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Abstract: The urbanization effects on land surface phenology (LSP) have been investigated by 
many studies, but few studies focused on the temporal variations of urbanization effects on LSP. In 
this study, we used the MODIS EVI, MODIS LST data and China’s Land Use/Cover Datasets 
(CLUDs) to investigate the temporal variations of urban heat island intensity and urbanization 
effects on LSP in Northeast China during 2001–2015. Land surface temperature (LST) and 
phenology differences between urban and rural areas represented the urban heat island intensity 
and urbanization effects on LSP, respectively. Mann-kendall nonparametric test and Sen's slope 
were used to evaluating the trends of urbanization effects on LSP and urban heat island intensity. 
The results indicated that the average land surface phenology (LSP) during 2001–2015 was 
characterized by high spatial heterogeneity. The start of the growing season (SOS) in old urban 
area had become earlier and earlier than rural area and the differences of SOS between urbanized 
area and the rural area changed greatly during 2001–2015 (−0.79 days/year, p < 0.01). Meanwhile, 
the length of the growing season (LOS) in urban and adjacent areas had become increasingly 
longer than rural area especially in urbanized area (0.92 days/year, p < 0.01), but the differences of 
the end of the growing season (EOS) between urban and adjacent areas did not change 
significantly. Next, the UHII increased in spring and autumn during the whole study period. 
Moreover, the correlation analysis indicated that the increasing urban heat island intensity in 
spring contributed greatly to the increases of urbanization effects on SOS, but the increasing urban 
heat island intensity in autumn did not lead to the increases of urbanization effects on EOS in 
Northeast China. 
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1. Introduction 

Urbanization refers to the historical process of gradual transformation of the traditional 
agricultural-based rural society to the non-agricultural-based modern urban society. Urbanization 
can be explained from the perspectives of demography, geography, sociology, economics and so on. 
From the perspective of demography, the speed of urbanization is accelerating around the world. 
For example, the proportion of urban population in the world was 30% in 1952, 47% in 2001, 50% in 
2007 and 54% in 2014 [1–3]. Meanwhile, the urbanization can bring out a series of environmental 
and social issues, e.g., land use/land cover changes, urban heat island (UHI), air pollution, 
hydro-system changes, land surface phenology (LSP) changes [3], these urbanization related nature 
and social phenomena have profound impacts on human life, thus, it is essential to study the 
magnitude, temporal variations and mechanisms of the urbanization effects (UE) on the terrestrial 
ecosystems [9]. 
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UHI refers to the higher temperature in urban than rural places caused by the urbanization. The 
urban heat island intensity (UHII) is defined as the temperature differences between urban and rural 
[4–7]. UHII can be exacerbated by many factors relating with urbanization process, such as more 
impervious surface, lower vegetation cover and worse ventilation [3]. Peng et al. analyzed the UHII 
at 419 global big cities and the results showed that the annual daytime UHII and nighttime UHII 
were 1.5 °C and 1.1 °C, respectively [5]. The footprint of UHI not only included the urban areas but 
also the suburbs according to previous study [4].  

UHI can affect the environment in and around the city [1,4,8]. For instance, LSP assesses the 
vegetation activity at ecosystem level. Changes of LSP can influence the water, carbon, energy cycle 
[9,10] and even human activities such as the increasing severity of allergies [9,11,12]. LSP is an 
indicator of environmental and climate changes. For example, Zhao et al. showed that the spring 
and autumn temperature affects the SOS and EOS in Northeast China, respectively [13]. Liang et al. 
showed that the impact of altitude on SOS cannot be ignored in the cities located in the middle 
temperate zone of China [14]. Some studies also showed that sunshine duration and precipitation 
may play important roles on LSP [13–15]. For example, Liang et al. indicated that sunshine duration 
acted more on SOS than precipitation and temperature at Harbin, Northeast China [14]. 

