

Article

Investigation of Urbanization Effects on Land Surface Phenology in Northeast China during 2001–2015

Rui Yao ^{1,†}, Lunche Wang ^{1,*†}, Xin Huang ^{2,*†}, Xian Guo ³, Zigeng Niu ¹ and Hongfu Liu ¹

¹ Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China; yaorui123@cug.edu.cn

² School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China

³ State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

* Correspondence: wang@cug.edu.cn (L.W.); huang_whu@163.com(X.H.)

† These authors contributed equally to this work.

Abstract: The urbanization effects on land surface phenology (LSP) have been investigated by many studies, but few studies focused on the temporal variations of urbanization effects on LSP. In this study, we used the MODIS EVI, MODIS LST data and China's Land Use/Cover Datasets (CLUDs) to investigate the temporal variations of urban heat island intensity and urbanization effects on LSP in Northeast China during 2001–2015. Land surface temperature (LST) and phenology differences between urban and rural areas represented the urban heat island intensity and urbanization effects on LSP, respectively. Mann-kendall nonparametric test and Sen's slope were used to evaluating the trends of urbanization effects on LSP and urban heat island intensity. The results indicated that the average land surface phenology (LSP) during 2001–2015 was characterized by high spatial heterogeneity. The start of the growing season (SOS) in old urban area had become earlier and earlier than rural area and the differences of SOS between urbanized area and the rural area changed greatly during 2001–2015 (-0.79 days/year, $p < 0.01$). Meanwhile, the length of the growing season (LOS) in urban and adjacent areas had become increasingly longer than rural area especially in urbanized area (0.92 days/year, $p < 0.01$), but the differences of the end of the growing season (EOS) between urban and adjacent areas did not change significantly. Next, the UHII increased in spring and autumn during the whole study period. Moreover, the correlation analysis indicated that the increasing urban heat island intensity in spring contributed greatly to the increases of urbanization effects on SOS, but the increasing urban heat island intensity in autumn did not lead to the increases of urbanization effects on EOS in Northeast China.

Keywords: urbanization; land surface phenology; urban heat island; Northeast China

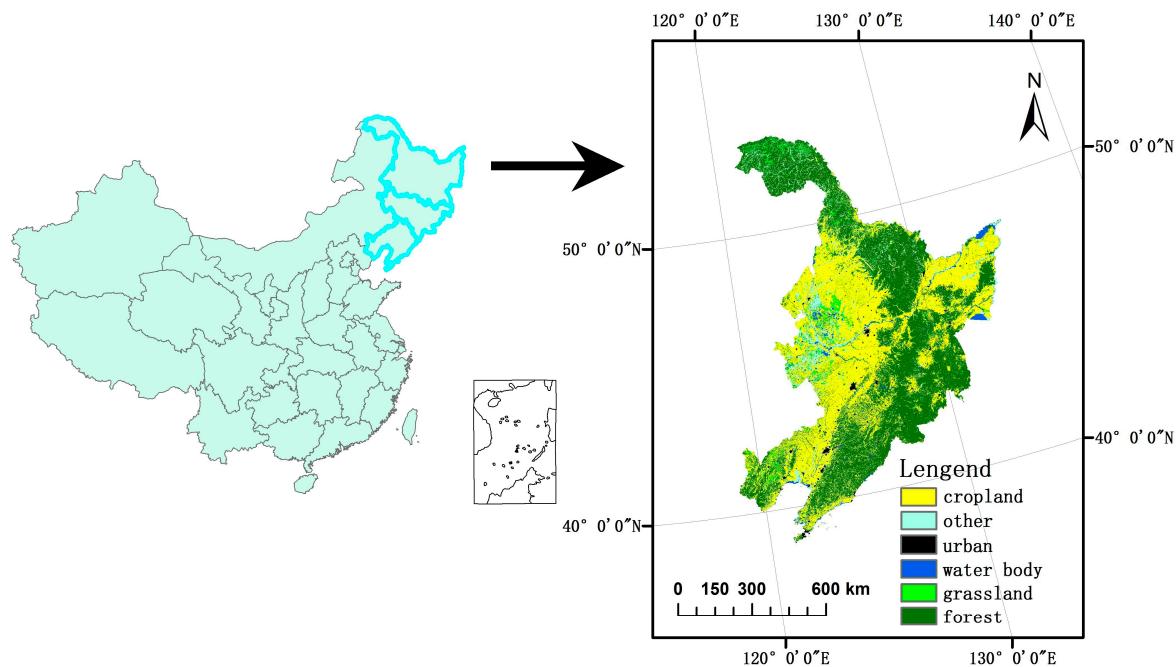
1. Introduction

Urbanization refers to the historical process of gradual transformation of the traditional agricultural-based rural society to the non-agricultural-based modern urban society. Urbanization can be explained from the perspectives of demography, geography, sociology, economics and so on. From the perspective of demography, the speed of urbanization is accelerating around the world. For example, the proportion of urban population in the world was 30% in 1952, 47% in 2001, 50% in 2007 and 54% in 2014 [1–3]. Meanwhile, the urbanization can bring out a series of environmental and social issues, e.g., land use/land cover changes, urban heat island (UHI), air pollution, hydro-system changes, land surface phenology (LSP) changes [3], these urbanization related nature and social phenomena have profound impacts on human life, thus, it is essential to study the magnitude, temporal variations and mechanisms of the urbanization effects (UE) on the terrestrial ecosystems [9].

UHI refers to the higher temperature in urban than rural places caused by the urbanization. The urban heat island intensity (UHII) is defined as the temperature differences between urban and rural [4–7]. UHII can be exacerbated by many factors relating with urbanization process, such as more impervious surface, lower vegetation cover and worse ventilation [3]. Peng et al. analyzed the UHII at 419 global big cities and the results showed that the annual daytime UHII and nighttime UHII were 1.5 °C and 1.1 °C, respectively [5]. The footprint of UHI not only included the urban areas but also the suburbs according to previous study [4].

UHI can affect the environment in and around the city [1,4,8]. For instance, LSP assesses the vegetation activity at ecosystem level. Changes of LSP can influence the water, carbon, energy cycle [9,10] and even human activities such as the increasing severity of allergies [9,11,12]. LSP is an indicator of environmental and climate changes. For example, Zhao et al. showed that the spring and autumn temperature affects the SOS and EOS in Northeast China, respectively [13]. Liang et al. showed that the impact of altitude on SOS cannot be ignored in the cities located in the middle temperate zone of China [14]. Some studies also showed that sunshine duration and precipitation may play important roles on LSP [13–15]. For example, Liang et al. indicated that sunshine duration acted more on SOS than precipitation and temperature at Harbin, Northeast China [14].

Urbanization mainly influences the LSP via UHI. A number of studies investigated the urbanization effects on land surface phenology (UELSP) using both remote sensing [9,16–19] and ground observations [1,20–23] in different cities. Some results indicated that the urbanization has significant effects on LSP especially in high latitude zones [9,19,21]. For example, Han et al. showed that the SOS was earlier and EOS was later in urban area than those of rural areas at 6 cities in Yangtze River Delta, China, and the footprint of UHI effects on LSP was 6 km from the urban edge [16]. White et al. showed that the LOS of deciduous broadleaf forest in urban was 7.6 days longer than rural areas in eastern United States [18]. Zhou et al. showed that the average SOS was 11.9 days earlier and EOS was 5.4 days later in urban than those of rural areas at 32 major cities of China, they also indicated that the most significant UELSP were observed in Northeast China [9]. Gazal et al. showed that SOS was earlier in urban area than rural in a tropical city (Bangkok of Thailand) but later in other two tropical cities (Korat of Thailand, Dakar of Senegal), and SOS was earlier in urban area than rural in three temperate cities (Tokyo of Japan, Jyväskylä of Finland, Bishkek of Kyrgyzstan) but later in a temperate city (Fairbanks of America) [21]. However, very few studies investigated the temporal variations of UELSP in literature.


China has one-fifth of the world's population, and is undergoing an unprecedented urbanization in the world. It is of great importance to study the urbanization as well as its impacts on terrestrial ecosystems in China. As the largest old industrial base in China, Northeast China has experienced rapid urbanization since 2003 due to the policy of revitalizing the old industrial base in China [24]. Therefore, it is essential to study the UE on terrestrial ecosystems and its temporal variations with rapid urbanization in recent decades. For the purpose of filling the current research gaps and providing a better understanding of UE on terrestrial ecosystem in this area, our study aimed at: (1) examining the quantitative effects of urbanization on LSP in Northeast China; (2) investigating the temporal variations of UHII and UELSP during 2001–2015; (3) exploring the potential relationships between UELSP and UHII in Northeast China.

