133
0.80 0.175 0.220 0.141 0.187 0.291 0.219 0.80 0.182 0.252 0.178 0.171 0.278 0.235

T = 6 48 58 10 0.20 0.148 0.215 0.169 0.183 0.250 0.164 33 43 10 0.20 0.217 0.316 0.189 0.184 0.270 0.199
0.50 0.145 0.248 0.218 0.223 0.336 0.243 0.50 0.233 0.382 0.237 0.244 0.395 0.293
0.80 0.324 0.488 0.251 0.576 0.771 0.507 0.80 0.465 0.670 0.319 0.580 0.824 0.580

T = 9 114 130 16 0.20 0.013 0.004 0.049 0.290 0.368 0.189 78 94 16 0.20 0.141 0.138 0.093 0.303 0.416 0.255
0.50 0.011 0.006 0.069 0.339 0.484 0.319 0.50 0.138 0.171 0.125 0.382 0.589 0.411
0.80 0.033 0.016 0.052 0.815 0.940 0.619 0.80 0.349 0.401 0.122 0.835 0.968 0.731

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 1.0, EVFx = 0.0, ρ̄xε = 0.3, ξ = 0.8, κ = 0.00, σε = 1, q = 1, φ = 1.0.
These yield the DGP parameter values: πλ = 0.00, πη = 0.00, σv = 0.60, ση = 1.0 ∗ (1− γ), ρvε = 0.5 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).

further pilot simulations disclosed that N should be much and much larger than 200 in order to find
much more reasonable asymptotic approximation errors.

Table 20. Pφ0fc-XA∗
Feasible coefficient estimators for Arellano-Bond (θ = 1)

ρ̄xε = 0.0 AB1 AB2a AB2c MAB
L γ Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE

T = 3 11 0.20 -0.024 0.089 0.092 -0.020 0.084 0.086 -0.023 0.084 0.087 -0.023 0.086 0.089
0.50 -0.044 0.116 0.124 -0.038 0.110 0.117 -0.043 0.110 0.118 -0.043 0.113 0.121
0.80 -0.146 0.199 0.246 -0.136 0.193 0.236 -0.144 0.189 0.237 -0.143 0.194 0.241

T = 6 50 0.20 -0.020 0.046 0.050 -0.016 0.041 0.044 -0.017 0.041 0.045 -0.015 0.037 0.040
0.50 -0.035 0.053 0.064 -0.030 0.049 0.057 -0.031 0.048 0.057 -0.027 0.044 0.052
0.80 -0.105 0.080 0.132 -0.093 0.076 0.120 -0.098 0.072 0.122 -0.089 0.070 0.113

T = 9 116 0.20 -0.017 0.034 0.038 -0.015 0.032 0.035 -0.015 0.029 0.033 -0.011 0.025 0.027
0.50 -0.029 0.037 0.047 -0.026 0.035 0.044 -0.025 0.032 0.041 -0.020 0.028 0.035
0.80 -0.079 0.050 0.094 -0.075 0.049 0.089 -0.073 0.044 0.085 -0.064 0.042 0.076

L β Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE

T = 3 11 1.43 0.006 0.158 0.158 0.005 0.145 0.145 0.005 0.147 0.147 0.005 0.148 0.148
0.93 0.004 0.157 0.157 0.003 0.144 0.144 0.003 0.146 0.146 0.004 0.147 0.147
0.31 -0.004 0.152 0.152 -0.006 0.140 0.140 -0.005 0.142 0.143 -0.004 0.142 0.142

T = 6 50 1.43 0.013 0.087 0.088 0.010 0.077 0.077 0.011 0.078 0.079 0.009 0.067 0.068
0.93 0.014 0.085 0.086 0.011 0.074 0.075 0.012 0.076 0.077 0.011 0.065 0.066
0.31 0.007 0.082 0.082 0.005 0.072 0.072 0.006 0.073 0.074 0.006 0.063 0.063

T = 9 116 1.43 0.014 0.065 0.067 0.013 0.060 0.062 0.012 0.057 0.058 0.010 0.046 0.047
0.93 0.017 0.062 0.065 0.016 0.058 0.060 0.015 0.054 0.056 0.012 0.044 0.046
0.31 0.012 0.059 0.060 0.011 0.055 0.056 0.011 0.051 0.052 0.009 0.042 0.043

Feasible coefficient estimators for Blundell-Bond (θ = 1)

ρ̄xε = 0.0 BB1 BB2a BB2c MBB
L γ Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE

T = 3 16 0.20 0.036 0.073 0.082 0.056 0.075 0.094 0.061 0.074 0.096 0.060 0.078 0.099
0.50 0.011 0.084 0.084 0.036 0.079 0.087 0.039 0.078 0.087 0.062 0.101 0.119
0.80 -0.040 0.108 0.116 -0.010 0.103 0.104 0.005 0.101 0.101 0.067 0.162 0.176

T = 6 61 0.20 0.009 0.041 0.042 0.016 0.038 0.042 0.036 0.040 0.054 0.028 0.037 0.047
0.50 -0.006 0.045 0.045 0.009 0.042 0.043 0.032 0.041 0.052 0.041 0.042 0.059
0.80 -0.049 0.055 0.074 -0.028 0.051 0.058 0.007 0.045 0.045 0.040 0.055 0.068

T = 9 133 0.20 0.002 0.031 0.031 0.003 0.030 0.030 0.023 0.029 0.037 0.014 0.025 0.029
0.50 -0.011 0.033 0.034 -0.007 0.031 0.032 0.025 0.029 0.038 0.023 0.028 0.036
0.80 -0.048 0.039 0.062 -0.042 0.038 0.056 0.007 0.030 0.031 0.021 0.034 0.040

L β Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE

T = 3 16 1.43 0.038 0.153 0.158 0.064 0.149 0.162 0.058 0.146 0.158 0.043 0.144 0.150
0.93 0.029 0.149 0.152 0.047 0.139 0.147 0.048 0.138 0.146 0.049 0.141 0.150
0.31 0.013 0.147 0.147 0.016 0.136 0.137 0.019 0.136 0.138 0.048 0.156 0.164

T = 6 61 1.43 0.008 0.086 0.086 0.010 0.078 0.079 0.004 0.078 0.078 -0.001 0.067 0.067
0.93 0.014 0.083 0.084 0.015 0.074 0.076 0.011 0.074 0.074 0.003 0.064 0.065
0.31 0.010 0.079 0.080 0.009 0.070 0.071 0.009 0.068 0.069 0.010 0.061 0.062

T = 9 133 1.43 0.005 0.064 0.064 0.005 0.061 0.061 -0.006 0.056 0.057 -0.004 0.047 0.047
0.93 0.012 0.061 0.062 0.011 0.058 0.059 -0.000 0.053 0.053 -0.003 0.045 0.045
0.31 0.011 0.057 0.059 0.011 0.054 0.055 0.005 0.048 0.048 0.003 0.041 0.041

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 1.0, EVFx = 0.0, ρ̄xε = 0.0,
ξ = 0.8, κ = 0.00, σε = 1, q = 1, φ = 0.5. These yield the DGP parameter values: πλ = 0.00, πη = 0.00, σv = 0.60,
ση = 1.0 ∗ (1− γ), ρvε = 0.0 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).
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5.2. Nonstationarity