Urbanization mainly influences the LSP via UHI. A number of studies investigated the 
urbanization effects on land surface phenology (UELSP) using both remote sensing [9,16–19] and 
ground observations [1,20–23] in different cities. Some results indicated that the urbanization has 
significant effects on LSP especially in high latitude zones [9,19,21]. For example, Han et al. showed 
that the SOS was earlier and EOS was later in urban area than those of rural areas at 6 cities in 
Yangtze River Delta, China, and the footprint of UHI effects on LSP was 6 km from the urban edge 
[16]. White et al. showed that the LOS of deciduous broadleaf forest in urban was 7.6 days longer 
than rural areas in eastern United States [18]. Zhou et al. showed that the average SOS was 11.9 days 
earlier and EOS was 5.4 days later in urban than those of rural areas at 32 major cities of China, they 
also indicated that the most significant UELSP were observed in Northeast China [9]. Gazal et al. 
showed that SOS was earlier in urban area than rural in a tropical city (Bangkok of Thailand) but 
later in other two tropical cities (Korat of Thailand, Dakar of Senegal), and SOS was earlier in urban 
area than rural in three temperate cities (Tokyo of Japan, Jyväskylä of Finland, Bishkek of 
Kyrgyzstan) but later in a temperate city (Fairbanks of America) [21]. However, very few studies 
investigated the temporal variations of UELSP in literature. 

China has one-fifth of the world's population, and is undergoing an unprecedented 
urbanization in the world. It is of great importance to study the urbanization as well as its impacts 
on terrestrial ecosystems in China. As the largest old industrial base in China, Northeast China has 
experienced rapid urbanization since 2003 due to the policy of revitalizing the old industrial base in 
China [24]. Therefore, it is essential to study the UE on terrestrial ecosystems and its temporal 
variations with rapid urbanization in recent decades. For the purpose of filling the current research 
gaps and providing a better understanding of UE on terrestrial ecosystem in this area, our study 
aimed at: (1) examining the quantitative effects of urbanization on LSP in Northeast China; (2) 
investigating the temporal variations of UHII and UELSP during 2001–2015; (3) exploring the 
potential relationships between UELSP and UHII in Northeast China. 

2. Materials and Methods 

2.1. Study Area 

The three provinces, including Heilongjiang, Jilin and Liaoning, are located at 
118°50′E–135°09′E, 38°42′N–53°35′N [13] in Northeast China. The total area of the three provinces is 
about 0.787 million km2, accounting for 8.2% of the country's total area. Most parts of the study area 
are in the mid-temperate zone except for the northern part of Heilongjiang province (Cold temperate 
zone) and the southwestern part of Liaoning province (Warm temperate zone). The plains with 
lower altitude primarily situated in the eastern (Songliao plain) and western (Sanjiang Plain) parts, 
mountains with high altitude mainly located in the southeastern (Changbai Mountains) and 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 January 2017                   doi:10.20944/preprints201701.0051.v1

Peer-reviewed version available at Remote Sens. 2017, 9, 66; doi:10.3390/rs9010066

http://dx.doi.org/10.20944/preprints201701.0051.v1
http://dx.doi.org/10.3390/rs9010066


 3 of 16 

 

northern (Lesser Khingan Mountains) parts. The majority of cropland and urban area located in 
Songliao plain and Sanjiang Plain; the forest area mainly located in Lesser Khingan Mountains and 
Changbai Mountains (Figure 1). With regard to the population, the total population in Northeast 
China reached 109.8 million in 2013, and up to 65 million people live in cities [24]. 

 
Figure 1.The location and the CLUD (2015) of the study area. 

2.2. Land Cover Data 

The China’s Land Use/Cover Datasets (CLUDs) were derived from the Landsat TM/ETM+ and 
HJ-1A/1B, including 25 classes in total with 5-year interval from 1990 to 2015. Quality control 
procedures have been carried out for the datasets, the overall accuracy of the 25 classes of CLUDs 
was up to 90% [25–27]. More details about the CLUDs can be found in previous studies [25–28]. 

The CLUDs were merged into six major categories (urban, water body, cropland, forest, 
grassland and other) and resampled to a spatial resolution of 1000m to match the MODIS EVI data 
and MODIS LST data. Then each category was converted into a vector file for the purpose of 
subseting the MODIS EVI data and later statistical analysis. In this study, we hypothesized that the 
CLUDs in the year of 2000, 2005, 2010, 2015 can represent land use/cover in 2001–2002, 2003–2007, 
2008–2012, 2013–2015, respectively [9]. 

