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Abstract. In this paper, some convexity properties and some inequalities for

the (p, k)-analogue of the Gamma function, Γp,k(x) are given. In particular,
a (p, k)-analogue of the celebrated Bohr-Mollerup theorem is given. Further-

more, a (p, k)-analogue of the Riemann zeta function, ζp,k(x) is introduced and

some associated inequalities are derived. The established results provide the
(p, k)-generalizations of some known results concerning the classical Gamma

function.

1. Introduction

In a recent paper [10], the authors introduced a (p, k)-analogue of the Gamma
function defined for p ∈ N, k > 0 and x ∈ R+ as

Γp,k(x) =

∫ p

0

tx−1

(
1− tk

pk

)p
dt (1.1)

=
(p+ 1)!kp+1(pk)

x
k−1

x(x+ k)(x+ 2k) . . . (x+ pk)
(1.2)

satisfying the basic properties

Γp,k(x+ k) =
pkx

x+ pk + k
Γp,k(x), (1.3)

Γp,k(ak) =
p+ 1

p
ka−1Γp(a), a ∈ R+

Γp,k(k) = 1.

The (p, k)-analogue of the Digamma function is defined for x > 0 as

ψp,k(x) =
d

dx
ln Γp,k(x) =

1

k
ln(pk)−

p∑
n=0

1

nk + x
(1.4)

=
1

k
ln(pk)−

∫ ∞
0

1− e−k(p+1)t

1− e−kt
e−xt dt.
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Also, the (p, k)-analogue of the Polygamma functions are defined as

ψ
(m)
p,k (x) =

dm

dxm
ψp,k(x) =

p∑
n=0

(−1)m+1m!

(nk + x)m+1
(1.5)

= (−1)m+1

∫ ∞
0

(
1− e−k(p+1)t

1− e−kt

)
tme−xt dt

where m ∈ N, and ψ
(0)
p,k(x) ≡ ψp,k(x).

The functions Γp,k(x) and ψp,k(x) satisfy the following commutative diagrams.

Γp,k(x)

k→1

��

p→∞ // Γk(x)

k→1

��
Γp(x)

p→∞
// Γ(x)

ψp,k(x)

k→1

��

p→∞ // ψk(x)

k→1

��
ψp(x)

p→∞
// ψ(x)

The (p, k)-analogue of the classical Beta function is defined as

Bp,k(x, y) =
Γp,k(x)Γp,k(y)

Γp,k(x+ y)
, x > 0, y > 0. (1.6)

The purpose of this paper is to establish some convexity properties and some in-
equalities involving the function, Γp,k(x). In doing so, a (p, k)-analogue of the
Bohr-Mollerup theorem is proved. Also, a (p, k)-analogue of the Riemann zeta
function, ζp,k(x) is introduced and some associated inequalities relating Γp,k(x)
and ζp,k(x) are derived. We present our findings in the following sections.

2. Convexity Properties Involving the (p, k)-Gamma function

Let us begin by recalling the following basic definitions and concepts.

Definition 1. A function f : (a, b)→ R is said to be convex if

f(αx+ βy) ≤ αf(x) + βf(y) (2.1)

for all x, y ∈ (a, b), where α, β > 0 such that α+ β = 1.

Lemma 1. Let f : (a, b)→ R be a twice differentiable function. Then f is said to
be convex if and only if f ′′(x) ≥ 0 for every x ∈ (a, b).

Remark 1. A function f is said to be concave if −f is convex, or equivalently, if
the inequality (2.1) is reversed.

Definition 2. A function f : (a, b)→ R+ is said to be logarithmically convex if the
inequality

log f(αx+ βy) ≤ α log f(x) + β log f(y)

or equivalently

f(αx+ βy) ≤ (f(x))α(f(y))β

holds for all x, y ∈ (a, b) and α, β > 0 such that α+ β = 1.

Theorem 1. The function, Γp,k(x) is logarithmically convex.
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CONVEXITY PROPERTIES AND INEQUALITIES 3

Proof. Let x, y > 0 and α, β > 0 such that α + β = 1. Then, by the integral
representation (1.1) and by the Hölder’s inequality for integrals, we obtain

Γp,k(αx+ βy) =

∫ p

0

tαx+βy−1

(
1− tk

pk

)p
dt

=

∫ p

0

tα(x−1)tβ(y−1)

(
1− tk

pk

)p(α+β)

dt

=

∫ p

0

tα(x−1)

(
1− tk

pk

)αp
tβ(y−1)

(
1− tk

pk

)βp
dt

≤
(∫ p

0

tx−1

(
1− tk

pk

)p
dt

)α(∫ p

0

ty−1

(
1− tk

pk

)p
dt

)β
= (Γp,k(x))α(Γp,k(y))β

as required. �

Remark 2. Since every logarithmically convex function is also convex [13, p. 66],
it follows that the function Γp,k(x) is convex.