Next we examine the effects of a value of φ different from unity. We will just consider setting
φ = 0.5 and perturbing xi0 and yi0 according to (120), so that their dependence on the effects is initially
50% away from stationarity so that BB estimation is inconsistent. That this occurred we will indicate
in the parametrization code by changing P into Pφ. Comparing the results for Pφ0-XA with those for
P0-XA, where φ = 1 (effect stationarity), we note from Table 20 (Pφ0fc-XA) a rather moderate positive
bias in the BB estimators for both γ and β when both T and γ are small. Despite the inconsistency of
BB the bias is very mild for larger T and especially for larger γ it is much smaller than for consistent
AB. The pattern regarding T can be explained, because convergence towards effect stationarity does
occur when time proceeds. Since this convergence is faster for smaller γ the good results for large γ

seem due to great strength of the first-differenced lagged instruments regarding the level equation.
Since πη = 0 here ∆xi,t−1 is in fact a valid instrument too. Note that the RMSE of inconsistent BB1,
BB2a and BB2c is always smaller than that for consistent AB1, AB2a and AB2c, except when T and
γ are both small. With respect to the AB estimators we find little to no difference compared to the
results under stationarity. Table 21 (Pφ0ft-XA) shows that when γ = 0.8 the BB2cW coefficient test on
γ yields very mild overrejection, while AB2aW and AB2cW seriously overreject. For smaller values of
γ it is the other way around. After collapsing (not tabulated here) similar but more moderate patterns
are found, due to the mitigated bias which goes again with slightly increased standard errors. Hence,
for this case we find that one should perhaps not worry too much when applying BB even if effect
stationarity does not strictly hold for the initial observations. As it happens, we note from Table 22
(Pφ0fJ-XA) that the rejection probabilities of the JES tests are such that they are relatively low when
BB inference is more precise than AB inference, and relatively high when either T or γ are low for
φ = 0.5. This pattern is much more pronounced for the JES tests than for the JBB tests. However, it
is also the case in Pφ0 that collapsing mitigates this welcome quality of the JES tests to warn against
unfavorable consequences of effect nonstationarity on BB inference.

From Pφ1-XA, in which the individual effects are much more prominent, we find that φ = 0.5 has
curious effects on AB and BB results. For effect stationarity (φ = 1) we already noted more bias for
AB than under P0. For γ large, this bias is even more serious when φ = 0.5, despite the consistency
of AB. For BB estimation the reduction of φ leads to much larger bias and much smaller stdv, with
the effect that RMSE values for inconsistent BB are usually much worse than for AB, but are often
slightly better (except for BB2c) when γ = 0.8. All BB coefficient tests for γ have size close or equal to
1 under Pφ1-XA and the AB tests for γ = 0.8 overreject very seriously as well. Under Pφ1-XC the bias
of AB is reasonable except for γ = 0.8. The bias of BB has decreased but is still enormous, although
its RMSE remains preferable when γ = 0.8. Especially regarding tests on γ BB fails. For both the a

Table 21. Pφ0ft-XA∗
Feasible t-test: actual significance level (θ = 1)

Arellano-Bond Blundell-Bond
ρ̄xε = 0.0

L γ AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW L γ BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW

T = 3 11 0.20 0.225 0.088 0.073 0.140 0.075 0.086 0.069 16 0.20 0.257 0.118 0.087 0.322 0.165 0.213 0.187
0.50 0.250 0.103 0.088 0.159 0.087 0.106 0.086 0.50 0.219 0.083 0.061 0.245 0.120 0.135 0.122
0.80 0.353 0.191 0.170 0.254 0.147 0.196 0.171 0.80 0.240 0.090 0.060 0.196 0.071 0.084 0.069

T = 6 50 0.20 0.250 0.092 0.067 0.361 0.079 0.077 0.065 61 0.20 0.219 0.080 0.049 0.445 0.090 0.205 0.156
0.50 0.307 0.125 0.101 0.411 0.099 0.114 0.096 0.50 0.212 0.068 0.045 0.435 0.074 0.184 0.151
0.80 0.549 0.322 0.282 0.624 0.236 0.312 0.277 0.80 0.382 0.176 0.127 0.499 0.088 0.085 0.066

T = 9 116 0.20 0.274 0.101 0.074 0.693 0.093 0.088 0.077 133 0.20 0.210 0.067 0.044 0.730 0.064 0.164 0.124
0.50 0.349 0.148 0.117 0.734 0.138 0.134 0.116 0.50 0.233 0.075 0.054 0.729 0.067 0.182 0.140
0.80 0.655 0.404 0.363 0.893 0.376 0.412 0.379 0.80 0.511 0.267 0.209 0.866 0.217 0.085 0.066

L β AB1 AB1aR AB1cR AB2a AB2aW AB2c AB2cW L β BB1 BB1aR BB1cR BB2a BB2aW BB2c BB2cW

T = 3 11 1.43 0.215 0.070 0.064 0.117 0.063 0.071 0.056 16 1.43 0.230 0.083 0.073 0.214 0.106 0.106 0.096
0.93 0.216 0.072 0.064 0.118 0.063 0.071 0.054 0.93 0.226 0.077 0.067 0.190 0.089 0.097 0.085
0.31 0.215 0.069 0.063 0.117 0.061 0.072 0.056 0.31 0.220 0.073 0.062 0.163 0.069 0.083 0.068

T = 6 50 1.43 0.221 0.068 0.059 0.315 0.060 0.068 0.058 61 1.43 0.219 0.070 0.054 0.387 0.065 0.070 0.059
0.93 0.227 0.070 0.061 0.314 0.064 0.069 0.059 0.93 0.227 0.070 0.058 0.395 0.070 0.072 0.060
0.31 0.232 0.066 0.064 0.315 0.057 0.069 0.058 0.31 0.230 0.069 0.060 0.395 0.066 0.069 0.058

T = 9 116 1.43 0.232 0.067 0.056 0.654 0.068 0.065 0.056 133 1.43 0.221 0.065 0.052 0.719 0.063 0.066 0.054
0.93 0.241 0.073 0.065 0.657 0.071 0.070 0.060 0.93 0.229 0.069 0.059 0.721 0.067 0.066 0.055
0.31 0.242 0.068 0.069 0.657 0.066 0.072 0.061 0.31 0.236 0.070 0.065 0.734 0.067 0.067 0.057

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 1.0, EVFx = 0.0, ρ̄xε = 0.0, ξ = 0.8, κ = 0.00, σε = 1, q = 1,
φ = 0.5. These yield the DGP parameter values: πλ = 0.00, πη = 0.00, σv = 0.60, ση = 1.0 ∗ (1− γ), ρvε = 0.0 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).
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Table 22. Pφ0fJ-XA∗

Feasible Sargan-Hansen test: rejection probability
d f θ = 1

ρ̄xε = 0.0
AB BB Inc γ JAB(2,1)

a JBB(2,1)
a JES(2,1)

a JAB(2,1)
c JBB(2,1)

c JES(2,1)
c

T = 3 9 13 4 0.20 0.036 0.289 0.505 0.037 0.240 0.412
0.50 0.039 0.101 0.169 0.041 0.101 0.146
0.80 0.056 0.048 0.060 0.060 0.057 0.063

T = 6 48 58 10 0.20 0.017 0.224 0.660 0.020 0.192 0.596
0.50 0.019 0.082 0.327 0.022 0.071 0.201
0.80 0.023 0.024 0.074 0.032 0.035 0.045

T = 9 114 130 16 0.20 0.001 0.004 0.350 0.016 0.134 0.642
0.50 0.001 0.002 0.219 0.016 0.056 0.264
0.80 0.000 0.001 0.068 0.024 0.025 0.039

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3,
DENy = 1.0, EVFx = 0.0, ρ̄xε = 0.0, ξ = 0.8, κ = 0.00, σε = 1, q = 1, φ = 0.5.
These yield the DGP parameter values: πλ = 0.00, πη = 0.00, σv = 0.60,
ση = 1.0 ∗ (1− γ), ρvε = 0.0 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).

and c versions the JES test has high rejection probability to detect φ 6= 1, except when γ is large. The
relatively low rejection probability of JES tests obtained after collapsing when γ = 0.8 and φ = 0.5
again indicates that despite its inconsistency BB has similar or smaller RMSE than AB for that specific
case.

Next we consider the simultaneous model again. In case Pφ5-EA estimator AB is consistent and
BB again inconsistent. Nevertheless, for all γ and T values examined in Table 23 (Pφ5fc-EA), AB has a
more severe bias than BB, whereas BB has smaller stdv values at the same time and thus has smaller
RMSE for all γ and T values examined. The size control of coefficient tests is worse for AB, but for BB
it is appalling too, where BB2aW, with estimated type I error probabilities ranging from 5% to 70%,
is often preferable to BB2cW. The 2-step JAB tests behave reasonably (wrongly indicate inconsistency
with a probability rather close to 5%), whereas the JBB tests reject with probabilities in the 3-38%
range, and JES in the 3-69% range. By collapsing the RMSE of AB generally reduces when T ≥ 6
and for BB especially when γ = 0.8. BB has again smaller RMSE than AB. The rejection rates of the
JBB and JES tests are substantially lower now, which seems bad because the invalid (first-differenced)
instruments are less often detected, but this may nevertheless be appreciated because it induces to
prefer less inaccurate BB inference to AB inference. After collapsing the size distortions of BB2aW and
BB2cW are less extreme too, now ranging from 5-33%, but the RMSE values for BB may suffer due to
collapsing, especially when γ and T are small. The RMSE values for BB under Pφ5-WA and Pφ5-XA
are usually much worse than those for AB under Pφ5-EA. Hence, although the invalid instruments
for the level equation are not necessarily a curse when endogeneity of xit is respected, they should
not be used when they are invalid for two reasons (φ 6= 1 and ρxε 6= 0). That neither AB nor BB
should be used in P5 under W and X will be indicated with highest probability under WC, and then
this probability is larger than 0.8 for JBB(2,1)

a only when T is high and for JAB(2,1)
a only when both T

and γ are high.
Summarizing our findings regarding effect nonstationarity, we have established that although

φ 6= 1 renders BB estimators inconsistent, especially when T is not small BB inference nevertheless
often beats consistent AB, provided possible endogeneity of xit is respected. The JES test seems to
have the remarkable property to be able to guide towards the technique with smallest RMSE instead
of the technique exploiting the valid instruments. For further details we refer to the full set of Monte
Carlo results.

6. Empirical results

The above findings will be employed now in a re-analysis of the data and some of the techniques
studied in Ziliak [34]. The main purpose of that article was to expose the downward bias in GMM as
the number of moment conditions expands. This is done by estimating a static life-cycle labor-supply
model for a ten year balanced panel of males, and comparing for various implementations of 2SLS
and GMM the coefficient estimates and their estimated standard errors when exploiting expanding
sets of instruments. We find this approach rather naive for various reasons: (a) the difference between
empirical coefficient estimates will at best provide a very poor proxy to any underlying difference
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Table 23. Pφ5fc-EA∗
Feasible coefficient estimators for Arellano-Bond (θ = 1)

ρ̄xε = 0.0 AB1 AB2a AB2c MAB
L γ Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE

T = 3 6 0.20 -0.169 0.193 0.256 -0.167 0.191 0.254 -0.182 0.184 0.259 -0.177 0.191 0.260
0.50 -0.241 0.251 0.349 -0.243 0.251 0.350 -0.253 0.247 0.354 -0.250 0.247 0.352
0.80 -0.292 0.335 0.444 -0.311 0.332 0.455 -0.312 0.327 0.452 -0.298 0.328 0.443

T = 6 30 0.20 -0.144 0.070 0.160 -0.135 0.069 0.151 -0.149 0.065 0.163 -0.145 0.063 0.158
0.50 -0.187 0.087 0.206 -0.178 0.087 0.198 -0.183 0.082 0.200 -0.197 0.083 0.214
0.80 -0.203 0.109 0.230 -0.191 0.110 0.221 -0.196 0.102 0.221 -0.192 0.105 0.219

T = 9 72 0.20 -0.142 0.048 0.150 -0.134 0.047 0.142 -0.144 0.043 0.150 -0.125 0.039 0.131
0.50 -0.169 0.057 0.179 -0.163 0.056 0.172 -0.163 0.052 0.171 -0.159 0.049 0.167
0.80 -0.165 0.068 0.179 -0.157 0.067 0.171 -0.157 0.062 0.169 -0.150 0.062 0.162

L β Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE

T = 3 6 1.43 0.677 0.816 1.060 0.685 0.804 1.056 0.719 0.778 1.060 0.682 0.788 1.043
0.93 0.660 0.741 0.992 0.668 0.728 0.988 0.690 0.723 0.999 0.663 0.717 0.977
0.31 0.534 0.695 0.877 0.554 0.669 0.868 0.568 0.672 0.880 0.533 0.675 0.860

T = 6 30 1.43 0.515 0.257 0.576 0.495 0.255 0.557 0.529 0.240 0.581 0.484 0.227 0.535
0.93 0.508 0.240 0.562 0.489 0.239 0.544 0.498 0.228 0.547 0.489 0.216 0.534
0.31 0.368 0.214 0.425 0.347 0.208 0.404 0.357 0.201 0.410 0.312 0.181 0.361

T = 9 72 1.43 0.485 0.166 0.512 0.462 0.161 0.490 0.489 0.148 0.511 0.409 0.132 0.429
0.93 0.472 0.157 0.498 0.454 0.153 0.479 0.456 0.142 0.478 0.413 0.128 0.433
0.31 0.327 0.135 0.354 0.307 0.128 0.332 0.312 0.122 0.335 0.258 0.104 0.279

Feasible coefficient estimators for Blundell-Bond (θ = 1)

ρ̄xε = 0.0 BB1 BB2a BB2c MBB
L γ Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE

T = 3 10 0.20 0.030 0.134 0.137 0.067 0.152 0.166 0.064 0.153 0.166 0.110 0.190 0.219
0.50 -0.048 0.147 0.155 -0.014 0.157 0.158 -0.013 0.160 0.160 0.038 0.200 0.204
0.80 -0.124 0.160 0.202 -0.103 0.172 0.201 -0.092 0.169 0.192 -0.044 0.208 0.213

T = 6 40 0.20 -0.048 0.062 0.079 -0.024 0.065 0.069 -0.004 0.071 0.071 0.004 0.075 0.075
0.50 -0.080 0.065 0.103 -0.040 0.068 0.079 -0.015 0.068 0.069 0.017 0.077 0.079
0.80 -0.102 0.066 0.122 -0.069 0.064 0.094 -0.041 0.060 0.072 -0.003 0.069 0.069

T = 9 88 0.20 -0.083 0.045 0.095 -0.072 0.044 0.085 -0.050 0.047 0.069 -0.053 0.044 0.069
0.50 -0.104 0.047 0.114 -0.086 0.047 0.098 -0.042 0.047 0.063 -0.034 0.050 0.060
0.80 -0.104 0.047 0.114 -0.086 0.045 0.097 -0.038 0.039 0.055 -0.018 0.044 0.047

L β Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE Bias Stdv RMSE

T = 3 10 1.43 0.169 0.582 0.606 0.113 0.660 0.670 0.118 0.636 0.647 0.109 0.629 0.638
0.93 0.327 0.492 0.591 0.295 0.523 0.601 0.289 0.520 0.594 0.335 0.484 0.589
0.31 0.342 0.404 0.530 0.332 0.420 0.536 0.316 0.409 0.517 0.434 0.362 0.565