2.3. MODIS EVI Data 

This study used the MOD13A2 EVI data (16 day composite,1000m spatial resolution, from 2001 
to 2015) to extract the LSP information (SOS, EOS and LOS) in Northeast China. This data was 
improved via de-coupling of canopy background signal and reducing the influences of atmospheric 
and soil reflectance [29,30]. A lot of studies showed that EVI is better than NDVI especially for 
detecting vegetation variations in urban area [16,31–33].This data was first reprojected and 
mosaicked using the MODIS Reprojection Tool (MRT) [34]. Then we removed cropland since the 
SOS of cropland was affected by artificial sowing and the EOS of cropland was affected by artificial 
harvesting, thus, the cropland cannot accurately reflect the environmental and climate changes; 
water body was also removed in this study due to no vegetation covers [9,18,31].  
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2.4. MODIS LST Data 

MODIS LST is an ideal data to study the UHI at regional scale [35–38], and the absolute bias is 
less than 1K [39–41]. We used the MOD11A2 LST data (8 day composite, 1000m spatial resolution, 
from 2001 to 2015) to detect the temporal variations of UHII in the study area. We used the same 
method mentioned in the above section to reproject and mosaic the MODIS LST data. We assumed 
that the mean of MODIS LST nighttime temperature and MODIS LST daytime temperature can 
represent daily average temperature, and the mean temperature during March to May can represent 
spring temperature, the mean temperature during September to November can represent autumn 
temperature according to previous study [10]. 

2.5. Phenology Metrics 

TIMESAT was used to generate the LSP information from MODIS EVI data [42,43]. We used the 
Savitzky-Golay filter to smooth the EVI time series data according to previous study since it is 
simple, reliable and can preserve features of the dataset, such as relative maximum, minimum and 
width [44]. There are generally two methods to determine the SOS and EOS [9]. The first one is the 
threshold method, i.e., SOS and EOS were defined as the dates that the fitted curves up to and fall to 
the threshold value, respectively. The second one is the amplitude method, i.e., SOS and EOS were 
defined as the date that the fitted curves up to and fall to the proportion of the amplitude, 
respectively. The amplitude is defined as the differences between the maximal and minimal EVI in 
the same year. In this study, we chose the amplitude method since urban area have lower vegetation 
cover than surroundings and the threshold method cannot correctly compute the LSP metrics. Zhao 
et al. studied the variation of LSP in Northeast China during 1982–2013 [13] using 30% of the 
amplitude and the results were in agreement with ground observation and previous studies [45–47]. 
Similarly, we also chose 30% of the amplitude to calculate the LSP parameter (SOS, EOS) for further 
analysis in this study. 

There may be some outliers resulting from atmospheric contamination or interference from 
human activities when extracting the phenology information. We excluded these outliers for the 
purpose of reducing the deviation [9]. SOS with earlier than 50 day of year (DOY) or later than 180 
DOY was excluded, and EOS with earlier than 240 DOY and later than 330 DOY was removed. LOS 
was computed as the differences between EOS and SOS. 

2.6. Calculation of UELSP and UHII 

First, we removed the cities with urban area less than 10km2 since the smaller city may have 
slower urbanization speed and smaller UE [31]. Then we chose the urban area of the CLUDs (in the 
year of 2000, 2005, 2010, 2015) to take the intersection and defined it as ”old urban area” (OUA), that 
is to say, the OUA was the common part of urban area of above 4 land cover maps. We take union 
of the urban areas of the CLUDs (in the year of 2000, 2005, 2010, 2015) and subtracted the intersection 
from the union part and define it as urbanized area. We further generated 3 buffers extending 0–2 
km, 2–5 km, 20–25 km from the edge of union and defined the 20–25 km buffer as rural area 
according to [9]. In this way, this study focused on four stationary areas in and around the urban 
area (OUA, urbanized area, 0–2 km buffer and 2–5 km buffer) and one stationary area in rural area 
(20–25 km buffer) in Northeast China (Figure 2). 
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Figure 2.The CLUDs in 2000, 2005, 2010, 2015 and the schematic diagram of four areas (OUA, 
urbanized area, 0–2 km buffer and 2–5 km buffer), an example of Changchun city. 

We used the phenology differences between OUA or urbanized area or buffers (0–2 km buffer, 
2–5 km buffer) and rural area (20–25 km buffer) to represent the UELSP as follow [9]: 

∆P1 = POUA - Prural (1) 

∆P2 = Purbanized area - Prural (2) 

∆P3 = P0–2 km buffer - Prural (3) 

∆P4 = P2–5 km buffer - Prural (4) 

where POUA, Purbanized area, P0-2km buffer, P2-5km buffer and Prural represent the LSP metrics (SOS, EOS, LOS) in 
OUA, urbanized area, 0–2 km buffer, 2–5 km buffer and 20–25 km buffer, respectively. Accordingly, 
∆P1, ∆P2, ∆P3 and ∆P4 represent the UELSP in OUA, urbanized area, 0–2 km buffer and 2–5 km 
buffer, respectively. 

Similarly, we used the LST differences between OUA or urbanized area or buffer zone and rural 
area to represent the UHII as follow [4–7]: 

 

∆T1 = TOUA - Trural (5) 

∆T2 = Turbanized area - Trural (6) 

∆T3 = T0–2 km buffer - Trural (7) 
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where the TOUA, Turbanized area, T0-2km buffer, T2-5km buffer and Trural represent the LST in OUA, urbanized area, 
0–2 km buffer, 2–5 km buffer and 20–25 km buffer, respectively. So, ∆T1, ∆T2, ∆T3 and ∆T4 represent 
the UHII in OUA, urbanized area, 0–2 km buffer and 2–5 km buffer, respectively. 

3. Results 

3.1. Mean Phenology and Mean LST in Northeast China 

The spatial distributions of annual mean SOS and EOS during 2001–2015 were characterized by 
high spatial heterogeneity (Figure 3a,b). It was clear that both the earliest SOS and latest EOS were 
located at the biggest cities such as Harbin, Changchun and Shenyang. The later SOS mainly 
occurred in Songnen Plain, Liaohe Plain and Sanjiang Plain and the earlier SOS mostly appeared in 
eastern part of Liaoning province. The earlier EOS mainly occurred in Lesser Khingan Mountains 
and northeastern part of Changbai Mountains and the later EOS appeared in southwestern part of 
Changbai Mountains. 

The mean SOS, EOS, LOS, spring LST, and autumn LST in the four areas (OUA, urbanized area, 
0–2 km buffer, 2–5 km buffer) during 2001–2015 were shown in Table 1, where the strongest UHII 
and UELSP were found in OUA. The mean spring LST, autumn LST and EOS decreased with the 
increasing distances from OUA. SOS first increased then decreased but LOS first decreased and then 
raised with increasing distances from OUA. 

In addition, the LST increases with increasing latitude, the warmest province is Liaoning and 
the coldest province is Heilongjiang. Meanwhile, in rural (20–25 km buffer), the earliest SOS and the 
latest EOS is in Liaoning province, the latest SOS and the earlist EOS is in Heilongjiang province, 
but the LSP differences between different province is not evident. 

Figure 3.The average SOS (a) and EOS (b) in Northeast China during 2001–2015. 

  

∆T4 = T2–5 km buffer - Trural (8) 
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Table 1. The mean SOS, EOS, LOS, spring LST and autumn LST in four areas during 2001–2015.  

 SOS(DOY) EOS(DOY) LOS(DOY) Spring LST (°C) Autumn LST (°C)
Entire study area      

OUA 115.61 305.15 189.54 10.87 10.07 
urbanized area 131.03 298.31 167.28 10.08 9.26 
0–2 km buffer 135.41 294.23 158.82 9.21 8.48 
2–5 km buffer 136.68 291.48 154.8 8.81 7.88 

20–25 km buffer 132.41 289.19 156.78 7.99 7.28 
Heilongjiang province      

OUA 115.66 304.35 188.69 8.38 6.91 
urbanized area 133.21 296.30 163.09 7.62 6.25 
0–2 km buffer 139.11 292.46 153.35 6.81 5.65 
2–5 km buffer 139.43 290.52 151.09 6.28 5.28 

20–25 km buffer 133.25 287.06 153.81 5.59 4.9 
Jilin province      

OUA 114.01 304.5 190.49 10.04 9.03 
urbanized area 130.40 297.00 166.6 9.22 8.18 
0–2 km buffer 135.67 291.54 155.87 8.68 7.61 
2–5 km buffer 137.15 289.28 152.13 8.45 7.30 

20–25 km buffer 132.73 289.3 156.57 8.02 7.26 
Liaoning province      

OUA 116.18 305.88 189.7 12.87 12.75 
urbanized area 129.3 300.14 170.84 12.11 11.87 
0–2 km buffer 133.72 296.32 162.6 11.49 11.05 
2–5 km buffer 134.9 293.49 158.59 11.18 10.59 

20–25 km buffer 131.31 291.07 159.76 11.01 10.44 

3.2. Temporal Variations of UELSP 

This study analyzed the temporal variations of UELSP in four areas in Northeast China during 
2001–2015. The ∆SOS decreased in four areas (Figure 4a). The UE on SOS was evident in OUA (Table 
1) and there was a significant decreasing trend (−0.30 days/year) during 2001–2015. The ∆SOS 
decreased significantly in urbanized area (−0.79 days/year, p < 0.01) and 0–2 km buffer (−0.35 
days/year, p < 0.01). Meanwhile, the ∆SOS decreased in 2–5 km buffer (−0.07 days/year). The results 
from above analysis suggested that the SOS in OUA had become earlier and earlier than rural area 
and the differences of SOS between urbanized area and rural area changed greatly during 
2001–2015. 

On the contrary, ∆EOS was always greater than zero in the four areas during 2001–2015, which 
suggested that the urbanization can postpone the EOS in and around the urban area. But the results 
of ∆EOS did not increase or decrease significantly in all above four areas (Figure 4b): OUA (−0.24 
days/year), urbanized area (0.05 days/year), 0–2 km buffer (0.03 days/year), 2–5 km buffer (0.00 
days/year). It suggested that the UE on EOS did not change during the whole study period in 
Northeast China. 

It can be seen from Figure 4c that the ∆LOS increased in four areas (Figure 3c;) during 
2001–2015. The mean LOS in OUA was 32.76 days longer than that at rural areas (Table 1) and the 
differences between the OUA and rural areas had increased at the rate of 0.05 days/year. The ∆LOS 
increased significantly in urbanized area (0.92 days/year, p < 0.01) and 0–2 km buffer (0.35 days/year, 
p < 0.01) but ∆LOS only increased at the rate of 0.05 days/year in 2–5 km buffer, which was much 
lower than those in urbanized area and 0–2 km buffer. These results indicated that the LOS in urban 
and surrounding areas became increasingly longer than that in rural areas. Overall, the areas that 
had the most significant changes of UE on SOS and LOS during 2001–2015 were urbanized area, 
followed by the 0–2 km buffer and OUA in Northeast China. 
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Figure 4. Interannual variations of (a) ∆SOS, (b) ∆EOS, (c) ∆LOS in four regions in Northeast China 
during 2001–2015. Dashed lines represent the linear trends. 

3.3. Temporal Variations of UHII 
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The interannual variations of UHII in Northeast China were also analyzed in this study. As 
shown in Figure 5a, the UHII in spring increased significantly in OUA (0.052 °C/year, p < 0.05), 
urbanized area (0.050 °C/year, p < 0.05), 0–2 km buffer (0.025 °C/year, p < 0.05) but insignificantly in 
2–5 km buffer (0.010 °C/year). It is worth noting that the stronger the UHII, the larger increasing 
trends of UHII during 2001–2015. Meanwhile, the UHII in autumn also increased in the four areas 
during 2001–2015 (Figure 5b). The ∆T for urbanized area increased at the rate of 0.038 °C/year (p < 
0.05), which was higher than that at the 0–2 km buffer (0.022 °C/year, p < 0.05), OUA (0.016 °C/year) 
and 2–5 km buffer (0.011 °C/year). 

Overall, the ∆T in spring and autumn were always greater than zero in all the four areas (in 
spring of 2013, the UHII even reached to 3.5 °C for OUA), which suggested that the intensity of UHI 
was evident in Northeast China, and the footprint of UHI not only included the urban area but also 
the suburbs during the study period. The most important point is that the UHII increased in both 
spring and autumn at four areas during 2001–2015, and the temporal variations of UHII in spring 
and autumn are all highly significant in urbanized area, indicating that the rapid urbanization and 
land use/cover change led to the intensification of UHI in Northeast China. 

 

 

Figure 5. Interannual variations of ∆T (°C) (a) in spring, and (b) in autumn in four regions during 
2001–2015. Dashed lines represent the linear trends of OUA, urbanized area, 0–2 km buffer, 2–5 km 
buffer, respectively. 
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3.4. The Correlations between UHII and UELSP 

The correlation analysis between ∆T and ∆P were conducted to investigate the relationships 
between the UELSP and UHII in this study. It was clear from Figure 6 that the correlations between 
∆SOS and ∆T in spring were all negative in four areas: OUA (Figure 6a; r = −0.491, p = 0.063), 
urbanized area (Figure 6b; r = −0.659, p < 0.01), 0–2 km buffer (Figure 6c; r = −0.586, p < 0.05) and 2–5 
km buffer (Figure 6d; r = −0.449, p = 0.093). There were significant correlations between ∆T and 
∆SOS in urbanized area (p < 0.01) and 0–2 km buffer (p<0.05), indicating that the SOS became earlier 
and earlier with increasing UHII in spring at four areas than that in rural areas (20–25 km). 

However, there were almost no significant correlations between UHII and the UE on EOS in 
autumn for above four areas: OUA (Figure 7a; r = −0.05, p = 0.857), urbanized area (Figure 7b; r = 
0.228, p = 0.414), 0–2 km buffer (Figure 7c; r = 0.147, p = 0.6) and 2–5 km buffer (Figure 7d; r = 0.12, p = 
0.669). The correlation coefficients between ∆EOS and ∆T in autumn in the four areas only ranged 
between −0.05 and 0.228, indicating that the increasing UHII in autumn did not contribute to the 
increasing UE on EOS in Northeast China. 

 

Figure 6. The relationships between (a) ∆T1 in spring and ∆SOS1, (b) ∆T2 in spring and ∆SOS2,(c) 
∆T3 in spring and ∆SOS3 and (d) ∆T4 in spring and ∆SOS4. Each dot represents the each year during 
2001–2015. 
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Figure 7.The relationships between (a) ∆T1 in autumn and ∆EOS1, (b) ∆T2 in autumn and ∆EOS2, (c) 
∆T3 in autumn and ∆EOS3 and (d) ∆T4 (°C) in autumn and ∆EOS4. Each dot represents each year 
during 2001–2015.  

4. Discussion 

4.1. Mean UHII and LSP 

We calculated the 15-year averaged phenology metrics (SOS, EOS) in the whole study area and 
in the forest area, respectively. In general, the spatial distributions of mean SOS and EOS during 
2001–2015 in this study were similar to that of Zhao et al., where the GIMMS NDVI3g data were 
used to study the variations of LSP in Northeast China during 1982–2013 [13]. Their results showed 
that SOS in the plain areas was later than mountains, and EOS in south area was later than that in 
north. In addition, the average SOS for the whole study area during 2001–2015 in our study was 
mainly between 112 and 161 DOY, the average SOS of the forest area was primarily between 113 and 
151 DOY, EOS was mainly between 273 and 300 DOY, and the EOS in forest area was primarily 
between 273 and 299 DOY. These results were also in line with previous studies [13,45–47] (Table 2), 
which suggested that the method of extracted the phenology metrics in this study was reliable. 

