Preprint
Article

Urban Sprawl Detection Using Remotely Sensed Data: A Case of Chennai, Tamilnadu

Altmetrics

Downloads

2164

Views

1425

Comments

1

A peer-reviewed article of this preprint also exists.

Submitted:

04 January 2017

Posted:

05 January 2017

You are already at the latest version

Alerts
Abstract
Urban sprawl propelled by rapid population growth leads to the shrinkage of productive agricultural lands and pristine forests in the suburban areas and, in turn, substantially alters ecosystem services. Hence, the quantification of urban sprawl is crucial for effective urban planning, and environmental and ecosystem management. Like many megacities in fast growing developing countries, Chennai, the capital of Tamilnadu and one of the business hubs in India, has experienced extensive urban sprawl triggered by the doubling of total population over the past three decades. We employed the Random Forest (RF) classification on Landsat imageries from 1991, 2003, and 2016, and computed spatial metrics to quantify the extent of urban sprawl within a 10km suburban buffer of Chennai. The rate of urban sprawl was quantified using Renyi’s entropy, and the urban extent was predicted for 2027 using land-use and land-cover change modeling. A 70.35% increase in urban areas was observed for the suburban periphery of Chennai between 1991 and 2016. The Renyi’s entropy value for year 2016 was ≥ 0.9, exhibiting a two-fold rate of urban sprawl. The spatial metrics values indicate that the existing urban areas of Chennai became denser and the suburban agricultural, forests and barren lands were transformed into fragmented urban settlements. The forecasted urban growth for 2027 predicts a conversion of 13670.33ha (16.57 % of the total landscape) of existing forests and agricultural lands into urban areas with an associated increase in the entropy value of 1.7. Our findings are relevant for urban planning and environmental management in Chennai and provide quantitative measures for addressing the social-ecological consequences of urban sprawl and the protection of ecosystem services.
Keywords: 
Subject: Environmental and Earth Sciences  -   Remote Sensing
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated