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CONVEXITY PROPERTIES AND INEQUALITIES CONCERNING
THE (p,k)-GAMMA FUNCTION

KWARA NANTOMAH

ABSTRACT. In this paper, some convexity properties and some inequalities for
the (p, k)-analogue of the Gamma function, I, 1 (x) are given. In particular,
a (p, k)-analogue of the celebrated Bohr-Mollerup theorem is given. Further-
more, a (p, k)-analogue of the Riemann zeta function, ¢, () is introduced and
some associated inequalities are derived. The established results provide the
(p, k)-generalizations of some known results concerning the classical Gamma
function.

1. INTRODUCTION

In a recent paper [10], the authors introduced a (p, k)-analogue of the Gamma
function defined for p € N, k > 0 and z € RT as

D k\P
Fp,k(x)z/o et (1—;]{> dt (1.1)
(p+ D)KPH! (pk) & !

T s(w+ k) +2k) ... (z + pk) (12)
satisfying the basic properties
Tprlz+k)= ﬂI‘p,k(x), (1.3)
x+pk+k
T, x(ak) = ]%kaflrp(a), a€R"
Lpr(k) =1.
The (p, k)-analogue of the Digamma function is defined for = > 0 as
d 1 21
Up p(z) = - InTp (x) = - In(pk) — 7;) Py (1.4)
_ %ln(pk) _ /OOO %ﬁ?ﬁe*“ dt.
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Also, the (p, k)-analogue of the Polygamma functions are defined as

YL (—1)m !

m am
dj;,k;) (z) = wa,k(x) = Z (

= (nk + x)mtl

o0 1 _ e—k(p+1)t
= (=1 m+1/ o ) gmert gt
=1 0 ( 1 — ekt ) ‘

where m € N, and 1/1;?,1(:13) = Upk(2).

(1.5)

The functions T'p x(z) and ¢, ,(x) satisfy the following commutative diagrams.

p—0o0 p—o0

Ty i(e) 5% D) (@) % ()
S e
Iy(2) —s> D(x) N £ pe—

The (p, k)-analogue of the classical Beta function is defined as

Lo (@)1 (y)
Fp,k(x + y)

The purpose of this paper is to establish some convexity properties and some in-
equalities involving the function, I', x(z). In doing so, a (p, k)-analogue of the
Bohr-Mollerup theorem is proved. Also, a (p,k)-analogue of the Riemann zeta
function, ¢, (x) is introduced and some associated inequalities relating T'p ;(z)
and ¢, x(x) are derived. We present our findings in the following sections.

By r(z,y) = , x>0,y>0. (1.6)

2. CONVEXITY PROPERTIES INVOLVING THE (p, k)-GAMMA FUNCTION
Let us begin by recalling the following basic definitions and concepts.
Definition 1. A function f : (a,b) — R is said to be convex if

flaz + By) < af(z) + Bf(y) (2.1)
for all z,y € (a,b), where a, 8 > 0 such that « + 3 = 1.

Lemma 1. Let [ : (a,b) = R be a twice differentiable function. Then f is said to
be convez if and only if f""(x) > 0 for every x € (a,b).

Remark 1. A function f is said to be concave if —f is convex, or equivalently, if
the inequality (2.1) is reversed.

Definition 2. A function f : (a,b) — R is said to be logarithmically convex if the
inequality
log f(az + By) < alog f(z) + Blog f(y)
or equivalently
flaz+ By) < (f(2)*(f(y)°
holds for all x,y € (a,b) and o, B > 0 such that a + = 1.

Theorem 1. The function, 'y, () is logarithmically convex.
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Proof. Let z,y > 0 and «a, 8 > 0 such that « + 8 = 1. Then, by the integral
representation (1.1) and by the Holder’s inequality for integrals, we obtain

D tk: p
Dpr(az + By) = / oty —1 (1 - pk> dt

ik p(a+pB)
/ to(e=1)B(y— 1)( ) dt
0 pk
k\ &P kN Br

/ salo— 1)( t) A1) (lt) dt
0 pk pk

P tk @ D tk; p B
Lo () o) ([ (- 5) )

0 pk 0 pk

= (Dpe()* (Tpa())”

as required. O

IN

Remark 2. Since every logarithmically convex function is also convez [13, p. 66],
it follows that the function T'p p(x) is convez.

Remark 3. Theorem 1 was proved in [10] by using a different procedure. In the
present work, we provide a much simpler alternative proof by using the Hélder’s
inequality for integrals.

The next theorem is the (p, k)-analogue of the celebrated Bohr-Mollerup theorem.