2. Materials and Methods

2.1. Study Area

The three provinces, including Heilongjiang, Jilin and Liaoning, are located at 118°50'E–135°09'E, 38°42'N–53°35'N [13] in Northeast China. The total area of the three provinces is about 0.787 million km², accounting for 8.2% of the country's total area. Most parts of the study area are in the mid-temperate zone except for the northern part of Heilongjiang province (Cold temperate zone) and the southwestern part of Liaoning province (Warm temperate zone). The plains with lower altitude primarily situated in the eastern (Songliao plain) and western (Sanjiang Plain) parts, mountains with high altitude mainly located in the southeastern (Changbai Mountains) and

northern (Lesser Khingan Mountains) parts. The majority of cropland and urban area located in Songliao plain and Sanjiang Plain; the forest area mainly located in Lesser Khingan Mountains and Changbai Mountains (Figure 1). With regard to the population, the total population in Northeast China reached 109.8 million in 2013, and up to 65 million people live in cities [24].

Figure 1.The location and the CLUD (2015) of the study area.

2.2. Land Cover Data

The China's Land Use/Cover Datasets (CLUDs) were derived from the Landsat TM/ETM+ and HJ-1A/1B, including 25 classes in total with 5-year interval from 1990 to 2015. Quality control procedures have been carried out for the datasets, the overall accuracy of the 25 classes of CLUDs was up to 90% [25–27]. More details about the CLUDs can be found in previous studies [25–28].

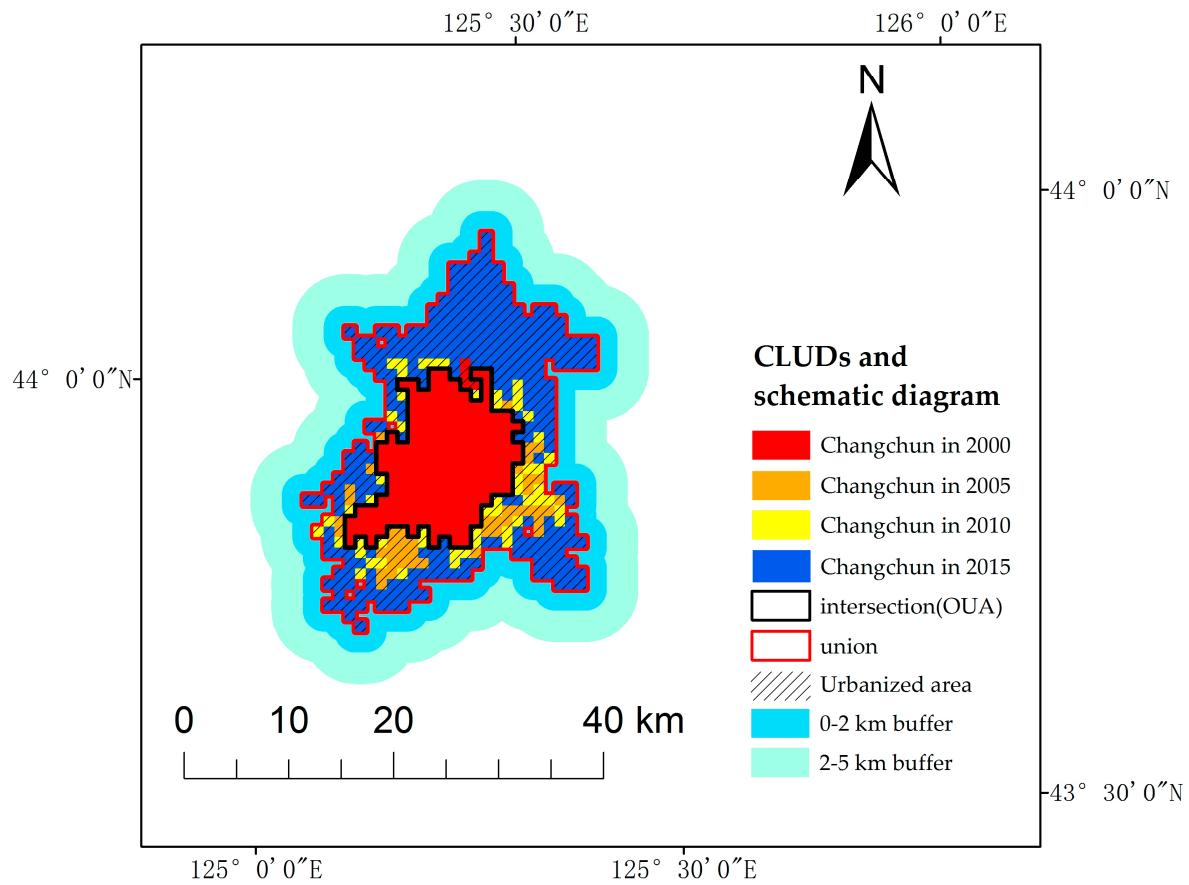
The CLUDs were merged into six major categories (urban, water body, cropland, forest, grassland and other) and resampled to a spatial resolution of 1000m to match the MODIS EVI data and MODIS LST data. Then each category was converted into a vector file for the purpose of subsetting the MODIS EVI data and later statistical analysis. In this study, we hypothesized that the CLUDs in the year of 2000, 2005, 2010, 2015 can represent land use/cover in 2001–2002, 2003–2007, 2008–2012, 2013–2015, respectively [9].

2.3. MODIS EVI Data

This study used the MOD13A2 EVI data (16 day composite, 1000m spatial resolution, from 2001 to 2015) to extract the LSP information (SOS, EOS and LOS) in Northeast China. This data was improved via de-coupling of canopy background signal and reducing the influences of atmospheric and soil reflectance [29,30]. A lot of studies showed that EVI is better than NDVI especially for detecting vegetation variations in urban area [16,31–33]. This data was first reprojected and mosaicked using the MODIS Reprojection Tool (MRT) [34]. Then we removed cropland since the SOS of cropland was affected by artificial sowing and the EOS of cropland was affected by artificial harvesting, thus, the cropland cannot accurately reflect the environmental and climate changes; water body was also removed in this study due to no vegetation covers [9,18,31].

2.4. MODIS LST Data

MODIS LST is an ideal data to study the UHI at regional scale [35–38], and the absolute bias is less than 1K [39–41]. We used the MOD11A2 LST data (8 day composite, 1000m spatial resolution, from 2001 to 2015) to detect the temporal variations of UHII in the study area. We used the same method mentioned in the above section to reproject and mosaic the MODIS LST data. We assumed that the mean of MODIS LST nighttime temperature and MODIS LST daytime temperature can represent daily average temperature, and the mean temperature during March to May can represent spring temperature, the mean temperature during September to November can represent autumn temperature according to previous study [10].


2.5. Phenology Metrics

TIMESAT was used to generate the LSP information from MODIS EVI data [42,43]. We used the Savitzky-Golay filter to smooth the EVI time series data according to previous study since it is simple, reliable and can preserve features of the dataset, such as relative maximum, minimum and width [44]. There are generally two methods to determine the SOS and EOS [9]. The first one is the threshold method, i.e., SOS and EOS were defined as the dates that the fitted curves up to and fall to the threshold value, respectively. The second one is the amplitude method, i.e., SOS and EOS were defined as the date that the fitted curves up to and fall to the proportion of the amplitude, respectively. The amplitude is defined as the differences between the maximal and minimal EVI in the same year. In this study, we chose the amplitude method since urban area have lower vegetation cover than surroundings and the threshold method cannot correctly compute the LSP metrics. Zhao et al. studied the variation of LSP in Northeast China during 1982–2013 [13] using 30% of the amplitude and the results were in agreement with ground observation and previous studies [45–47]. Similarly, we also chose 30% of the amplitude to calculate the LSP parameter (SOS, EOS) for further analysis in this study.

There may be some outliers resulting from atmospheric contamination or interference from human activities when extracting the phenology information. We excluded these outliers for the purpose of reducing the deviation [9]. SOS with earlier than 50 day of year (DOY) or later than 180 DOY was excluded, and EOS with earlier than 240 DOY and later than 330 DOY was removed. LOS was computed as the differences between EOS and SOS.