T = 6 40 1.43 0.291 0.216 0.362 0.238 0.227 0.329 0.192 0.232 0.301 0.152 0.229 0.275
0.93 0.326 0.193 0.378 0.256 0.198 0.323 0.205 0.190 0.280 0.149 0.195 0.246
0.31 0.276 0.159 0.319 0.228 0.149 0.273 0.194 0.139 0.239 0.179 0.131 0.222

T = 9 88 1.43 0.351 0.149 0.381 0.324 0.145 0.355 0.274 0.146 0.310 0.246 0.135 0.281
0.93 0.358 0.136 0.383 0.323 0.134 0.350 0.240 0.129 0.272 0.195 0.127 0.233
0.31 0.272 0.112 0.294 0.245 0.105 0.266 0.183 0.092 0.205 0.147 0.087 0.171

∗R = 10000 simulation replications. Design parameter values: N = 200, SNR = 3, DENy = 1.0, EVFx = 0.0, ρ̄xε = 0.3,
ξ = 0.8, κ = 0.00, σε = 1, q = 1, φ = 0.5. These yield the DGP parameter values: πλ = 0.00, πη = 0.00, σv = 0.60,
ση = 1.0 ∗ (1− γ), ρvε = 0.5 (and ρ̄xη = 0.00, ρ̄xλ = 0.00).

in bias; (b) standard asymptotic variance estimates of IV estimators are known to be very poor
representations of true estimator uncertainty;11 (c) the whole analysis is based on just one sample
and possibly the model is seriously misspecified.12 The latter issue also undermines conclusions
drawn in Ziliak [34] on overrejection by the J test, because it is of course unknown in which if
any of his empirical models the null hypothesis is true. To avoid such criticism we designed the
controlled experiments in the two foregoing sections on the effects of different sets of instruments on
various relevant inference techniques. And now we will examine how these simulation results can be
exploited to underpin actual inference from the data set used by Ziliak.

This data set originates from waves XII-XXI and the years 1979-1988 of the PSID. The subjects
are N = 532 continuously married working men aged 22-51 in 1979. Ziliak [34] employs the static
model13

ln hit = β ln wit + z′itγ + ηi + εit, (121)

where hit is the observed annual hours of work, wit the hourly real wage rate, zit a vector of four
characteristics (kids, disabled, age, age-squared), ηi an individual effect and εit the idiosyncratic error
term. He assumes that ln wit may be an endogenous regressor and that all variables included in zit

11 See findings in Kiviet [39] and in many of its references.
12 Baltagi et al. [40] study a similar life-cycle labor-supply model for physicians in Norway. They consider a dynamic model,

and this rejects the static specification used by Ziliak [34].
13 This static model is also used extensively for illustrative purposes in Cameron and Trivedi [41].
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are predetermined. The parameter of interest is β and in the various static models examined its GMM
estimates range from approximately 0.07 to 0.52, depending on the number of instruments employed.

After some experimentation we inferred that lagged reactions play a significant role in this
relationship and that in fact a general second-order linear dynamic specification is required in order to
pass the diagnostic tests which are provided by default in the Stata package xtabond2, see Roodman
[42]. This model, also allowing for time-effects, is given by

ln hit = ∑2
l=1 γl ln hi,t−l + ∑2

l=0(βw
l ln wi,t−l + βk

l kidsi,t−l + βd
l disabi,t−l)

+ βaagei,t + βaaage2
i,t + τt + ηi + εit. (122)

We did not include lags of age and its square.14 Contrary to Ziliak, we will not treat variable age
as predetermined, since due to its very nature (no feedbacks from hours worked to age) it must be
strictly exogenous. On the other hand, lagged or even immediate feedbacks from labor supply to the
variables kids and disab seem well possible.

In the sequence of various model specifications and instrument set compositions embarked
on below, we adopted the following methodological strategy. We start with a rather general
initial dynamic model specification employing a relatively uncontroversial set of instruments, hence
avoiding as much as possible the imposition of doubtful exclusion restrictions on (lagged) regressor
variables as well as the exploitation of yet unconfirmed orthogonality conditions. This initial model is
estimated by 1-step AB with heteroskedasticity robust standard errors, neglecting for the moment any
coefficient t-tests, unless serial correlation tests and heteroskedasticity robust J tests show favorable
results. As long as the latter is not the case, the model should be re-specified by adapting the
functional form and/or including additional explanatories, either new ones or transformations of
already included ones such as longer lags or interactions. When favorable serial correlation and
robust J tests have been obtained, and when reconfirmed (especially in case evidence has been found
indicating the presence of heteroskedasticity) by favorable autocorrelation and J tests after 2-step
AB estimation, hopefully initial consistent estimates have been accomplished. Then, in next stages,
the two further aims are: attaining increased efficiency and mitigating finite sample bias. These are
pursued first by sequentially testing additional orthogonality conditions. Initially by testing whether
variables treated as endogenous seem actually predetermined, and next by verifying whether
predetermined variables seem in fact exogenous, possibly followed by testing the orthogonality
conditions implied by effect stationarity. In this process the tested extra instruments are added to
the already adopted set of instruments, provided incremental J tests are convincingly insignificant.
Next, one could test coefficient restrictions (on the basis of robust 1-step AB standard errors in case of
suspected heteroskedasticity, or using Windmeijer-corrected 2-step AB standard errors) and impose
these restrictions when convincingly insignificant from both a statistical and economic point of view.
During the whole process the effects on the various estimates and test statistics of collapsing the
instrument set and/or removing instruments with long lags could be monitored and possibly induce
not exploiting particular probably valid orthogonality conditions represented by apparently weak
instruments.

For the present data set, the inclusion of second-order lags in the initial model specification yields
T = 7 and K = 20 when estimating the first-differenced model (122), hence NT = 3724. Although
no generally accepted rules of thumb exist yet on requirements regarding the number of degrees of
freedom and the degree of overidentification for GMM to work well in the analysis of micro panel

14 If agei,t = agei,t−1 + 1 then age2
it = age2

i,t−1 + 2agei,t−1 + 1. Thus, including lags of ageit and of age2
it in addition to their

current values, either as regressors or as instruments, in combination with an intercept or time-dummies, leads to rank
reduction. Although in this particular data set agei,t = agei,t−1 + 1 does not hold ∀i, t, we abstained from including lags of
age and its square.
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Table 24. Empirical findings for the Ziliak data by Arellano-Bond estimation
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

AB1R AB1R AB1R AB2W AB1 AB2 AB1R AB2W AB1RC AB1RL2 BB2W
1P3E1X 1P3E1X 1P3E1X 1P3E1X 1P3E1X 1P3E1X 1P2E2X 1P2E2X 1P2E2X 1P2E2X 1P2E2X

γ1 0.207** 0.208** 0.190** 0.200** 0.208** 0.200** 0.211** 0.202** 0.251** 0.081 0.305**
(0.068) (0.069) (0.073) (0.063) (0.025) (0.015) (0.070) (0.065) (0.108) (0.142) (0.052)

γ2 0.070** 0.069** 0.056** 0.078** 0.069** 0.078** 0.071** 0.082** 0.058** 0.122** 0.159**
(0.030) (0.029) (0.028) (0.029) (0.023) (0.011) (0.030) (0.029) (0.029) (0.045) (0.037)

βw
0 0.629** 0.625** 0.617** 0.438** 0.625** 0.438** 0.588** 0.429** 0.040 0.518** 0.383**

(0.204) (0.202) (0.209) (0.181) (0.095) (0.053) (0.197) (0.167) (0.210) (0.282) (0.143)
βw