Remark 3. Theorem 1 was proved in [10] by using a different procedure. In the
present work, we provide a much simpler alternative proof by using the Hölder’s
inequality for integrals.

The next theorem is the (p, k)-analogue of the celebrated Bohr-Mollerup theorem.

Theorem 2. Let f(x) be a positive function on (0,∞). Suppose that

(a) f(k) = 1,

(b) f(x+ k) = pkx
x+pk+kf(x),

(c) ln f(x) is convex.

Then, f(x) = Γp,k(x).

Proof. Define φ by eφ(x) = f(x)
Γp,k(x) for x > 0, p ∈ N and k > 0. Then by (a) we

obtain

eφ(k) =
f(k)

Γp,k(k)
= 1

implying that φ(k) = 0. Also by (b), we obtain

eφ(x+k) =
f(x+ k)

Γp,k(x+ k)
=

f(x)

Γp,k(x)
= eφ(x)

which implies φ(x+ k) = φ(x). Thus φ(x) is periodic with period k.

Next we want to show that φ(x) = ln f(x)− ln Γp,k(x) is a constant. That is

φ′(x) = 0 ⇔ lim
h→0

φ(x+ h)− φ(x)

h
= 0.

By (c) and Theorem 1, the functions ln f(x) and ln Γp,k(x) are convex. This implies
ln f(x) and ln Γp,k(x) are continuous. Then for ε > 0, there exist δ1, δ2 > 0 such
that

|ln f(x+ h)− ln f(x)| < |h|ε
2

whenever |h| < δ1
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and

|ln Γp,k(x+ h)− ln Γp,k(x)| < |h|ε
2

whenever |h| < δ2.

Let δ = min{δ1, δ2}. Then for |h| < δ, we have∣∣∣∣φ(x+ h)− φ(x)

h

∣∣∣∣ =

∣∣∣∣ ln f(x+ h)− ln Γp,k(x+ h)− ln f(x) + ln Γp,k(x)

h

∣∣∣∣
≤
∣∣∣∣ ln f(x+ h)− ln f(x)

h

∣∣∣∣+

∣∣∣∣ ln Γp,k(x+ h)− ln Γp,k(x)

h

∣∣∣∣
<
ε

2
+
ε

2
= ε

proving that φ′(x) = 0. Since φ(x) is a constant and φ(k) = 0, then φ(x) = 0 for

every x. Hence e0 = f(x)
Γp,k(x) . Therefore f(x) = Γp,k(x). �

Theorem 3. The function, Bp,k(x, y) as defined by (1.6) is logarithmically convex
on (0,∞)× (0,∞).

Proof. For x, y > 0, let Bp,k(x, y) be defined as in (1.6). Then

lnBp,k(x, y) = ln Γp,k(x) + ln Γp,k(y)− ln Γp,k(x+ y).

Without loss of generality, let y be fixed. Then,

(lnBp,k(x, y))
′′

= ψ′p,k(x)− ψ′p,k(x+ y) > 0

since ψ′p,k(x) is decreasing for x > 0. This completes the proof. �

Remark 4. Theorem 3 is a (p, k)-analogue of Theorem 6 of [1].

Corollary 1. Let p ∈ N and k > 0. Then the inequality

ψ′p,k(x)ψ′p,k(y) ≥
[
ψ′p,k(x) + ψ′p,k(y)

]
ψ′p,k(x+ y) (2.2)

is valid for x, y > 0.

Proof. This follows from the logarithmic convexity of Bp,k(x, y). Let

φ(x, y) = lnBp,k(x, y) = ln Γp,k(x) + ln Γp,k(y)− ln Γp,k(x+ y).

Since φ(x, y) is convex on (0,∞) × (0,∞), then its discriminant, ∆ is positive
semidefinite. That is,

∂2φ

∂x2
> 0, ∆ =

∂2φ

∂x2
· ∂

2φ

∂y2
−
(
∂2φ

∂x∂y

)(
∂2φ

∂y∂x

)
≥ 0

implying that[
ψ′p,k(x)− ψ′p,k(x+ y)

] [
ψ′p,k(y)− ψ′p,k(x+ y)

]
−
[
ψ′p,k(x+ y)

]2 ≥ 0.