Moreover, it was revealed in this study that the UELSP and UHII were evident in OUA, and the 
average differences of SOS, EOS and LOS between OUA and rural area were -16.8 days, 15.96 days 
and 32.76 days, respectively, during the last 15 years. These effects were close to the study [9] and 
much larger than some previous studies [16,18,19], which is probably due to the different species 
compositions (deciduous forest vs. evergreen forest), and geographic locations. Specifically, 
northeast China was mainly covered by deciduous forest, but some cities (e.g., tropical cities of 
China) were primarily covered by evergreen vegetation in literature [9], which can lead to the 
differences of seasonal variations of vegetation index, and the differences of UELSP. The 15-year 
averaged UHII in spring and autumn in OUA were 2.88 °C and 2.79 °C (Table 1), respectively. These 
results were higher than previous studies [5,48,49]. The reason may be due to the different 
definitions for rural areas, Zhou et al. showed that the footprint of UHI in China was 2.3 and 3.9 
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times of urban area for day and night, respectively [4]. Accordingly, ignoring the footprint of UHI 
can lead to underestimate the UHII. In this study, the rural area (20–25 km buffer) we chose was 
farther from urban area than previous studies [5,48,49], and it is far away from the UE [9], so, the 
method in this study may provide a more accurate assessment of the UELSP and UHII. In addition, 
the trends of LSP and LST along with urban-rural gradient were similar with studies from Han et al., 
which studied the LSP and LST in six cities in Yangtze River delta, China [16].Their results showed 
that LST decreased with the increasing distances from urban, EOS decreased with increasing 
distances from urban, but SOS increased first and then decreased along the urban-rural gradient. 

Table 2. Mean LSP compared with other studies. 

 This 
Study 

Zhao et al.
[14] 

Yu et al.
[44] 

Hou et al. 
[45] 

Yu et al.
[46] 

SOS of entire study area (julian 
day) 

112–161 110–150    

EOS of entire study area (julian 
day) 

273–300 270–320    

SOS of forest 
 (julian day) 

113–151  100–150 110–140 100–140 

EOS of forest  
(julian day) 

273–299  260–290 260–290 265–300 

Time period (year) 2001–2015 1982–2013 2003 2001–2010 2000–2009 

4.2. The Temporal Variations of UHII and UELSP As Well As Possible Reasons 

The UELSP may change greatly due to the rapid urbanization, so this study highlighted the 
temporal variations of UELSP and UHII. The UHII in spring and autumn have experienced 
dramatically changes at OUA, urbanized area and 0–2 km buffer during 2001–2015 in Northeast 
China (Figure 5), and the UE on SOS and LOS have significant temporal variations in urbanized area 
and 0–2 km buffer (Figure 3). It is worth noting that the largest changes of UE on SOS, LOS, and 
UHII in autumn is in urbanized area, and the temporal variations of UHII in spring, UHII in 
autumn, UE on SOS and LOS in urbanized area are all highly significant (Table 3). This might be 
attributed to the land use/land cover change. With rapid urbanization, other land cover types may 
transform into urban areas, such as cropland, forest. Therefore, more environmental changes may 
occur in urbanized area, such as lower vegetation coverage, higher impervious surface, denser 
population. The main factors influenced the increases of UHII may be the lower vegetation cover 
and higher impervious surface in the study area. On one hand, Vegetation can reduce the LST at 
some extent, which has been confirmed by some studies in literature [50–56]: increasing vegetation 
cover was regarded as an effective way to reduce the UHII since vegetation can release latent heat 
flux by evapotranspiration. On the other hand, studies have showed that impervious surface has 
significant positive correlation with LST [50,57]. Impervious surface can increase the UHII since it 
can absorb and store heat during daytime and release slowly during nighttime. So the UELSP may 
increase with increasing UHII in urban area. In addition, other factors such as species compositions 
resulted from land cover changes may also have direct effects on LSP [9]. 

Table 3. Linear trends of ∆SOS, ∆EOS, ∆LOS, ∆T in spring and ∆T in autumn in four regions (OUA, 
urbanized area, 0–2 km buffer, 2–5 km buffer). 

 ∆SOS ∆EOS ∆LOS ∆T in Spring ∆T in Autumn 
OUA −0.363 −0.155 0.208 0.052 * 0.02 
urbanized area −0.829 ** 0.061 0.89 ** 0.047 ** 0.04 ** 
0–2 km buffer −0.34 ** 0.034 0.374 ** 0.025 * 0.023 * 
2–5 km buffer −0.063 0.007 0.07 0.009 0.011 

Significance levels: * p< 0.05, ** p < 0.01. 
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4.3. The Relationships between UHII and UELSP 