1 0.001 -0.019 -0.013 -0.032 -0.019 -0.032 -0.048 -0.054 -0.038 -0.210* -0.225
(0.123) (0.121) (0.115) (0.112) (0.069) (0.037) (0.112) (0.106) (0.124) (0.178) (0.080)

βw
2 -0.070* -0.080* -0.078* -0.058* -0.080* -0.058** -0.098* -0.076* -0.090* 0.012 -0.142**

(0.065) (0.064) (0.062) (0.056) (0.042) (0.022) (0.061) (0.054) (0.072) (0.101) (0.050)
βk

0 -0.047 -0.047 -0.046 0.006 -0.047 0.006 -0.024* -0.014* -0.019* -0.027* -0.006
(0.085) (0.079) (0.083) (0.061) (0.056) (0.029) (0.014) (0.010) (0.015) (0.017) (0.010)

βk
1 0.016 0.008 0.006 -0.032 0.008 -0.032* 0.009 0.003 -0.011 -0.089* 0.004

(0.069) (0.064) (0.068) (0.052) (0.052) (0.026) (0.011) (0.009) (0.014) (0.073) (0.009)
βk

2 0.008 0.008 0.008 0.005 0.008 0.005 0.001 0.007 0.006 0.102* 0.003
(0.016) (0.015) (0.015) (0.012) (0.014) (0.008) (0.012) (0.009) (0.014) (0.070) (0.008)

βd
0 -0.154* -0.118* -0.112* -0.072* -0.118* -0.072* -0.112* -0.073 0.321* -0.038 -0.046

(0.092) (0.090) (0.090) (0.071) (0.084) (0.038) (0.086) (0.077) (0.251) (0.211) (0.062)
βd

1 0.015 0.017 0.020 0.015 0.017 0.015 0.006 0.003 0.043 0.124 -0.004
(0.048) (0.047) (0.047) (0.044) (0.040) (0.018) (0.046) (0.043) (0.083) (0.197) (0.036)

βd
2 0.069** 0.072** 0.071** 0.053** 0.072** 0.053** 0.065* 0.049* 0.070* 0.079** 0.045

(0.034) (0.034) (0.034) (0.030) (0.033) (0.014) (0.033) (0.030) (0.040) (0.039) (0.026)
βa -0.010 0.007 0.008 0.011 0.007 0.011* 0.008 -0.001 0.024 0.002 0.003

(0.023) (0.019) (0.019) (0.017) (0.017) (0.011) (0.015) (0.013) (0.021) (0.020) (0.006)
βaa -0.0000 -0.0000 -0.0001 -0.0001 -0.0000 -0.0001* -0.0000 0.0000 -0.0003 -0.0000 -0.0000

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0001) (0.0002) (0.0002) (0.0003) (0.0003) (0.0001)
K 20 13 13 13 13 13 13 13 13 13 13
L 149 149 142 149 149 149 163 163 43 51 197

AR(1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
AR(2) 0.151 0.150 0.207 0.502 0.038 0.427 0.157 0.490 0.288 0.307 0.336

JAB(1,0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.026 0.000
JAB(1,1)

a 0.057 0.173 0.117 0.173 0.173 0.173 0.137 0.137 0.005 0.078 0.020
JAB(2,1)

a 0.783 0.728 0.643 0.728 0.728 0.728 0.728 0.728 0.084 0.295 0.312
JAB(2,2)

a 0.139 0.207 0.157 0.207 0.207 0.207 0.218 0.218 0.034 0.184 0.084
σ̂η 0.235 0.234 0.237 0.172 0.234 0.172 0.203 0.155 0.155 0.179 0.068
σ̂ε 0.246 0.246 0.244 0.237 0.246 0.237 0.243 0.236 0.243 0.245 0.242

TMw 0.775 0.728 0.698 0.482 0.728 0.482 0.616 0.418 -0.127 0.402 0.030

data sets, we chose to respect at any stage in the specification search the inequalities L � 10K and
L� NT/20, but also examined cases where K < L < 2K.

Table 24 presents some estimation and test results for model (122) obtained by employing
different estimation methods and instrument sets. All results have been obtained by Stata/SE14.0
with package xtabond2, abstaining from any finite sample corrections, and supplemented with code
for calculating σ̂η , σ̂ε and JAB test variants. In column (1) 1-step Arellano-Bond GMM estimates are
presented (omitting the results for the included time-effects) with heteroskedasticity robust standard
errors (indicated by AB1R) using all level instruments that are valid when (with respect to εit)

regressor ln hi,t−1 is predetermined, the regressors ln wit, kidsit and disabit could be endogenous, and
age is exogenous (indicated by 1P3E1X). This yields 4× Σ8

h=2h + 9 = 149 instruments, because we
instrumented both age and age2, like the seven time-dummies, just by themselves. For the AR and J
tests given in the bottom lines the p-values are presented. Hence, in column (1) the (first-differenced)
residuals do exhibit 1st order serial correlation (as they should) but no significant 2nd order problems
emerge. We supplemented JAB(1,0) and JAB(2,1)

a , as presented by xtabond2 (see our footnote 3)
by JAB(1,1)

a and JAB(2,2)
a . The p-value of 0.000 for JAB(1,0)

a should be neglected, because we found
convincing evidence of heteroskedasticity from an auxiliary LSDV regression (not presented) of
the squared level residuals for the findings in column (1) on all regressors of model (122), except
the current endogenous ones. Xtabond2 suggests now that we judge the adequacy of model and
instruments on the basis of test JAB(2,1)

a , hence on a hybrid test statistic involving both 1-step and
2-step residuals. Its p-value is high, thus seems to approve the validity of the instruments. However,
in some of our simulations this variant underrejects. Calculation of the purely 1-step based JAB(1,1)

a ,
which showed some overrejection in the presence of endogenous regressors, gives a p-value of 0.057.
So, there is modest reassurance regarding consistency of the results in column (1).
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Because many regressors in column (1) have very low absolute t-values, this may undermine
the finite sample performance of the JAB tests. Therefore, in column (2) we examine removal of the
time-effects from the regression, which in column (1) have absolute t-values between 0.34 and 1.15.
And in column (3) we remove the time-dummies from the set of instruments too. We note that the
JAB(1,1)

a results are more acceptable now. Because the exogeneity of the time-effects is self-evident, we
decide to keep them in the instrument set, though exclude them from the regressors. Since we did not
manage to get more satisfying results regarding the J tests by relaxing implicit restrictions (including
interactions, generalizing the functional form), we adopt with some hesitance the specification and
classification of the variables of column (2) as an acceptable starting point. In the table all coefficient
estimates with a t-ratio above 2 are marked by a double asterix, and a single asterix when between
1 and 2 (estimated standard errors are given between parentheses). The modest estimated values
for the lagged dependent variable coefficient estimates in combination with those of σ̂η/σ̂ε suggest
values of the DENη

y concept such that the relatively unfavorable simulation results for case P1 (where
DENη

y = 4) do not seem to apply here. Column (4) presents the Windmeijer corrected 2-step AB
estimates. For many coefficients these suggest an improvement in estimator efficiency. From the
simulations we learned that we should not overrate the qualities of 2-step estimation. Also note
that some of the coefficient estimates deviate from their 1-step counterparts, which might be due to
vulnerability to finite sample bias. This can also be seen from the bottom row of the table which
presents the estimate of the long-run wage elasticity of hours worked. This total multiplier is given
by TMw = (β̂w

0 + β̂w
1 + β̂w

2 )/(1− γ̂1 − γ̂2). Column (4) suggests a lower elasticity than column (2).
Many of the static models estimated by Ziliak suggest even lower values for this elasticity (and forced
equality of immediate and long-run elasticity, which is sharply rejected by all our models).

Before we proceed, we want to report that when estimating model (122) by AB1R without second
order lags (then K = 17 and L = 154) the p-values of the AR(1) and AR(2) tests are 0.000 and
0.754 respectively, whereas that of JAB(2,1)

a is 0.510. Hence, despite the significance of various of the
coefficients of twice lagged variables in columns (1) through (3), these three tests do not detect the
apparent dynamic underspecification; hence, they lack power. However, JAB(1,1)

a has a p-value of
0.025 and seems again useful here.

Although quite a few slope coefficients in columns (1) through (3) have t-ratio’s with small
absolute values, similar to the time-effects, we prefer not to proceed at this stage by imposing
further coefficient restrictions on the model. Instead, we shall try to decrease the estimated standard
errors and mitigate finite sample bias by examining whether the three regressors which we treated
as endogenous could actually be classified such that additional and stronger instruments might be
used. However, before we do that, just for illustrative purposes, we present again AB1 and AB2
results for the model specification and instrument set as used in column (2), but now not robustified
AB1 in column (5) and not Windmeijer corrected AB2 in column (6). For most coefficients column
(5) suggests smaller standard errors than column (2), but given the detected heteroskedasticity we
know these are deceitful inconsistent standard deviation estimates. Column (6) shows that not using
the Windmeijer correction would incorrectly suggest that AB2 is substantially more efficient than
(robust) AB1, which often it is not, as we already learned from our simulations. Note that the value
of the serial correlation tests does not just depend on the (unaffected) residuals, but on the (affected)
coefficient standard errors too. Therefore, we interpret the rejection by AR(1) in column (5) as due to
size problems.

Next, a series of incremental J(2,1)
a and J(1,1)

a tests (not presented in the table) has been performed
to establish the actual classification of the three yet treated as endogenous regressors. Testing against
1P4X (which implies 42 extra instruments) yields p-values below 0.005. So, we better proceed step
by step to assess whether some of these 42 instruments are nevertheless valid. Testing validity
of the 7 extra instruments in case disabi,t is treated as predetermined yields p-values of 0.029 and
0.051 respectively, so this seems truly endogenous. Doing the same for kidsi,t gives 0.520 and 0.351.
Next testing whether the 7 extra instruments involving current values of kidsi,t seem valid too yields
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p-values of 0.398 and 0.197 respectively and when testing against column (2) the 14 extra instruments
yield p-values of 0.490 and 0.223. Accepting exogeneity of the variable kidsi,t and maintaining
endogeneity of disabi,t we now focus on the classification of ln wit. Testing the extra 7 instruments
when treating ln wit as predetermined yields p-values of 0.330 and 0.026. And testing jointly the
21 instruments additional to column (2) these p-values are 0.429 and 0.040. Supposing again that we
should put our trust in the JAB(1,1)

c test we decide to adopt the classification where variables agei,t and
kidsi,t are exogenous, disabi,t and ln wi,t are endogenous, and self-evidently ln hi,t−1 is predetermined
(all with respect to εi,t). The corresponding AB1R and AB2W estimates can be found in columns (7)
and (8). Note that the extra instruments are especially beneficial for the standard errors of the βk

j
coefficients. Again the TMw estimate is larger for 1-step than for 2-step estimation.

In columns (9) and (10) we examine the effects on the results of column (7) of reducing the
number of instruments; in column (9) by collapsing and in column (10) by discarding instruments
lagged more than two periods. This leads to disturbing results. If the instruments used in column
(7) are valid, those in the columns (9) and (10) cannot be invalid. Nevertheless, test JAB(1,1)

a rejects
the overidentification restrictions for the collapsed instruments and produces a rather small p-value
(significant at the 10% level) for the column (10) results. That the estimated coefficient standard errors
have increased in columns (9) and (10) is understandable, but the substantial shifts in coefficient
estimates is seriously uncomfortable. The negative TMw found after collapsing seems not very
realistic. The main question seems now whether this is just caused by finite sample bias, or by
inconsistency. In the latter case the results of all other columns must be inconsistent too.

Finally, we examine 2-step Blundell-Bond system estimation with Windmeijer correction. Testing
validity of the 34 instruments used in column (11) additional to those used in column (8), yields
p-values for the JES(2,1)

a and JES(1,1)
a tests of 0.016 and 0.009 respectively, whereas the JAB(2,1)

a based
Hayashi-version (see our footnote 3) calculated by xtabond2 gives a p-value of 0.136. So, effect
stationarity seems doubtful, although the five γ and βw coefficients seem all highly significant now
(with all further coefficients insignificant). The estimates of TMw and ση deviate strongly from those
of columns (1) through (8). Even more distorted BB2 results are obtained after collapsing. We find
it hard to believe that this is all due to increased efficiency and reduced finite sample bias and
simply reject effect stationarity and tend to accept the results of columns (7) and (8). Or, should
we declare all results in Table 24 uninterpretable simply because no model from the class examined
here matches with the Ziliak data? It is hard to answer this question, simply because we learned
from the simulations how vulnerable all employed tools are even in cases where the adopted model
specification fully corresponds with the underlying DGP.

Hopefully the small sample bias is such that proper interpretation of the coefficients of column
(7) is possible. Then we note that - although not statistically significant - we find a tendency that a
positive change in either kids or disab leads to an immediate drop in hours supplied, although this
drop is mitigated for a substantial part after a few periods. Also, the older an individual gets there is a
tendency (again insignificant) to work fewer hours. The wage elasticity is positive with a larger value
than was inferred by earlier (static) studies. However, given what we learned from the simulations,
we should restrain ourselves when drawing far-reaching conclusions from the estimation and test
results given in Table 24, simply because we established that for the currently available techniques
for analysis of dynamic panel data models the bias of coefficient estimates can be substantial and the
actual size of tests may deviate considerably from the aimed at levels whereas their actual power
seems modest.

7. Major findings

In social science the quantitative analysis of many highly relevant problems requires structural
dynamic panel data methods. These allow the observed data to have at best a quasi-experimental
nature, whereas the causal structure and the dynamic interactions in the presence of unobserved
heterogeneity have yet to be unraveled. When the cross-section dimension of the sample is not
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very small, employing GMM techniques seems most appropriate in such circumstances. This is also
practical since corresponding software packages are widely available. However, not too much is
known yet about the actual accuracy in practical situations on the abundance of different not always
asymptotically equivalent implementations of estimators and test procedures. This study aims to
demarcate the areas in the parameter space where the asymptotic approximations to the properties
of the relevant inference techniques in this context have either shown to be reliable beacons or are
actually often misguiding marsh fires.

In this context we provide a rather rigorous treatment of many major variants of GMM
implementations as well as for the inference techniques on testing the validity of particular
orthogonality assumptions and restrictions on individual coefficient values. Special attention is given
to the consequences of the joint presence in the model of time-constant and individual-constant
unobserved effects, covariates that may be strictly exogenous, predetermined or endogenous, and
disturbances that may show particular forms of heteroskedasticity. Also the implications regarding
initial conditions for separate regressors with respect to individual effect stationarity are analyzed
in great detail, and various popular options that aim to mitigate bias by reducing the number of
exploited internal instruments are elucidated. In addition, as alternatives to those used in current
standard software, less robust weighting matrices and additional variants of Sargan-Hansen test
implementations are considered, as well as the effects of particular modifications of the instruments
under heteroskedasticity.

Next, a simulation study is designed in which all the above variants and details are being
parametrized and categorized, which leads to a data generating process involving 10 parameters,
for which, under 6 different settings regarding sample size and initial conditions, 60 different grid
points are examined. For each setting and various of the grid points 13 different choices regarding
the set of instruments have been used to examine 12 different implementations of GMM coefficient
estimates, giving rise to 24 different implementations of t-tests and 27 different implementations of
Sargan-Hansen tests. From all this only a pragmatically selected subset of results is actually presented
in this paper.