Theorem 2. Let f(x) be a positive function on (0,00). Suppose that
(a) f(k)=1

(b) f(:E + k) = $+p;km+kf(x)7

(¢) In f(x) is convexr.

Then, f(z) =T x(2).

Proof. Define ¢ by e?®) = % for x > 0, p € Nand k > 0. Then by (a) we

obtain
k)
oty _ S (k) _ 1
Fp,k(k)
implying that ¢(k) = 0. Also by (b), we obtain
cbletk) _ flx+k)  fl@) (@)

I‘p,k(x + k‘) N ].—‘p’k(l') -
which implies ¢(z + k) = ¢(z). Thus ¢(z) is periodic with period k.

Next we want to show that ¢(x) =1In f(z) —InT), x(x) is a constant. That is

=0.
h—0 h

By (c¢) and Theorem 1, the functions In f(z) and InT', x(z) are convex. This implies
In f(z) and InT', (z) are continuous. Then for ¢ > 0, there exist d;,d2 > 0 such
that
h
In f(z+h) —1In f(z)] < %

whenever |h| < 01
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and
h
InT, k(z+h) —InTp x(x)| < % whenever |h| < d2.
Let 6 = min{d1,d2}. Then for |h| < §, we have

o(x+h) — ¢(x) Inf(zx+h)—InTpp(x+h)—Inf(z)+1Inl, x(z)

h h
Inf(z+h)—1In f(x) InT, x(z+h) —InT, x(2)
< + ’ :
- h h
ciifo.
22
proving that ¢’(z) = 0. Since ¢(x) is a constant and ¢(k) = 0, then ¢(x) = 0 for
every x. Hence e = 1‘,{(,:;()1) Therefore f(z) =T'p k(). O

Theorem 3. The function, B, ;(x,y) as defined by (1.6) is logarithmically convex
on (0,00) x (0, 00).

Proof. For xz,y > 0, let By, x(x,y) be defined as in (1.6). Then
By, . (z,y) = Ty (2) + InTp g (y) —InTpp(z +y).
Without loss of generality, let y be fixed. Then,
(In Bp,(2,))" = ¥ 1 (2) = Yy (2 +7) >0
since 1, . (z) is decreasing for x > 0. This completes the proof. O
Remark 4. Theorem 3 is a (p, k)-analogue of Theorem 6 of [1].
Corollary 1. Let p € N and k > 0. Then the inequality
Uy @)y, (y) = [0, 1 (2) + by, k()] Uy (2 + y) (2.2)
is valid for xz,y > 0.
Proof. This follows from the logarithmic convexity of By (z,y). Let
¢(x,y) =By p(z,y) = InTpi(x) + InTpi(y) —InTp iz +y).

Since ¢(z,y) is convex on (0,00) x (0,00), then its discriminant, A is positive
semidefinite. That is,

82¢ B 82¢ 82¢ 62¢ 82¢
7s >0 =55 ot () (30r) 20
implying that

[0 (2) = Uy +0)] [Gal) = Gl +9)] = [Whle +9)]° > 0.
Thus,

V@), 1 () = [ (2) + Uy k()] Uy p(x+y) >0
which completes the proof. (I

Theorem 4. Let x,y > 0 and o, 8 > 0 such that « + 3 =1. Then
Yp k(ax + By) > vy () + By k(y)- (2.3)
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Proof. It suffices to show that —, x(z) is convex on (0,00). By (1.5) we obtain

P
2
12
- = E >0
Yy () Pt (nk + z)3 >
Then (2.3) follows from Definition 1. d

Theorem 5. Let p € N, k> 0 and a > 0. Then the function Q(z) = a*T'), k() is
convex on (0,00).

Proof. Recall that Ty, () is logarithmically convex. Thus,

Dp(az + By) < (Tpu(@))* (Tpr(y))”
for z,y > 0 and «, 8 > 0 such that o + 8 = 1. Then,

Q(ax + By) = a®* YT, 1 (ax + By) < a®®HPY(T, 1 (2)*(Tp.r(y))?. (2.4)
Also recall from the Young’s inequality that
u“v? < au + B (2.5)

for u,v > 0 and o, 8 > 0 such that a+ 3 = 1. Let u = a®T',, (z) and v = a¥T',, k(y).
Then (2.5) becomes

a®* (L (1)) (T () < aa®Tp,i(x) + BavTyi(y) = aQ(z) + BQ(y). (2.6)
Combining (2.4) and (2.6) yields Q(ax + By) < aQ(z) + fQ(y) which concludes
the proof. 0

Theorem 6. Let p € N and k > 0. Then the functions A(x) = xp, 1 (x) is strictly
convez on (0, 00).

Proof. Direct computations yield

A (z) = 24y, 5. (2) — 2edy, 4 ()

)

which by (1.5) implies

P P P
v 1 B x B nk
A(x)72nz:%(nk+x)2 22(nk+m)3722(nk+x)3>0'

n=0 n=0

Thus, A(x) is convex. O

Remark 5. Corollary 1 and Theorems 4, 5 and 6 provide generalizations for some
results proved in [14] and [6].

Definition 3 ([12],[15]). Let f : I C (0,00) — (0,00) be a continuous function.
Then f is said to be geometrically (or multiplicatively) convex on I if any of the
following conditions is satisfied.

F(Vr132) < /(1) f(22), (2.7)

or more generally
f (H af> <[[ir@ar, n=2 (2.8)
i=1 i=1

where T1,To,..., Ty, € I and A1, Ao,...; N\, > 0 with Z?=1 Ai = 1. If inequali-
ties (2.7) and (2.8) are reversed, then f is said to be geometrically (or multiplica-
tively) concave on I.
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Lemma 2 ([12]). Let f : I C (0,00) — (0,00) be a differentiable function. Then f

s a geometrically convex function if and only if the function f((a)”) s nondecreasing.

Lemma 3 ([12]). Let f : I C (0,00) — (0,00) be a differentiable function. Then
yf' ()
f is a geometrically convex function if and only if the function Ha) <1> T

fy) = \y
holds for any x,y € I.

Theorem 7. Let f(x) = "', k(z) forp € N and k > 1. Then [ is geometrically
convez and the inequality

y y[1+¢p,k (y)] y z[14+vp & ()]
e* \y pre(y) — e® \y
is valid for x >0 and y > 0..
Proof. We proceed as follows.
1 —z+InT implying 1% — 1
nf(z)=x+InT,,(z) implying @) + Yp ().

Then,

(?é?)ﬂ—1+%m@ﬁ+m%g@

1 LR | u x
=1 In(pk -
+k (pk) = nzzon +nzo(nk—|—:r)2
1 P 1
:1+klnpk; +nz:1[nk+:c nk—l—x}
P
£ h(z).

1
nk

1 p
=1+ Ikt o ( Z;

Then 1/(z) =2%"_, (nk+w)3 > 0 implying that & is increasing. Moreover,
1 1
>1+—-Ink——->0

)

since Inp — 7 | =+ > —1 (See eqn. (6) of [2]). Then for x > 0, we have h(z) >

h(0) > 0. Thus zf (i)) is nondecreasing. Therefore, by Lemmas 2 and 3, f is
vt ()

geometrically convex and as a result, % > (%) o Consequently, we obtain

esz,k(f) N <$)y[1+¢p,k(y)]
eyrp,k(y) - Yy

1 p
h(0) = 1+ - In(pk) 2;

S|

(2.10)
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CONVEXITY PROPERTIES AND INEQUALITIES 7
and
vr w144y, k (2)]
eIy i () x
Now combining (2.10) and (2.11) yields the result (2.9) as required. O

: . . k
Remark 6. In particular, by replacing x and y respectively by x + k and = + 3,
inequality (2.9) takes the form:

(z+E) 14+, u(z+E) +E)[1+p, k (+k)
V(e k e+ 5)] ’“(’”2]<rp,k(m+k)< L etk (2+k) 1+ k (2 1.
Veb \z+§ S Tyulet5)  Ver \ztk

(2.12)

Remark 7. Theorem 7 gives a (p, k)-analogue of the previous results: [3, Theorem
1], [15, Theorem 1.2, Corollary 1.5] and [6, Theorem 3.5]. In particular, by letting
k =1, we recover the result of [6].

Remark 8. Results of type (2.9) and (2.12) can also be found in [9)].

3. INEQUALITIES INVOLVING THE (p, k)-RIEMANN ZETA FUNCTION

Definition 4. Forp e N, k > 0 and x > 0, let {, x(x) be the (p, k)-analogue of the
Riemann zeta function, {(x). Then (i (x) is defined as

Gula) = —- [ : (3.1)
p,k(T) = / t, x>Kk. .
e (17 2) 1

The functions ¢, 1 () satisfies the commutative diagram:

(
| Ji-n

Cp(z) v ()

where (,(z) and (i () respectively denote the p and k analogues of the Riemann
zeta function. See [5] and [4] for instance.