2.6. Calculation of UELSP and UHII

First, we removed the cities with urban area less than 10km² since the smaller city may have slower urbanization speed and smaller UE [31]. Then we chose the urban area of the CLUDs (in the year of 2000, 2005, 2010, 2015) to take the intersection and defined it as "old urban area" (OUA), that is to say, the OUA was the common part of urban area of above 4 land cover maps. We take union of the urban areas of the CLUDs (in the year of 2000, 2005, 2010, 2015) and subtracted the intersection from the union part and define it as urbanized area. We further generated 3 buffers extending 0–2 km, 2–5 km, 20–25 km from the edge of union and defined the 20–25 km buffer as rural area according to [9]. In this way, this study focused on four stationary areas in and around the urban area (OUA, urbanized area, 0–2 km buffer and 2–5 km buffer) and one stationary area in rural area (20–25 km buffer) in Northeast China (Figure 2).

Figure 2. The CLUDs in 2000, 2005, 2010, 2015 and the schematic diagram of four areas (OUA, urbanized area, 0–2 km buffer and 2–5 km buffer), an example of Changchun city.

We used the phenology differences between OUA or urbanized area or buffers (0–2 km buffer, 2–5 km buffer) and rural area (20–25 km buffer) to represent the UELSP as follow [9]:

$$\Delta P1 = P_{OUA} - P_{rural} \quad (1)$$

$$\Delta P2 = P_{\text{urbanized area}} - P_{rural} \quad (2)$$

$$\Delta P3 = P_{0-2 \text{ km buffer}} - P_{rural} \quad (3)$$

$$\Delta P4 = P_{2-5 \text{ km buffer}} - P_{rural} \quad (4)$$

where P_{OUA} , $P_{\text{urbanized area}}$, $P_{0-2\text{km buffer}}$, $P_{2-5\text{km buffer}}$ and P_{rural} represent the LSP metrics (SOS, EOS, LOS) in OUA, urbanized area, 0–2 km buffer, 2–5 km buffer and 20–25 km buffer, respectively. Accordingly, $\Delta P1$, $\Delta P2$, $\Delta P3$ and $\Delta P4$ represent the UELSP in OUA, urbanized area, 0–2 km buffer and 2–5 km buffer, respectively.

Similarly, we used the LST differences between OUA or urbanized area or buffer zone and rural area to represent the UHII as follow [4–7]:

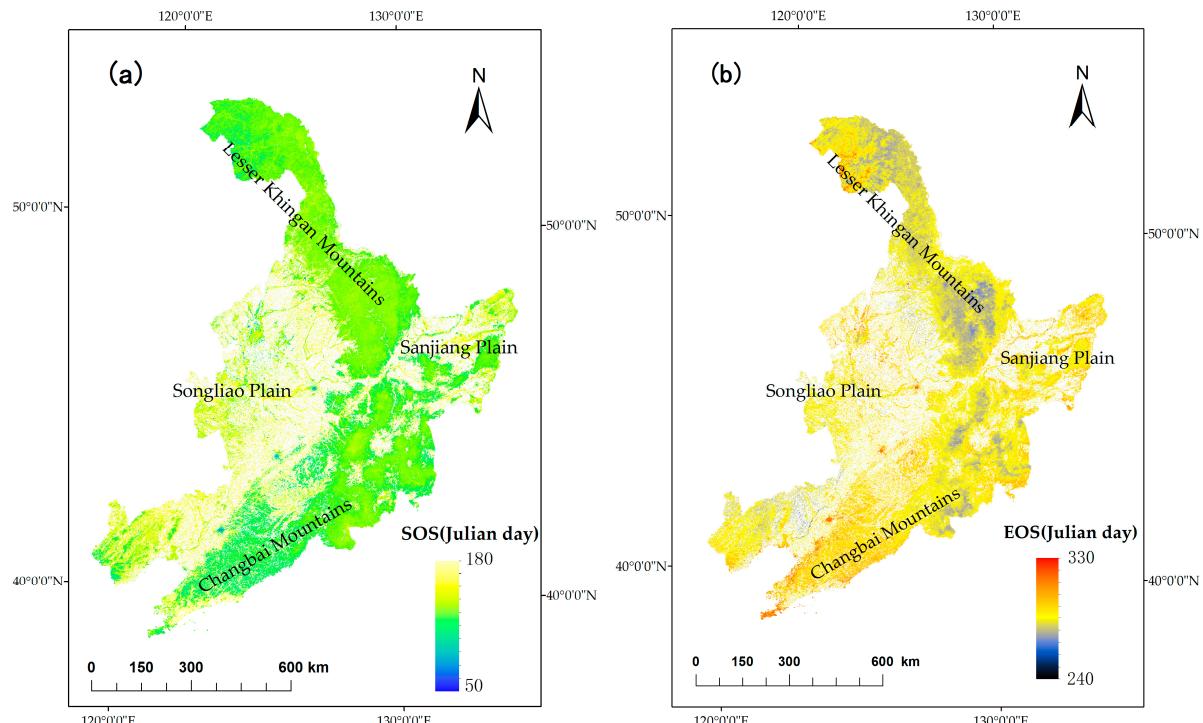
$$\Delta T1 = T_{OUA} - T_{rural} \quad (5)$$

$$\Delta T2 = T_{\text{urbanized area}} - T_{rural} \quad (6)$$

$$\Delta T3 = T_{0-2 \text{ km buffer}} - T_{rural} \quad (7)$$

$$\Delta T4 = T_{2-5 \text{ km buffer}} - T_{\text{rural}} \quad (8)$$

where the TOUA, $T_{\text{urbanized area}}$, $T_{0-2\text{km buffer}}$, $T_{2-5\text{km buffer}}$ and T_{rural} represent the LST in OUA, urbanized area, 0–2 km buffer, 2–5 km buffer and 20–25 km buffer, respectively. So, $\Delta T1$, $\Delta T2$, $\Delta T3$ and $\Delta T4$ represent the UHII in OUA, urbanized area, 0–2 km buffer and 2–5 km buffer, respectively.


3. Results

3.1. Mean Phenology and Mean LST in Northeast China

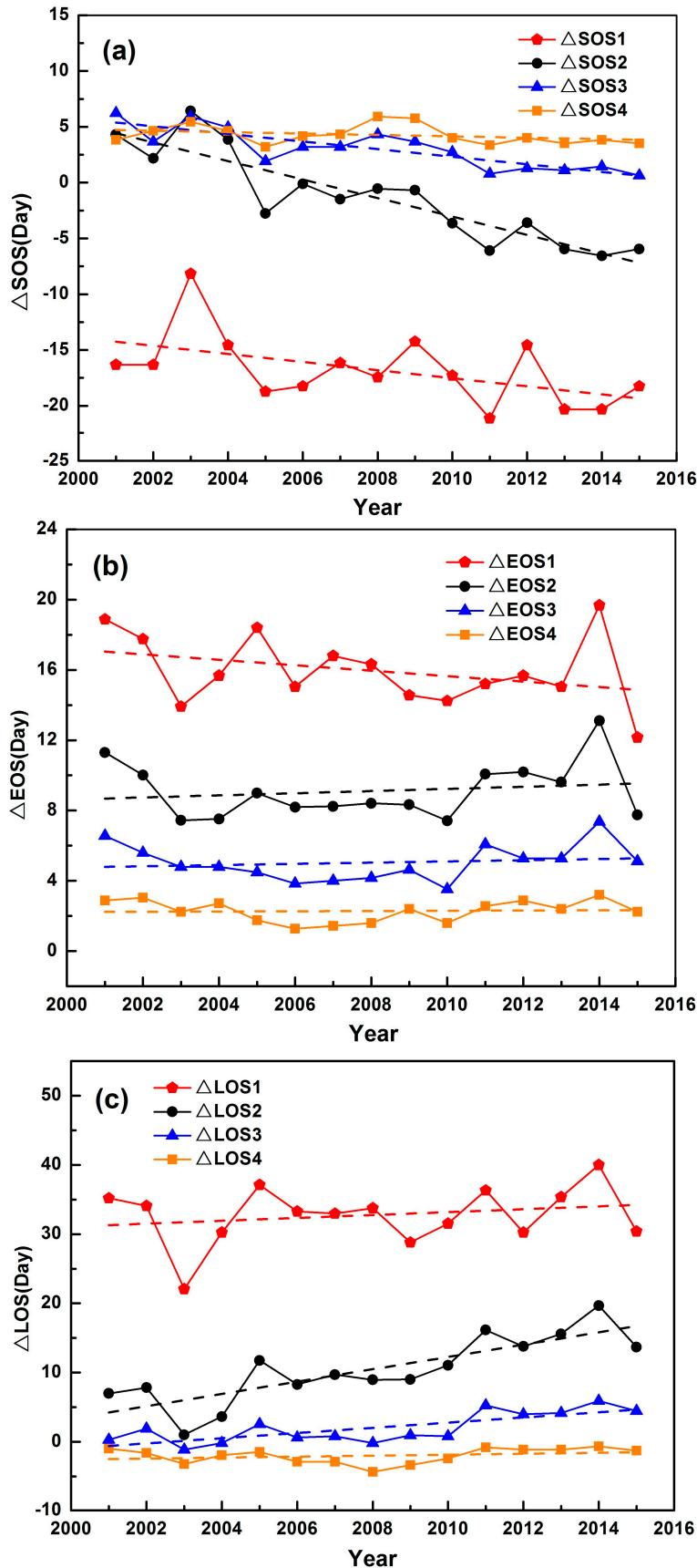
The spatial distributions of annual mean SOS and EOS during 2001–2015 were characterized by high spatial heterogeneity (Figure 3a,b). It was clear that both the earliest SOS and latest EOS were located at the biggest cities such as Harbin, Changchun and Shenyang. The later SOS mainly occurred in Songnen Plain, Liaohe Plain and Sanjiang Plain and the earlier SOS mostly appeared in eastern part of Liaoning province. The earlier EOS mainly occurred in Lesser Khingan Mountains and northeastern part of Changbai Mountains and the later EOS appeared in southwestern part of Changbai Mountains.