The major conclusion from the simulations is that, even when the cross-section sample size
is several hundreds, the quality of this type of inference depends heavily on a great number of
aspects of which many are usually beyond the control of the investigator, such as: magnitude
of the time-dimension sample size, speed of dynamic adjustment, presence of any endogenous
regressors, type and severity of heteroskedasticity, relative prominence of the individual effects and
(non)stationarity of the effect impact on any of the explanatory variables. The quality of inference also
depends seriously on choices made by the investigator, such as: type and severity of any reductions
applied regarding the set of instruments, choice between (robust) 1-step or (corrected) 2-step
estimation, employing a modified GMM estimator, the chosen degree of robustness of the adopted
weighting matrix, the employed variant of coefficient tests and of (incremental) Sargan-Hansen tests
in deciding on the endogeneity of regressors, the validity of instruments and on the (dynamic)
specification of the relationship in general.

Our findings regarding the alternative approaches of modifying instruments and exploiting
different weighting matrices are as follows for the examined case of cross-sectional heteroskedasticity.
Although the unfeasible form of modification does yield very substantial reductions in both bias
and variance, for the straight-forward feasible implementation examined here the potential efficiency
gains do not materialize. The robust weighting matrix, which also allows for possible time-series
heteroskedasticity, performs often as well as (and sometimes even better than) a specially designed
less robust version, although the latter occasionally demonstrates some benefits for incremental
Sargan-Hansen tests.

Furthermore we can report to practitioners: (a) when the effect-noise-ratio is large, the
performance of all GMM inference deteriorates; (b) the same occurs in the presence of a genuine (or
a supervacaneously treated as) endogenous regressor; (c) in many settings the coefficient restrictions
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tests show serious size problems which usually can be mitigated by a Windmeijer correction, although
for γ large or under simultaneity serious overrejection remains unless N is very much larger than 200;
(d) the limited effectiveness of the Windmeijer correction is due to the fact that the positive or negative
bias in coefficient estimates is often more serious than the negative bias in the variance estimate; (e)
limiting to some degree the number of instruments usually reduces bias and therefore improves size
properties of coefficient tests, though at the potential cost of power loss because efficiency usually
suffers; (f ) for the case of an autoregressive strictly exogenous regressor we noted that it is better
to not just instrument it by itself, but also by some of its lags because this improves inference,
especially regarding the lagged dependent variable coefficient; (g) to mitigate size problems of the
overall Sargan-Hansen overidentification tests the set of instruments should be reduced, possibly by
collapsing; the qualities of the examined alternative variants vary; variants using 2-step residuals
may (but often do not) outperform the one using the standard robust weighting matrix based on
1-step residuals; (h) collapsing also reduces size problems of the incremental Sargan-Hansen effect
stationarity test; (i) except under simultaneity, the GMM estimator which exploits instruments which
are invalid under effect nonstationarity (BB) may nevertheless perform better than the estimator
abstaining from these instruments (AB); (j) the rejection probability of the incremental Sargan-Hansen
test for effect stationarity is such that it tends to direct the researcher towards applying the most
accurate estimator, even if this is inconsistent; (k) The estimate of σ̂ε is usually pretty accurate, which
is certainly not always the case for σ̂η , although quality improves for larger N and T, is better for BB
than for AB and usually benefits from collapsing.

When re-analyzing a popular empirical data set in the light of the above simulation findings we
note in particular that actual dynamic feedbacks may be much more subtile than those that can be
captured by just including a lagged dependent variable regressor, which at present seems the most
common approach to model dynamics in panels. In theory the omission of further lagged regressor
variables should result in rejections by Sargan-Hansen test statistics, but their power suffers when
many valid and some invalid orthogonality conditions are tested jointly instead of by deliberately
chosen sequences of incremental tests or by direct variable addition tests. Hopefully tests for serial
correlation, which we intentionally left out of this already overloaded study, provide an extra help to
practitioners in guiding them towards well-specified models. Our results demonstrate that, especially
under particular unfavorable settings, there is great urge for developing more refined inference
procedures for structural dynamic panel data models.
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Appendix A. Corrected variance estimation for 2-step GMM

Windmeijer [29] provides a correction to the standard expression for the estimated variance of the
2-step GMM estimator in general nonlinear models and next specializes his results for models with
linear moment conditions and finally for linear (panel data) models. Here we apply his approach
directly to the standard linear model of section 2.1 where β̂(2) is based on weighting matrix Z′Ω̂(1)Z,
where Ω̂(1) depends on û(1) and thus on β̂(1).

The nonlinear dependence of β̂(2) on β̂(1) can be made explicit by a linear approximation
obtained by employing the well-known ‘delta-method’ to the vector function f (β) =
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{X′Z[Z′Ω(β)Z]−1Z′X}−1X′Z[Z′Ω(β)Z]−1Z′u. Note that β̂(2) = β0 + f (β̂(1)). Expanding the second
term around β0 yields

β̂(2) − β0 ≈ f (β0) +
∂ f (β)

∂β′

∣∣∣∣
β=β0

(β̂(1) − β0), (123)

where under sufficient regularity the omitted terms will be of small order. For k = 1, ..., K we find

∂ f (β)

∂βk
=

∂{X′Z[Z′Ω(β)Z]−1Z′X}−1

∂βk
X′Z[Z′Ω(β)Z]−1Z′u

+ {X′Z[Z′Ω(β)Z]−1Z′X}−1 ∂X′Z[Z′Ω(β)Z]−1Z′u
∂βk

,

where

∂{X′Z[Z′Ω(β)Z]−1Z′X}−1

∂βk
= −{X′Z[Z′Ω(β)Z]−1Z′X}−1X′Z

∂[Z′Ω(β)Z]−1

∂βk
Z′X

× {X′Z[Z′Ω(β)Z]−1Z′X}−1,

with
∂[Z′Ω(β)Z]−1

∂βk
= −[Z′Ω(β)Z]−1Z′

∂Ω(β)

∂βk
Z[Z′Ω(β)Z]−1,

and
∂{X′Z[Z′Ω(β)Z]−1Z′u}

∂βk
= X′Z

∂[Z′Ω(β)Z]−1

∂βk
Z′u.

In the latter we omit an extra term in ∂u/∂βk = ∂(y−Xβ)/∂βk simply because we just want to extract
the dependence of β̂(2) on the operational weighting matrix.

Using the short-hand notation A(β) = Z[Z′Ω(β)Z]−1Z′ and Ωk(β) = ∂Ω(β)/∂βk we can
establish from the above that

∂ f (β)/∂βk = −[X′A(β)X]−1X′A(β)Ωk(β){In − A(β)X[X′A(β)X]−1X′}A(β)u.

This is the k-th column of the matrix F(β) = ∂ f (β)/∂β′ in (123). The latter can now be expressed as

β̂(2) − β0 ≈ {[X′A(β0)X]−1X′A(β0) + F(β0)(X′PZX)−1X′PZ}u. (124)

Because F(β0) = Op(n−1/2) the second term is of smaller order.
This approximation to the estimation errors of β̂(2) can be used to obtain a finite sample corrected

variance estimate of β̂(2). This is relatively easy if one conditions on some value for F(β0), say F̂.
Windmeijer chooses for the k-th column of F̂ the vector

−[X′A(β̂(1))X]−1X′A(β̂(1))Ωk(β̂(1)){In − A(β̂(1))X[X′A(β̂(1))X]−1X′}A(β̂(1))û(2).