In this study, there were high correlations between UHII and the UE on SOS in spring in four 
areas: OUA (r = −0.491, p = 0.063), urbanized area (r = −0.659, p < 0.01), 0–2 km buffer (r = −0.586, p < 
0.05) and 2–5 km buffer (r = −0.449, p = 0.093) during 2001–2015. The results suggested that the great 
changes of UE on SOS were mainly attributed to the increasing UHII in spring. But there were 
almost no significant correlations between UHII and the UE on EOS in autumn. Although the UHII 
increased in autumn, the impacts of urbanization on EOS did not change significantly. This 
phenomenon is similar to previous studies [9,31], Zhang et al. showed that there was a significant 
linear relationship between ∆SOS and ∆LST during January to May, but the relationship between 
∆EOS and ∆LST during September to December was not significant in eastern North America [31]. 
Zhou et al. also showed that the cities with earlier SOS were obviously more than the cities with 
later EOS in China [9]. The reason for this phenomenon may be that the EOS was also affected by 
other important factors such as water and photoperiod [31]. Previous studies also showed that 
earlier SOS may trigger earlier EOS because vegetation may reach the carbohydrate storage 
capacity with earlier SOS and then lead to earlier EOS [15]. In addition, Northeast China is located 
in high latitudes, sunshine duration may play an important role on influencing LSP (for example, 
the advanced SOS and delayed EOS) [14]. Overall, EOS has complex correlation with SOS, 
temperature, precipitation, sunshine duration and some other factors, more detailed studies needed 
to be carried out in future studies.  

4.4. Uncertainty 

There were still some uncertainties for analyzing the UELSP in Northeast China in this study. 
Firstly, we used the CLUDs in the year of 2000, 2005, 2010, 2015, which represented those in 
2001–2002, 2003–2007, 2008–2012, and 2013–2015, respectively. This may lead to some uncertainties 
in urban areas especially in fast-growing cities. In addition, a lot of other factors may influence the 
LSP and the phenology results such as species compositions, interference from human activities, 
altitudes. Finally, the reasons for that the increasing UHII in autumn did not lead to the increases of 
UE on EOS were still not clear. The comprehensive analysis between EOS, SOS, temperature, 
precipitation, sunshine duration and other factors should be conducted in detail in future studies. 

5. Conclusions 

In this study, MODIS LST, MODIS EVI and CLUDs were used to analysis the UHII and UELSP 
and the associated temporal variations in Northeast China during 2001–2015. The UHII and UELSP 
were investigated by studying the LST and LSP differences between urban and rural area, 
respectively. Correlation analysis was also conducted to reveal the relationships between UHII and 
UELSP. 

The results showed that the UELSP was evident in Northeast China, especially in big cities such 
as Harbin, Changchun and Shenyang. The annual mean UHII in OUA is 2.88 °C in spring and 2.79 
°C in autumn during the whole study period. The differences of annual mean LSP between OUA 
and rural areas were −16.8 days for SOS, 15.96 days for EOS and 32.76 days for LOS, respectively. 
The SOS in above four areas had become earlier and earlier than rural area especially in urbanized 
area (−0.79 days/year, p < 0.01) during 2001–2015 and the LOS in above four areas had become longer 
and longer than rural area especially in urbanized area (0.92 days/year, p < 0.01), but the UE on EOS 
(∆EOS) did not change significantly during the whole study period. Meanwhile, the UHII in spring 
and autumn months increased in four areas especially in OUA (0.052 °C/year, p < 0.05 in spring, and 
0.016 °C/year in autumn), urbanized area (0.050 °C/year, p < 0.05 in spring, and 0.038 °C/year, p < 0.05 
in autumn), 0–2 km buffer (0.025 °C/year, p < 0.05 in spring, and 0.022 °C/year, p < 0.05 in autumn). 
Finally, the correlation analysis indicated that the increasing UHII in spring contributed greatly to 
the changes of UE on SOS, but the increasing UHII in autumn did not lead to changes of UE on EOS 
in Northeast China. 
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Overall, this study provided an important reference for investigating the spatial-temporal 
trends of UHII and UE on terrestrial ecosystem, but there were still some uncertainties in our 
research, the correlation between EOS and its influencing factors need to be investigated thoroughly 
in later studies. 
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