The mean SOS, EOS, LOS, spring LST, and autumn LST in the four areas (OUA, urbanized area, 0–2 km buffer, 2–5 km buffer) during 2001–2015 were shown in Table 1, where the strongest UHII and UELSP were found in OUA. The mean spring LST, autumn LST and EOS decreased with the increasing distances from OUA. SOS first increased then decreased but LOS first decreased and then raised with increasing distances from OUA.

In addition, the LST increases with increasing latitude, the warmest province is Liaoning and the coldest province is Heilongjiang. Meanwhile, in rural (20–25 km buffer), the earliest SOS and the latest EOS is in Liaoning province, the latest SOS and the earliest EOS is in Heilongjiang province, but the LSP differences between different province is not evident.

Figure 3.The average SOS (a) and EOS (b) in Northeast China during 2001–2015.

Table 1. The mean SOS, EOS, LOS, spring LST and autumn LST in four areas during 2001–2015.


	SOS(DOY)	EOS(DOY)	LOS(DOY)	Spring LST (°C)	Autumn LST (°C)
Entire study area					
OUA	115.61	305.15	189.54	10.87	10.07
urbanized area	131.03	298.31	167.28	10.08	9.26
0–2 km buffer	135.41	294.23	158.82	9.21	8.48
2–5 km buffer	136.68	291.48	154.8	8.81	7.88
20–25 km buffer	132.41	289.19	156.78	7.99	7.28
Heilongjiang province					
OUA	115.66	304.35	188.69	8.38	6.91
urbanized area	133.21	296.30	163.09	7.62	6.25
0–2 km buffer	139.11	292.46	153.35	6.81	5.65
2–5 km buffer	139.43	290.52	151.09	6.28	5.28
20–25 km buffer	133.25	287.06	153.81	5.59	4.9
Jilin province					
OUA	114.01	304.5	190.49	10.04	9.03
urbanized area	130.40	297.00	166.6	9.22	8.18
0–2 km buffer	135.67	291.54	155.87	8.68	7.61
2–5 km buffer	137.15	289.28	152.13	8.45	7.30
20–25 km buffer	132.73	289.3	156.57	8.02	7.26
Liaoning province					
OUA	116.18	305.88	189.7	12.87	12.75
urbanized area	129.3	300.14	170.84	12.11	11.87
0–2 km buffer	133.72	296.32	162.6	11.49	11.05
2–5 km buffer	134.9	293.49	158.59	11.18	10.59
20–25 km buffer	131.31	291.07	159.76	11.01	10.44

3.2. Temporal Variations of UELSP

This study analyzed the temporal variations of UELSP in four areas in Northeast China during 2001–2015. The Δ SOS decreased in four areas (Figure 4a). The UE on SOS was evident in OUA (Table 1) and there was a significant decreasing trend (-0.30 days/year) during 2001–2015. The Δ SOS decreased significantly in urbanized area (-0.79 days/year, $p < 0.01$) and 0–2 km buffer (-0.35 days/year, $p < 0.01$). Meanwhile, the Δ SOS decreased in 2–5 km buffer (-0.07 days/year). The results from above analysis suggested that the SOS in OUA had become earlier and earlier than rural area and the differences of SOS between urbanized area and rural area changed greatly during 2001–2015.

On the contrary, Δ EOS was always greater than zero in the four areas during 2001–2015, which suggested that the urbanization can postpone the EOS in and around the urban area. But the results of Δ EOS did not increase or decrease significantly in all above four areas (Figure 4b): OUA (-0.24 days/year), urbanized area (0.05 days/year), 0–2 km buffer (0.03 days/year), 2–5 km buffer (0.00 days/year). It suggested that the UE on EOS did not change during the whole study period in Northeast China.

It can be seen from Figure 4c that the Δ LOS increased in four areas (Figure 3c) during 2001–2015. The mean LOS in OUA was 32.76 days longer than that at rural areas (Table 1) and the differences between the OUA and rural areas had increased at the rate of 0.05 days/year. The Δ LOS increased significantly in urbanized area (0.92 days/year, $p < 0.01$) and 0–2 km buffer (0.35 days/year, $p < 0.01$) but Δ LOS only increased at the rate of 0.05 days/year in 2–5 km buffer, which was much lower than those in urbanized area and 0–2 km buffer. These results indicated that the LOS in urban and surrounding areas became increasingly longer than that in rural areas. Overall, the areas that had the most significant changes of UE on SOS and LOS during 2001–2015 were urbanized area, followed by the 0–2 km buffer and OUA in Northeast China.

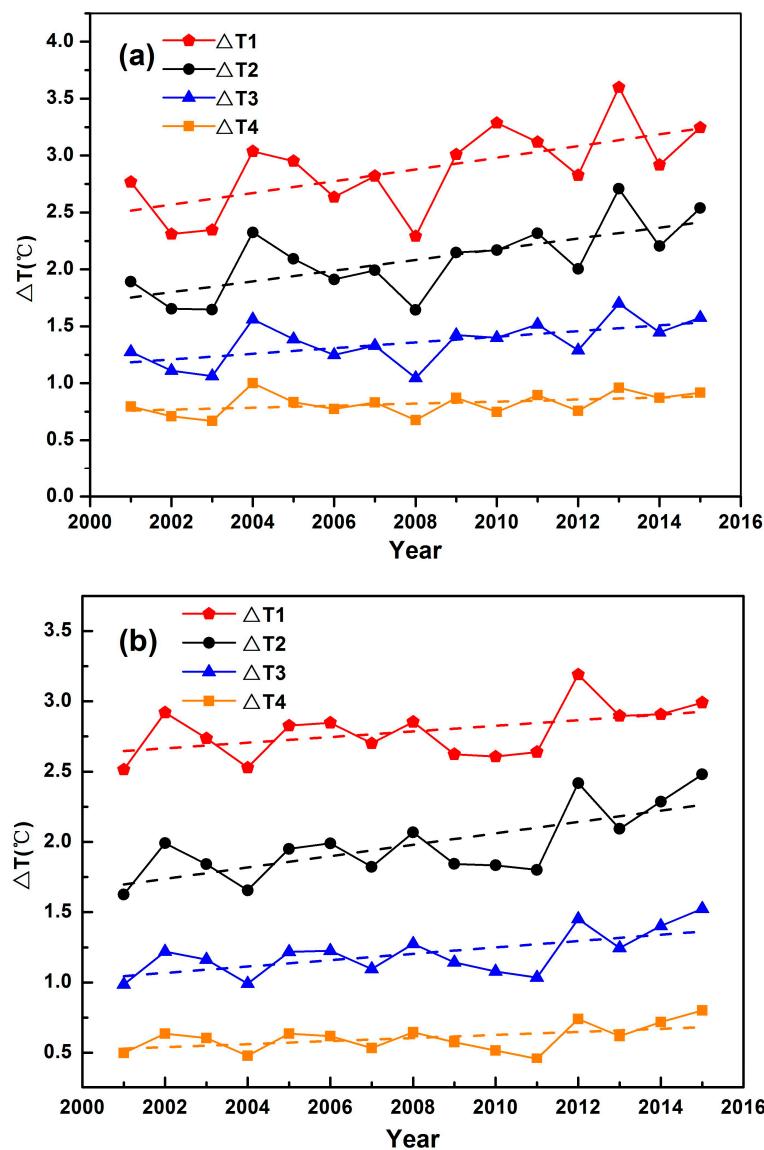


Figure 4. Interannual variations of (a) ΔSOS , (b) ΔEOS , (c) ΔLOS in four regions in Northeast China during 2001–2015. Dashed lines represent the linear trends.