Taking û(2) instead of the asymptotically equivalent û(1) leads to substantial simplification, because
X′A(β̂(1))û(2) = X′Z[Z′Ω(β(1))Z]−1Z′(y− Xβ̂(2)) = 0, giving

F̂ = (F̂·1, ..., F̂·K), with F̂·k = −[X′A(β̂(1))X]−1X′A(β̂(1))Ωk(β̂(1))A(β̂(1))û(2). (125)

Note that when L = K we have F̂ = O, because Z′û(1) = Z′û(2) = 0.
This all then yields for L > K the corrected variance estimator

V̂arc(β̂(2)) = V̂ar(β̂(2)) + F̂V̂ar(β̂(2)) + V̂ar(β̂(2))F̂ + F̂V̂ar(β̂(1))F̂′, (126)
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where
V̂ar(β̂(1)) = σ̂2

u(X′PZX)−1X′PZΩ̂PZX(X′PZX)−1.

Note that in case Ω(β) = diag(u2
1, ..., u2

n) one has Ωk(β̂(1)) = −2β̂
(1)
k diag(û(1)

1 x1k, ..., û(1)
n xnk).

Appendix B. Partialling out and GMM

The IV/2SLS result on partialling out directly generalizes for the MGMM estimator, provided
this uses all the (transformed) predetermined regressors as instruments. In standard GMM the
equivalence of predetermined regressors and a block of the instruments gets lost. Using the notation
of (10) and considering the partitioned model leading to (8), we easily find its counterpart

β̂1,GMM = (X̂†∗′
1 MX̂†∗

2
X̂†∗

1 )−1X̂†∗′
1 MX̂†∗

2
y∗, (127)

where
X̂†∗ = (X̂†∗

1 , X̂†∗
2 ) = PZ†(X∗1 , X∗2 ) = P(Ψ′)−1Z(ΨX1, ΨX2).

In the special case of system (50) with instruments (52) we have X2 = Z2 = (0′, ι′T)
′ and Z′1Z2 = 0,

whereas under cross-sectional heteroskedasticity, due to DιT = 0, the optimal weighting matrix is
block-diagonal, hence Z′1ΩZ2 = 0. Therefore Z†′

1 Z†
2 = 0 too, giving PZ† = PZ†

1
+ PZ†

2
. Now we find

X̂†∗
1 = PZ† X∗1 = (PZ†

1
+ PZ†

2
)X∗1 and X̂†∗

2 = (PZ†
1
+ PZ†

2
)ΨZ2 = PZ†

2
ΨZ2 = (Ψ′)−1Z2(Z′2ΩZ2)

−1Z′2Z2 =

cZ†
2 , with c some scalar, because Z2 has just one column. Therefore, MX̂†∗

2
X̂†∗

1 = MZ†
2
(PZ†

1
+ PZ†

2
)X∗1 =

PZ†
1
X∗1 . Thus, in this particular case (when using an appropriate weighting matrix), we find

β̂1,GMM = (X̂∗′1 MX̂∗2
X̂∗1 )

−1X̂∗′1 MX̂∗2
y∗ = (X̂∗′1 PZ†

1
X∗1 )

−1X̂∗′1 PZ†
1
y.

Due to the block of zeros in Z1 this is just the GMM estimator of the model in first differences.

Appendix C. Extracting redundant moment conditions

Through linear transformation15 we demonstrate that the sets of moment conditions for the
equation in levels and for the equation in first-differences have a non empty intersection. First we
consider the moment conditions associated with the strictly exogenous regressors. For the equation
in first differences these are E(xT

i ∆εit) = E[∆εit(x′i1...x′iT)
′] = 0, for t = 2, ..., T. They can also

be represented16 by the combination E[∆εit(∆x′i2...∆x′iT)
′] = 0 and E(xit∆εit) = 0. However, by

a similar transformation17 (here of the disturbances instead of the instruments), the conditions for
the equation in levels E[∆x�ith(ηiιT + εi)] = 0, where h = 1, ..., K�

x (and again t = 2, ..., T), can
be represented by E(∆x�ith ε̃i) = 0 and E[∆x�ith(ηi + εit)] = 0. So, just the K�

x (T − 1) orthogonality
conditions E[∆x�it(ηi + εit)] = 0 for t = 2, ..., T are additional due to effect stationarity of K�

x of the
strictly exogenous regressors.

Similarly, the orthogonality conditions E(wt−1
i ∆εit) = 0, or E(wis∆εit) = 0 for s = 1, ..., t− 1 with

t = 2, ..., T, can be represented by E(wi,t−1∆εit) = 0 for t = 2, ..., T and E(∆wis∆εit) = 0 for t = 3, ..., T
and s = 2, ..., t − 1. On the other hand, the conditions E[∆w�

it(ηi + εi,t+l)] = 0 for t > 1 and l > 0
are actually E[∆w�

is(ηi + εit)] = 0 for t = 2, ..., T and s = 2, ..., t, whereas these can be represented by
E(∆w�

is∆εit) = 0 for t = 3, ..., T and s = 2, ..., t− 1 and E[∆w�
it(ηi + εit)] = 0 for t = 2, ..., T. Thus, only

the K�
w(T − 1) conditions E[∆w�

it(ηi + εit)] = 0 for t = 2, ..., T are additional.

15 In this Appendix we repeatedly use the result that the p conditions E(aCb) = 0, where a is a random scalar, b a p × 1
random vector and C a deterministic nonsingular p× p matrix, are equivalent with the p conditions E(ab) = 0, because
E(ab) = 0⇔ CE(ab) = 0⇔ E(aCb) = 0.

16 Here C = (D′ eT,t)
′ ⊗ IKx .

17 Now C = (D′ eT,t)
′.
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Using the same logic, the orthogonality conditions E(vt−2
i ∆εit) = 0 for t = 3, ..., T, which are

actually E(vis∆εit) = 0 for t = 3, ..., T and s = 1, ..., t− 2, can also be represented by E(vi,t−2∆εit) = 0
for t = 3, ..., T and E(∆vis∆εit) = 0 for t = 4, ..., T and s = 2, ..., t − 2. However, the conditions
E[∆v�it(ηi + εi,t+1+l)] = 0 for t > 1 and l > 0 are in fact E[∆v�is(ηi + εit)] = 0 for t = 3, ..., T and
s = 2, ..., t− 1, which can also be represented as E(∆v�is∆εit) = 0 for t = 4, ..., T and s = 2, ..., t− 2 and
E[∆v�i,t−2(ηi + εit)] = 0 for t = 3, ..., T. Thus, we find that only the K�

v (T− 2) conditions E[∆v�i,t−2(ηi +

εit)] = 0 for t = 3, ..., T are additional.

Appendix D. Derivations for (112)

The results for Vη and Vλ are obvious. Those for Vζ(i) and Vε(i) are obtained as follows. We use
the standard result that the variance of a general stationary ARMA(2,1) process

zt =
ψ(1− φL)

(1− γL)(1− ξL)
ut, (128)

where ut ∼ I ID(0, 1), is given by

Var(zt) = ψ2 (1 + γξ)(1 + φ2)− 2φ(γ + ξ)

(1− γξ)(1− γ2)(1− ξ2)
. (129)

Because we can rewrite (using σε = 1)

[βρvεσv + (1− ξL)]ω1/2
i = (1 + βρvεσv)ω

1/2
i

(
1− ξ

1 + βρvεσv
L
)

,

the result for Vε(i) follows upon substituting ψ = (1+ βρvεσv)ω
1/2
i and φ = ξ/(1+ βρvεσv). For Vζ(i)

simply take φ = 0 and ψ = βσv(1− ρ2
vε)

1/2ω1/2.
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