Thus,

ψ′p,k(x)ψ′p,k(y)−
[
ψ′p,k(x) + ψ′p,k(y)

]
ψ′p,k(x+ y) ≥ 0

which completes the proof. �

Theorem 4. Let x, y > 0 and α, β > 0 such that α+ β = 1. Then

ψp,k(αx+ βy) ≥ αψp,k(x) + βψp,k(y). (2.3)
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CONVEXITY PROPERTIES AND INEQUALITIES 5

Proof. It suffices to show that −ψp,k(x) is convex on (0,∞). By (1.5) we obtain

−ψ′′p,k(x) =

p∑
n=0

2

(nk + x)3
> 0.

Then (2.3) follows from Definition 1. �

Theorem 5. Let p ∈ N, k > 0 and a > 0. Then the function Q(x) = axΓp,k(x) is
convex on (0,∞).

Proof. Recall that Γp,k(x) is logarithmically convex. Thus,

Γp,k(αx+ βy) ≤ (Γp,k(x))α(Γp,k(y))β

for x, y > 0 and α, β > 0 such that α+ β = 1. Then,

Q(αx+ βy) = aαx+βyΓp,k(αx+ βy) ≤ aαx+βy(Γp,k(x))α(Γp,k(y))β . (2.4)

Also recall from the Young’s inequality that

uαvβ ≤ αu+ βv (2.5)

for u, v > 0 and α, β > 0 such that α+β = 1. Let u = axΓp,k(x) and v = ayΓp,k(y).
Then (2.5) becomes

aαx+βy(Γp,k(x))α(Γp,k(y))β ≤ αaxΓp,k(x) + βayΓp,k(y) = αQ(x) + βQ(y). (2.6)

Combining (2.4) and (2.6) yields Q(αx + βy) ≤ αQ(x) + βQ(y) which concludes
the proof. �

Theorem 6. Let p ∈ N and k > 0. Then the functions A(x) = xψp,k(x) is strictly
convex on (0,∞).

Proof. Direct computations yield

A′′(x) = 2ψ′p,k(x)− xψ′′p,k(x)

which by (1.5) implies

A′′(x) = 2

p∑
n=0

1

(nk + x)2
− 2

p∑
n=0

x

(nk + x)3
= 2

p∑
n=0

nk

(nk + x)3
> 0.

Thus, A(x) is convex. �

Remark 5. Corollary 1 and Theorems 4, 5 and 6 provide generalizations for some
results proved in [14] and [6].

Definition 3 ([12],[15]). Let f : I ⊆ (0,∞) → (0,∞) be a continuous function.
Then f is said to be geometrically (or multiplicatively) convex on I if any of the
following conditions is satisfied.

f(
√
x1x2) ≤

√
f(x1)f(x2), (2.7)

or more generally

f

(
n∏
i=1

xλii

)
≤

n∏
i=1

[f(xi)]
λi , n ≥ 2 (2.8)

where x1, x2, . . . , xn ∈ I and λ1, λ2, . . . , λn > 0 with
∑n
i=1 λi = 1. If inequali-

ties (2.7) and (2.8) are reversed, then f is said to be geometrically (or multiplica-
tively) concave on I.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 January 2017                   doi:10.20944/preprints201701.0055.v1

Peer-reviewed version available at Communications Series A1 Mathematics & Statistics 2017; doi:10.1501/Commua1_0000000807

http://dx.doi.org/10.20944/preprints201701.0055.v1
https://doi.org/10.1501/Commua1_0000000807


6 KWARA NANTOMAH

Lemma 2 ([12]). Let f : I ⊆ (0,∞)→ (0,∞) be a differentiable function. Then f

is a geometrically convex function if and only if the function xf ′(x)
f(x) is nondecreasing.

Lemma 3 ([12]). Let f : I ⊆ (0,∞) → (0,∞) be a differentiable function. Then

f is a geometrically convex function if and only if the function f(x)
f(y) ≥

(
x
y

) yf′(y)
f(y)

holds for any x, y ∈ I.

Theorem 7. Let f(x) = exΓp,k(x) for p ∈ N and k ≥ 1. Then f is geometrically
convex and the inequality

ey

ex

(
x

y

)y[1+ψp,k(y)]

≤ Γp,k(x)

Γp,k(y)
≤ ey

ex

(
x

y

)x[1+ψp,k(x)]

(2.9)

is valid for x > 0 and y > 0..

Proof. We proceed as follows.

ln f(x) = x+ ln Γp,k(x) implying
f ′(x)

f(x)
= 1 + ψp,k(x).