3.3. Temporal Variations of UHII

The interannual variations of UHII in Northeast China were also analyzed in this study. As shown in Figure 5a, the UHII in spring increased significantly in OUA ($0.052\text{ }^{\circ}\text{C/year}$, $p < 0.05$), urbanized area ($0.050\text{ }^{\circ}\text{C/year}$, $p < 0.05$), 0–2 km buffer ($0.025\text{ }^{\circ}\text{C/year}$, $p < 0.05$) but insignificantly in 2–5 km buffer ($0.010\text{ }^{\circ}\text{C/year}$). It is worth noting that the stronger the UHII, the larger increasing trends of UHII during 2001–2015. Meanwhile, the UHII in autumn also increased in the four areas during 2001–2015 (Figure 5b). The ΔT for urbanized area increased at the rate of $0.038\text{ }^{\circ}\text{C/year}$ ($p < 0.05$), which was higher than that at the 0–2 km buffer ($0.022\text{ }^{\circ}\text{C/year}$, $p < 0.05$), OUA ($0.016\text{ }^{\circ}\text{C/year}$) and 2–5 km buffer ($0.011\text{ }^{\circ}\text{C/year}$).

Overall, the ΔT in spring and autumn were always greater than zero in all the four areas (in spring of 2013, the UHII even reached to $3.5\text{ }^{\circ}\text{C}$ for OUA), which suggested that the intensity of UHI was evident in Northeast China, and the footprint of UHI not only included the urban area but also the suburbs during the study period. The most important point is that the UHII increased in both spring and autumn at four areas during 2001–2015, and the temporal variations of UHII in spring and autumn are all highly significant in urbanized area, indicating that the rapid urbanization and land use/cover change led to the intensification of UHI in Northeast China.

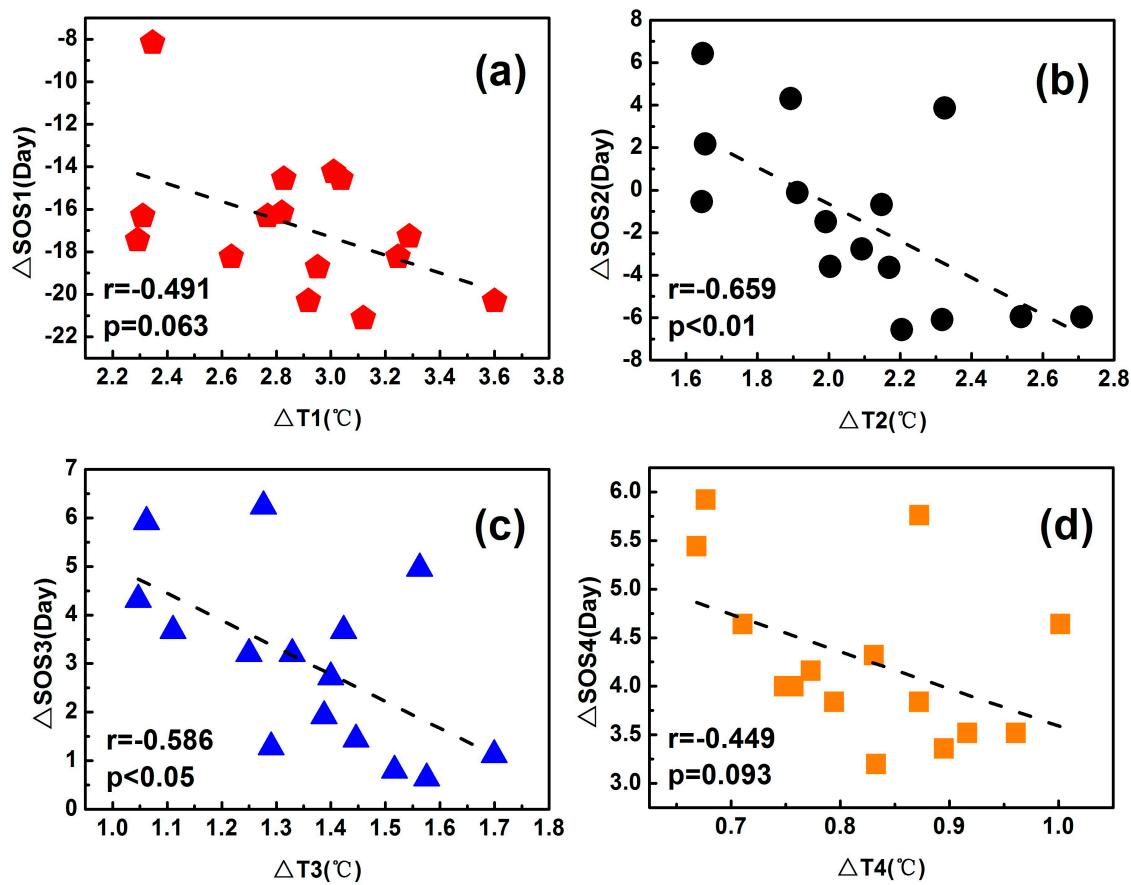
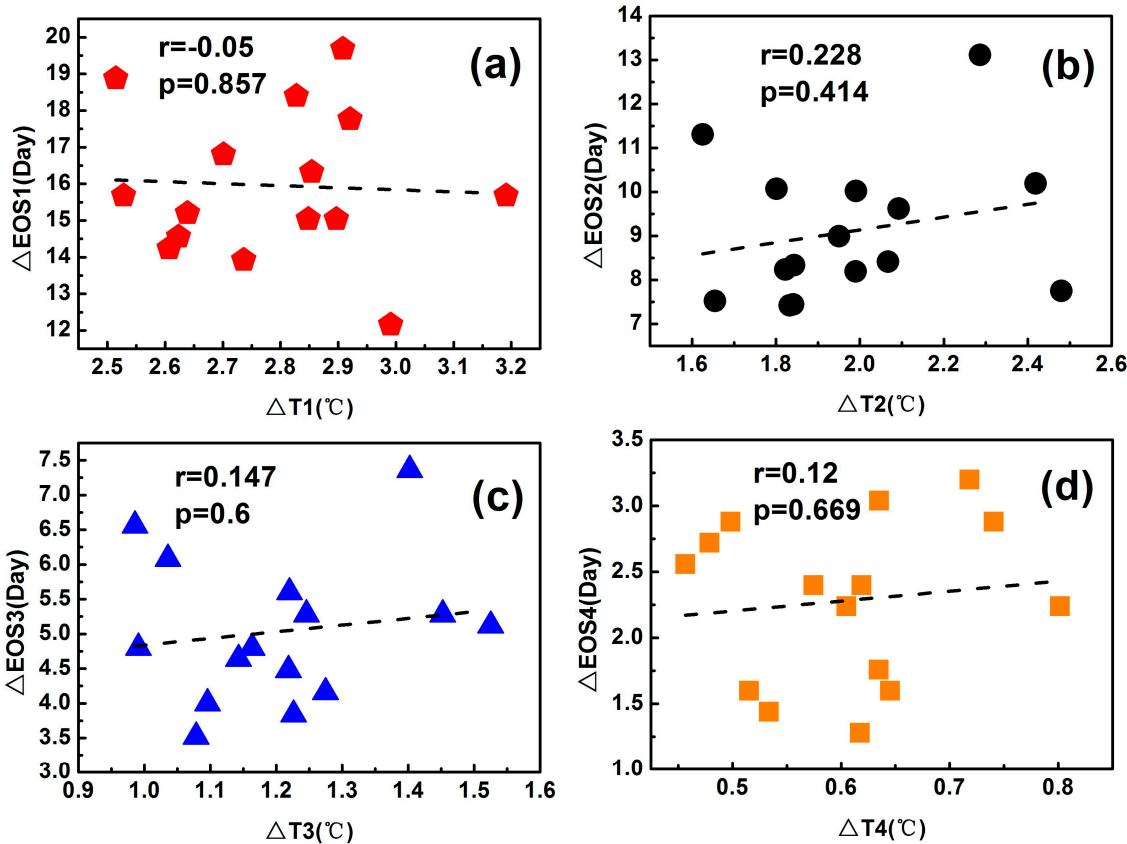


Figure 5. Interannual variations of ΔT ($^{\circ}\text{C}$) (a) in spring, and (b) in autumn in four regions during 2001–2015. Dashed lines represent the linear trends of OUA, urbanized area, 0–2 km buffer, 2–5 km buffer, respectively.