Lemma 4 ([7]). Let f and g be two nonnegative functions of a real variable, and
m, n be real numbers such that the integrals in (8.2) exist. Then

b b b m4n ?
/ ot) (F(O)™ dt - / ot) (F()" dt > ( / at) (1) ™ dt) (2

Theorem 8. Let p e N, k >0 and x > 0. Then the inequality

z+pk+k  (r(z) S Coi(x+ k)

. . , > k. 3.3
Tkt 2k Cop(rt k) =zt k oz +2k) (3:3)

holds.
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Proof. Let g(t) (1+ )71 ty=t,m=xz—k,n=xz+k, a=0and b=p.
Then (3.2) implies

¥4 tm—k 4 tm+k ¥4 tx
——dt- —p—dt > _—— dt
o (1+2) -1 o (1+2) -1 o (1+2) -1
(1+5%) - (1+5) (1) -
which by relation (3.1) gives

oo (@) () - G (@ + 2K)Dp (2 + 2k) > (Gl + B)Dp ez + k). (3.4)

Then by the functional equation (1.3), inequality (3.4) can be rearranged to obtain
the desired result (3.3). O

2

Remark 9. (i) By letting p — oo in (3.3), we obtain the result of Theorem 3.1
of [4].
(ii) By setting k =1 in (3.3), we obtain the result of Theorem 6 of [5].
(iii) By letting p — oo and k =1 in (3.3), we obtain the result of Theorem 2.2 of
[7].

Theorem 9. Letp € N and k > 0. Then forxz >k, y > k, i + % =1 such that
&+ 4 >k, the inequality

T (558)  (Gul)? Gu)?
Cok(@)® Coe@)? ~ G (2+

Q=

(3.5)

e

holds.

Proof. We employ the Holder’s inequality:

1 1

b a b B
/ F)g(t) dt < ( / (f(t))adt> ( / (g(t))ﬁdt> (3.6)

where a > 1, +B_1 Let f(t) =

and b = p. Then (3.6) implies

4 t%+%—k P t:l)fk P tyfk
k tk thk
o (1+5) -1 o (1+5) -1 o (1+5) -1

th
pk
(

Q=
@l

By relation

Cos (24 5) 6 (2 +4) < Oral@)on@) Cu)Gutn)?

which when rearranged gives (3.5) as required. O

3.1) we obtain

Q=

Remark 10. (i) By letting p — oo in (3.5), we obtain the result of Theorem 3.3
of [4].
(i) By letting p — oo and k = 1 in (3.5), we obtain the result of Theorem 7 of

[5].

d0i:10.20944/preprints201701.0055.v1
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(#i) In particular, let k = 1 in (3.5). Then by replacing x and y respectively by
x—1 and y+ 1, we obtain

LE2HE) (G-t
(Cple =) @y + 1)~ G (252 + 15

which corresponds to Theorem 2.7 of [8].

=

Lemma 5 ([11]). Let f : (0,00) — (0,00) be a differentiable, logarithmically convex
function. Then the function

is decreasing on its domain.
Lemma 6. Letp e N, k> 0 and o > 1. Then the inequality

[Cpr(y + k)" [Cprlz+k)*
Lpr(ay + k) = T, x(ax + k) <1 (3.7)

holds for 0 <z < y.
Proof. Note that the function f(z) = T',x(z + k) is differentiable and logarith-

mically convex. Then by Lemma 5, G(z) = % is decreasing and for
0 <z <y, we have G(y) < G(x) < G(0) yielding the result. O
Theorem 10. Let p € N, k£ > 0 and o > 1. Then the inequality
[Lp(y + k) Cp iy + k) [Cp(z + k)®
< (3.8)
Fp,k(ay + k)Cp,k(O‘y + k) Cp,k(ax + k)
is satisfied for 0 < x < y.
Proof. Let H be defined x > 0 by
P tx
H(z)=Tpp(x + k) prlx + k)= / 7 —dt. (3.9)
0 (1 + ﬁ) -1

Then for z,y > 0 and a,b > 0 such that a + b = 1, we have

p az+by
H(aa:+by):/0 M),,_ldt
I R S
() ()Y
» e " e v '
< /Owy,ldt /Owy,ldt
= (H(2))"(H(y))".

Therefore, H(x) is logarithmically convex. Then by Lemma 5, the function

[Fp,k(x + k)c;n,k(z + k)]a

T(z) = Tpilax + k) pr(ax + k)
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is decreasing. Hence for 0 < z < y, we have
[Cp.i(y + k) Gorly + k) < Lpr(@ 4 F)Gp (@ + k)
Lprlay +k)Gpr(ay + k) = Tprlaz + k)G r(ax + k)
Then by the right hand side of (3.7), we obtain
Cor(y+R)Grly + 8" _ [Gale+R)”
Fp,k(ay + k)Cp,k(ay + k) o Cp,k(ax + k)
concluding the proof. O
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