3.4. The Correlations between UHII and UELSP

The correlation analysis between ΔT and ΔP were conducted to investigate the relationships between the UELSP and UHII in this study. It was clear from Figure 6 that the correlations between ΔSOS and ΔT in spring were all negative in four areas: OUA (Figure 6a; $r = -0.491$, $p = 0.063$), urbanized area (Figure 6b; $r = -0.659$, $p < 0.01$), 0–2 km buffer (Figure 6c; $r = -0.586$, $p < 0.05$) and 2–5 km buffer (Figure 6d; $r = -0.449$, $p = 0.093$). There were significant correlations between ΔT and ΔSOS in urbanized area ($p < 0.01$) and 0–2 km buffer ($p < 0.05$), indicating that the SOS became earlier and earlier with increasing UHII in spring at four areas than that in rural areas (20–25 km).

However, there were almost no significant correlations between UHII and the UE on EOS in autumn for above four areas: OUA (Figure 7a; $r = -0.05$, $p = 0.857$), urbanized area (Figure 7b; $r = 0.228$, $p = 0.414$), 0–2 km buffer (Figure 7c; $r = 0.147$, $p = 0.6$) and 2–5 km buffer (Figure 7d; $r = 0.12$, $p = 0.669$). The correlation coefficients between ΔEOS and ΔT in autumn in the four areas only ranged between -0.05 and 0.228, indicating that the increasing UHII in autumn did not contribute to the increasing UE on EOS in Northeast China.

Figure 6. The relationships between (a) $\Delta T1$ in spring and $\Delta SOS1$, (b) $\Delta T2$ in spring and $\Delta SOS2$, (c) $\Delta T3$ in spring and $\Delta SOS3$ and (d) $\Delta T4$ in spring and $\Delta SOS4$. Each dot represents the each year during 2001–2015.

Figure 7. The relationships between (a) ΔT_1 in autumn and ΔEOS_1 , (b) ΔT_2 in autumn and ΔEOS_2 , (c) ΔT_3 in autumn and ΔEOS_3 and (d) ΔT_4 ($^{\circ}$ C) in autumn and ΔEOS_4 . Each dot represents each year during 2001–2015.

4. Discussion

4.1. Mean UHII and LSP

We calculated the 15-year averaged phenology metrics (SOS, EOS) in the whole study area and in the forest area, respectively. In general, the spatial distributions of mean SOS and EOS during 2001–2015 in this study were similar to that of Zhao et al., where the GIMMS NDVI3g data were used to study the variations of LSP in Northeast China during 1982–2013 [13]. Their results showed that SOS in the plain areas was later than mountains, and EOS in south area was later than that in north. In addition, the average SOS for the whole study area during 2001–2015 in our study was mainly between 112 and 161 DOY, the average SOS of the forest area was primarily between 113 and 151 DOY, EOS was mainly between 273 and 300 DOY, and the EOS in forest area was primarily between 273 and 299 DOY. These results were also in line with previous studies [13,45–47] (Table 2), which suggested that the method of extracted the phenology metrics in this study was reliable.

Moreover, it was revealed in this study that the UELSP and UHII were evident in OUA, and the average differences of SOS, EOS and LOS between OUA and rural area were -16.8 days, 15.96 days and 32.76 days, respectively, during the last 15 years. These effects were close to the study [9] and much larger than some previous studies [16,18,19], which is probably due to the different species compositions (deciduous forest vs. evergreen forest), and geographic locations. Specifically, northeast China was mainly covered by deciduous forest, but some cities (e.g., tropical cities of China) were primarily covered by evergreen vegetation in literature [9], which can lead to the differences of seasonal variations of vegetation index, and the differences of UELSP. The 15-year averaged UHII in spring and autumn in OUA were 2.88° C and 2.79° C (Table 1), respectively. These results were higher than previous studies [5,48,49]. The reason may be due to the different definitions for rural areas, Zhou et al. showed that the footprint of UHI in China was 2.3 and 3.9

times of urban area for day and night, respectively [4]. Accordingly, ignoring the footprint of UHI can lead to underestimate the UHII. In this study, the rural area (20–25 km buffer) we chose was farther from urban area than previous studies [5,48,49], and it is far away from the UE [9], so, the method in this study may provide a more accurate assessment of the UELSP and UHII. In addition, the trends of LSP and LST along with urban-rural gradient were similar with studies from Han et al., which studied the LSP and LST in six cities in Yangtze River delta, China [16]. Their results showed that LST decreased with the increasing distances from urban, EOS decreased with increasing distances from urban, but SOS increased first and then decreased along the urban-rural gradient.

Table 2. Mean LSP compared with other studies.

	This Study	Zhao et al. [14]	Yu et al. [44]	Hou et al. [45]	Yu et al. [46]
SOS of entire study area (julian day)	112–161	110–150			
EOS of entire study area (julian day)	273–300	270–320			
SOS of forest (julian day)	113–151		100–150	110–140	100–140
EOS of forest (julian day)	273–299		260–290	260–290	265–300
Time period (year)	2001–2015	1982–2013	2003	2001–2010	2000–2009

4.2. The Temporal Variations of UHII and UELSP As Well As Possible Reasons

The UELSP may change greatly due to the rapid urbanization, so this study highlighted the temporal variations of UELSP and UHII. The UHII in spring and autumn have experienced dramatically changes at OUA, urbanized area and 0–2 km buffer during 2001–2015 in Northeast China (Figure 5), and the UE on SOS and LOS have significant temporal variations in urbanized area and 0–2 km buffer (Figure 3). It is worth noting that the largest changes of UE on SOS, LOS, and UHII in autumn is in urbanized area, and the temporal variations of UHII in spring, UHII in autumn, UE on SOS and LOS in urbanized area are all highly significant (Table 3). This might be attributed to the land use/land cover change. With rapid urbanization, other land cover types may transform into urban areas, such as cropland, forest. Therefore, more environmental changes may occur in urbanized area, such as lower vegetation coverage, higher impervious surface, denser population. The main factors influenced the increases of UHII may be the lower vegetation cover and higher impervious surface in the study area. On one hand, Vegetation can reduce the LST at some extent, which has been confirmed by some studies in literature [50–56]: increasing vegetation cover was regarded as an effective way to reduce the UHII since vegetation can release latent heat flux by evapotranspiration. On the other hand, studies have showed that impervious surface has significant positive correlation with LST [50,57]. Impervious surface can increase the UHII since it can absorb and store heat during daytime and release slowly during nighttime. So the UELSP may increase with increasing UHII in urban area. In addition, other factors such as species compositions resulted from land cover changes may also have direct effects on LSP [9].

Table 3. Linear trends of Δ SOS, Δ EOS, Δ LOS, Δ T in spring and Δ T in autumn in four regions (OUA, urbanized area, 0–2 km buffer, 2–5 km buffer).

	Δ SOS	Δ EOS	Δ LOS	Δ T in Spring	Δ T in Autumn
OUA	−0.363	−0.155	0.208	0.052 *	0.02
urbanized area	−0.829 **	0.061	0.89 **	0.047 **	0.04 **
0–2 km buffer	−0.34 **	0.034	0.374 **	0.025 *	0.023 *
2–5 km buffer	−0.063	0.007	0.07	0.009	0.011

Significance levels: * $p < 0.05$, ** $p < 0.01$.

4.3. The Relationships between UHII and UELSP

In this study, there were high correlations between UHII and the UE on SOS in spring in four areas: OUA ($r = -0.491, p = 0.063$), urbanized area ($r = -0.659, p < 0.01$), 0–2 km buffer ($r = -0.586, p < 0.05$) and 2–5 km buffer ($r = -0.449, p = 0.093$) during 2001–2015. The results suggested that the great changes of UE on SOS were mainly attributed to the increasing UHII in spring. But there were almost no significant correlations between UHII and the UE on EOS in autumn. Although the UHII increased in autumn, the impacts of urbanization on EOS did not change significantly. This phenomenon is similar to previous studies [9,31], Zhang et al. showed that there was a significant linear relationship between Δ SOS and Δ LST during January to May, but the relationship between Δ EOS and Δ LST during September to December was not significant in eastern North America [31]. Zhou et al. also showed that the cities with earlier SOS were obviously more than the cities with later EOS in China [9]. The reason for this phenomenon may be that the EOS was also affected by other important factors such as water and photoperiod [31]. Previous studies also showed that earlier SOS may trigger earlier EOS because vegetation may reach the carbohydrate storage capacity with earlier SOS and then lead to earlier EOS [15]. In addition, Northeast China is located in high latitudes, sunshine duration may play an important role on influencing LSP (for example, the advanced SOS and delayed EOS) [14]. Overall, EOS has complex correlation with SOS, temperature, precipitation, sunshine duration and some other factors, more detailed studies needed to be carried out in future studies.

4.4. Uncertainty

There were still some uncertainties for analyzing the UELSP in Northeast China in this study. Firstly, we used the CLUDs in the year of 2000, 2005, 2010, 2015, which represented those in 2001–2002, 2003–2007, 2008–2012, and 2013–2015, respectively. This may lead to some uncertainties in urban areas especially in fast-growing cities. In addition, a lot of other factors may influence the LSP and the phenology results such as species compositions, interference from human activities, altitudes. Finally, the reasons for that the increasing UHII in autumn did not lead to the increases of UE on EOS were still not clear. The comprehensive analysis between EOS, SOS, temperature, precipitation, sunshine duration and other factors should be conducted in detail in future studies.

5. Conclusions

In this study, MODIS LST, MODIS EVI and CLUDs were used to analysis the UHII and UELSP and the associated temporal variations in Northeast China during 2001–2015. The UHII and UELSP were investigated by studying the LST and LSP differences between urban and rural area, respectively. Correlation analysis was also conducted to reveal the relationships between UHII and UELSP.

The results showed that the UELSP was evident in Northeast China, especially in big cities such as Harbin, Changchun and Shenyang. The annual mean UHII in OUA is 2.88°C in spring and 2.79°C in autumn during the whole study period. The differences of annual mean LSP between OUA and rural areas were -16.8 days for SOS, 15.96 days for EOS and 32.76 days for LOS, respectively. The SOS in above four areas had become earlier and earlier than rural area especially in urbanized area (-0.79 days/year, $p < 0.01$) during 2001–2015 and the LOS in above four areas had become longer and longer than rural area especially in urbanized area (0.92 days/year, $p < 0.01$), but the UE on EOS (Δ EOS) did not change significantly during the whole study period. Meanwhile, the UHII in spring and autumn months increased in four areas especially in OUA ($0.052^{\circ}\text{C}/\text{year}$, $p < 0.05$ in spring, and $0.016^{\circ}\text{C}/\text{year}$ in autumn), urbanized area ($0.050^{\circ}\text{C}/\text{year}$, $p < 0.05$ in spring, and $0.038^{\circ}\text{C}/\text{year}$, $p < 0.05$ in autumn), 0–2 km buffer ($0.025^{\circ}\text{C}/\text{year}$, $p < 0.05$ in spring, and $0.022^{\circ}\text{C}/\text{year}$, $p < 0.05$ in autumn). Finally, the correlation analysis indicated that the increasing UHII in spring contributed greatly to the changes of UE on SOS, but the increasing UHII in autumn did not lead to changes of UE on EOS in Northeast China.

Overall, this study provided an important reference for investigating the spatial-temporal trends of UHII and UE on terrestrial ecosystem, but there were still some uncertainties in our research, the correlation between EOS and its influencing factors need to be investigated thoroughly in later studies.

Acknowledgments: This work was financially supported by National Natural Science Foundation of China (No.41601044), Natural Science Foundation for Distinguished Young Scholars of Hubei Province of China (No.2016CFA051) and the Special Fund for Basic Scientific Research of Central Colleges, China University of Geosciences, Wuhan (No.CUG15063). We would like to thank the China Meteorological Administration (CMA) for providing the meteorological and radiation data.

Author Contributions: Rui Yao, Lunche Wang and Xin Huang designed the research; Xin Huang and Xian Guo provided parts of data; Rui Yao performed the experiments and analyzed the data; Zigeng Niu and Hongfu Liu also analyzed the parts of data; Rui Yao wrote the manuscript; Lunche Wang and Xin Huang revised the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mimet, A.; Pellissier, V.; Quénol, H.; Aguejada, R.; Dubreuil, V.; Rozé, F. Urbanisation induces early flowering: evidence from *Platanus acerifolia* and *Prunus cerasus*. *Int. J. Biometeorol.* **2009**, *53*, 287–298.
2. United Nation Population Division. Available online: <https://esa.un.org/unpd/wup/DataQuery/> (accessed on 30 October 2016).
3. Krehbiel, C.P.; Jackson, T.; Henebry, G.M. Web-Enabled Landsat data time series for monitoring urban heat island impacts on land surface phenology. *IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.* **2016**, *9*, 2043–2050.
4. Zhou, D.; Zhao, S.; Zhang, L.; Sun, G.; Liu, Y. The footprint of urban heat island effect in China. *Sci. Rep.* **2015**, *5*, 11160, doi: 10.1038/srep11160.
5. Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Bréon, F.; Nan, H.; Zhou, L.; Myneni, R.B. Surface urban heat island across 419 global big cities. *Environ. Sci. Technol.* **2012**, *46*, 696–703.
6. Zhou, D.; Zhao, S.; Liu, S.; Zhang, L.; Zhu, C. Surface urban heat island in China's 32 major cities: Spatial patterns and drivers. *Remote Sens. Environ.* **2014**, *152*, 51–61.
7. Clinton, N.; Gong, P. MODIS detected surface urban heat islands and sinks: Global locations and controls. *Remote Sens. Environ.* **2013**, *134*, 294–304.
8. Arnfield, A.J. Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. *Int. J. Climatol.* **2003**, *23*, 1–26.
9. Zhou, D.; Zhao, S.; Zhang, L.; Liu, S. Remotely sensed assessment of urbanization effects on vegetation phenology in China's 32 major cities. *Remote Sens. Environ.* **2016**, *176*, 272–281.
10. Kang, X.; Hao, Y.; Cui, X.; Chen, H.; Huang, S.; Du, Y.; Li, W.; Kardol, P.; Xiao, X.; Cui, L. Variability and changes in climate, phenology, and gross primary production of an Alpine wetland ecosystem. *Remote Sens.* **2016**, *8*, 391.
11. Cecchi, L.; d'Amato, G.; Ayres, J.; Galan, C.; Forastiere, F.; Forsberg, B.; Gerritsen, J.; Nunes, C.; Behrendt, H.; Akdis, C. Projections of the effects of climate change on allergic asthma: The contribution of aerobiology. *Allergy* **2010**, *65*, 1073–1081.
12. van Vliet, A.J.; Overeem, A.; de Groot, R.S.; Jacobs, A.F.; Spieksma, F. The influence of temperature and climate change on the timing of pollen release in the Netherlands. *Int. J. of Climatol.* **2002**, *22*, 1757–1767.
13. Zhao, J.; Wang, Y.; Zhang, Z.; Zhang, H.; Guo, X.; Yu, S.; Du, W.; Huang, F. The variations of land surface phenology in Northeast China and its responses to climate change from 1982 to 2013. *Remote Sens.* **2016**, *8*, 400.
14. Liang, S.; Shi, P.; Li, H. Urban spring phenology in the middle temperate zone of China: Dynamics and influence factors. *Int. J. Biometeorol.* **2016**, *60*, 531–544.
15. Wu, C.; Hou, X.; Peng, D.; Gonsamo, A.; Xu, S. Land surface phenology of China's temperate ecosystems over 1999–2013: Spatial–temporal patterns, interaction effects, covariation with climate and implications for productivity. *Agric. For. Meteorol.* **2016**, *216*, 177–187.
16. Han, G.; Xu, J. Land surface phenology and land surface temperature changes along an urban–rural gradient in Yangtze River Delta, China. *Environ. Manag.* **2013**, *52*, 234–249.

17. Buyantuyev, A.; Wu, J. Urbanization diversifies land surface phenology in arid environments: Interactions among vegetation, climatic variation, and land use pattern in the Phoenix metropolitan region, USA. *Landsc. Urban. Plan.* **2012**, *105*, 149–159.
18. White, M.A.; Nemani, R.R.; Thornton, P.E.; Running, S.W. Satellite evidence of phenological differences between urbanized and rural areas of the eastern United States deciduous broadleaf forest. *Ecosystems* **2002**, *5*, 260–277.
19. Dallimer, M.; Tang, Z.; Gaston, K.J.; Davies, Z.G. The extent of shifts in LSP between rural and urban areas within a human-dominated region. *Ecol. Evol.* **2016**, *6*, 1942–1953.
20. Jochner, S.C.; Sparks, T.H.; Estrella, N.; Menzel, A. The influence of altitude and urbanization trends and mean dates in phenology (1980–2009). *Int. J. Biometeorol.* **2012**, *56*, 387–394.
21. Gazal, R.; White, M.A.; Gillies, R.; Rodemaker, E.; Sparrow, E.; Gordon, L. GLOBE students, teachers, and scientists demonstrate variable differences between urban and rural leaf phenology. *Glob. Chang. Biol.* **2008**, *14*, 1568–1580.
22. Neil, K.; Wu, J. Effects of urbanization on plant flowering phenology: A review. *Urban Ecosyst.* **2006**, *9*, 243–257.
23. Luo, Z.; Sun, O.J.; Ge, Q.; Xu, W.; Zheng, J. Phenological responses of plants to climate change in an urban environment. *Ecol. Res.* **2007**, *22*, 507–514.
24. Liu, S.; Zhang, P.; Wang, Z.; Liu, W.; Tan, J. Measuring the sustainable urbanization potential of cities in Northeast China. *J. Geogr. Sci.* **2016**, *26*, 549–567.
25. Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. *J. Geogr. Sci.* **2014**, *24*, 195–210.
26. Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, D.; Wu, S.; Jiang, N. Spatial patterns and driving forces of land use change in China during the early 21st century. *J. Geogr. Sci.* **2010**, *20*, 483–494.
27. Liu, J.; Liu, M.; Zhuang, D.; Zhang, Z.; Deng, X. Study on spatial pattern of land-use change in China during 1995–2000. *Sci. China Ser. D.* **2003**, *46*, 373–384.
28. Kuang, W.; Liu, J.; Dong, J.; Chi, W.; Zhang, C. The rapid and massive urban and industrial land expansions in China between 1990 and 2010: A CLUD-based analysis of their trajectories, patterns, and drivers. *Landsc. Urban Plan.* **2016**, *145*, 21–33.
29. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. *Remote Sens. Environ.* **2002**, *83*, 195–213.
30. Ishtiaque, A.; Myint, S.W.; Wang, C. Examining the ecosystem health and sustainability of the world's largest mangrove forest using multi-temporal MODIS products. *Sci. Total Environ.* **2016**, *569*, 1241–1254.
31. Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Schneider, A. The footprint of urban climates on vegetation phenology. *Geophys. Res. Lett.* **2004**, *31*, doi: 10.1029/2004GL020137.
32. Dallimer, M.; Tang, Z.; Bibby, P.R.; Brindley, P.; Gaston, K.J.; Davies, Z.G. Temporal changes in green space in a highly urbanized region. *Biol. Lett.* **2011**, *7*, 763–766.
33. Zhou, D.; Zhao, S.; Liu, S.; Zhang, L. Spatiotemporal trends of terrestrial vegetation activity along the urban development intensity gradient in China's 32 major cities. *Sci. Total Environ.* **2014**, *488*, 136–145.
34. LPDAAC (Land Processes Distributed Active Archive Center). Modis Reprojection Tool. Available online: https://lpdaac.usgs.gov/tools/modis_reprojection_tool (accessed on 7 July 2014).
35. Qiao, Z.; Tian, G.; Xiao, L. Diurnal and seasonal impacts of urbanization on the urban thermal environment: A case study of Beijing using MODIS data. *ISPRS. J. Photogramm.* **2013**, *85*, 93–101.
36. Jin, M.; Dickinson, R.E.; Zhang, D. The footprint of urban areas on global climate as characterized by MODIS. *J. Clim.* **2005**, *18*, 1551–1565.
37. Hung, T.; Uchihama, D.; Ochi, S.; Yasuoka, Y. Assessment with satellite data of the urban heat island effects in Asian mega cities. *Int. J. Appl. Earth. Obs.* **2006**, *8*, 34–48.
38. Pongracz, R.; Bartholy, J.; Dezso, Z.; Remotely sensed thermal information applied to urban climate analysis. *Adv. Space. Res.* **2006**, *37*, 2191–2196.
39. Wan, Z. New refinements and validation of the MODIS land-surface temperature/emissivity products. *Remote Sens. Environ.* **2008**, *112*, 59–74.

40. Pablos, M.; Martínez-Fernández, J.; Piles, M.; Sánchez, N.; Vall-llossera, M.; Camps, A. Multi-temporal evaluation of soil moisture and land surface temperature dynamics using in situ and satellite observations. *Remote Sens.* **2016**, *8*, 587.

41. Gow, L.J.; Barret, D.J.; Renzullo, L.J.; Phinn, S.R.; O'Grady, A.P. Characterising groundwater use by vegetation using a surface energy balance model and satellite observations of land surface temperature. *Environ. Model. Softw.* **2016**, *80*, 66–82.

42. Chen, J.; Jōnsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. *Remote Sens. Environ.* **2004**, *91*, 332–344.

43. Jōnsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. *Comput. Geosci.* **2004**, *30*, 833–845.

44. Chu, L.; Liu, Q.; Huang, C.; Liu, G. Monitoring of winter wheat distribution and phenological phases based on MODIS time-series: A case study in the Yellow River Delta, China. *J. Integr. Agr.* **2016**, *15*, 60345–7, doi: doi: 10.1016/S2095–3119(15)61319–3.

45. Yu, X.; Zhuang, D. Monitoring forest phenophases of Northeast China based on MODIS NDVI data. *Resour. Sci.* **2006**, *28*, 111–117.

46. Hou, X.H.; Niu, Z.; Gao, S. Phenology of forest vegetation in northeast of China in ten years using remote sensing. *Spectrosc. Spectr. Anal.* **2014**, *34*, 515–519.

47. Yu, X.; Wang, Q.; Yan, H.; Wang, Y.; Wen, K.; Zhuang, D.; Wang, Q. Forest phenology dynamics and its responses to meteorological variations in Northeast China. *Adv. Meteorol.* **2014**, *2014*, 592106 . Available online: <http://dx.doi.org/10.1155/2014/592106> (accessed on Day Month Year).

48. Wang, J.; Huang, B.; Fu, D.; Atkinson, P.M. Spatiotemporal variation in surface urban heat island intensity and associated determinants across major Chinese cities. *Remote Sens.* **2015**, *7*, 3670–3689.

49. Zhou, D.; Zhao, S.; Liu, S.; Zhang, L.; Zhu, C. Surface urban heat island in China's 32 major cities: Spatial patterns and drivers. *Remote Sens. Environ.* **2014**, *152*, 51–61.

50. Wang, C.; Myint, S.W.; Wang, Z.; Song, J. Spatio-temporal modeling of the urban heat island in the phoenix metropolitan area: Land use change implications. *Remote. Sens.* **2016**, *8*, 185.

51. Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. *Remote Sens. Environ.* **2007**, *106*, 375–386.

52. Rosenfeld, A.H.; Akbari, H.; Bretz, S.; Fishman, B.L.; Kurn, D.M.; Sailor, D.; Taha, H. Mitigation of urban heat islands: Materials, utility programs, updates. *Energy Build.* **1995**, *22*, 255–265.

53. Ca, V.T.; Asaeda, T.; Abu, E.M. Reductions in air-conditioning energy caused by a nearby park. *Energy Build.* **1998**, *29*, 83–92.

54. Ashie, Y.; Thanh, V.C.; Asaeda, T. Building canopy model for the analysis of urban climate. *J. Wind Eng. Ind. Aerodyn.* **1999**, *81*, 237–248.

55. Tong, H.; Walton, A.; Sang, J.; Chan, J.C.L. Numerical simulation of the urban boundary layer over the complex terrain of Hong Kong. *Atmos. Environ.* **2005**, *39*, 3549–3563.

56. Yu, C.; Hien, W.N. Thermal benefits of city parks. *Energy Build.* **2006**, *38*, 105–120.

57. Myint, S.W.; Wentz, E.A.; Brazel, A.J.; Quattrochi, D.A. The impact of distinct anthropogenic and vegetation features on urban warming. *Landsc. Ecol.* **2013**, *28*, 959–978.

© 2017 by the authors; licensee Preprints, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (<http://creativecommons.org/licenses/by/4.0/>).