Then, (
xf ′(x)

f(x)

)′
= 1 + ψp,k(x) + xψ′p,k(x)

= 1 +
1

k
ln(pk)−

p∑
n=0

1

nk + x
+

p∑
n=0

x

(nk + x)2

= 1 +
1

k
ln(pk) +

p∑
n=1

[
x

(nk + x)2
− 1

nk + x

]

= 1 +
1

k
ln(pk)−

p∑
n=1

nk

(nk + x)2

, h(x).

Then h′(x) = 2
∑p
n=0

nk
(nk+x)3 > 0 implying that h is increasing. Moreover,

h(0) = 1 +
1

k
ln(pk)−

p∑
n=1

1

nk

= 1 +
1

k
ln k +

1

k

(
ln p−

p∑
n=1

1

n

)

> 1 +
1

k
ln k − 1

k
> 0

since ln p −
∑p
n=1

1
n > −1 (See eqn. (6) of [2]). Then for x > 0, we have h(x) >

h(0) > 0. Thus xf ′(x)
f(x) is nondecreasing. Therefore, by Lemmas 2 and 3, f is

geometrically convex and as a result, f(x)
f(y) ≥

(
x
y

) yf′(y)
f(y)

. Consequently, we obtain

exΓp,k(x)

eyΓp,k(y)
≥
(
x

y

)y[1+ψp,k(y)]

(2.10)
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CONVEXITY PROPERTIES AND INEQUALITIES 7

and

eyΓp,k(y)

exΓp,k(x)
≥
(y
x

)x[1+ψp,k(x)]

. (2.11)

Now combining (2.10) and (2.11) yields the result (2.9) as required. �

Remark 6. In particular, by replacing x and y respectively by x + k and x + k
2 ,

inequality (2.9) takes the form:

1√
ek

(
x+ k

x+ k
2

)(x+ k
2 )[1+ψp,k(x+ k

2 )]

≤ Γp,k(x+ k)

Γp,k(x+ k
2 )
≤ 1√

ek

(
x+ k

x+ k
2

)(x+k)[1+ψp,k(x+k)]

.

(2.12)

Remark 7. Theorem 7 gives a (p, k)-analogue of the previous results: [3, Theorem
1], [15, Theorem 1.2, Corollary 1.5] and [6, Theorem 3.5]. In particular, by letting
k = 1, we recover the result of [6].

Remark 8. Results of type (2.9) and (2.12) can also be found in [9].

3. Inequalities involving the (p, k)-Riemann zeta function

Definition 4. For p ∈ N, k > 0 and x > 0, let ζp,k(x) be the (p, k)-analogue of the
Riemann zeta function, ζ(x). Then ζp,k(x) is defined as

ζp,k(x) =
1

Γp,k(x)

∫ p

0

tx−k(
1 + tk

pk

)p
− 1

dt, x > k. (3.1)

The functions ζp,k(x) satisfies the commutative diagram:

ζp,k(x)

k→1

��

p→∞ // ζk(x)

k→1

��
ζp(x)

p→∞
// ζ(x)

where ζp(x) and ζk(x) respectively denote the p and k analogues of the Riemann
zeta function. See [5] and [4] for instance.

Lemma 4 ([7]). Let f and g be two nonnegative functions of a real variable, and
m, n be real numbers such that the integrals in (3.2) exist. Then∫ b

a

g(t) (f(t))
m
dt ·

∫ b

a

g(t) (f(t))
n
dt ≥

(∫ b

a

g(t) (f(t))
m+n

2 dt

)2

. (3.2)

Theorem 8. Let p ∈ N, k > 0 and x > 0. Then the inequality

x+ pk + k

x+ pk + 2k
.
ζp,k(x)

ζp,k(x+ k)
≥ x

x+ k
.
ζp,k(x+ k)

ζp,k(x+ 2k)
, x > k. (3.3)

holds.
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Proof. Let g(t) = 1(
1+ tk

pk

)p
−1

, f(t) = t, m = x − k, n = x + k, a = 0 and b = p.

Then (3.2) implies∫ p

0

tx−k(
1 + tk

pk

)p
− 1

dt ·
∫ p

0

tx+k(
1 + tk

pk

)p
− 1

dt ≥

∫ p

0

tx(
1 + tk

pk

)p
− 1

dt

2

which by relation (3.1) gives

ζp,k(x)Γp,k(x) · ζp,k(x+ 2k)Γp,k(x+ 2k) ≥ (ζp,k(x+ k)Γp,k(x+ k))
2
. (3.4)

Then by the functional equation (1.3), inequality (3.4) can be rearranged to obtain
the desired result (3.3). �

Remark 9. (i) By letting p → ∞ in (3.3), we obtain the result of Theorem 3.1
of [4].

(ii) By setting k = 1 in (3.3), we obtain the result of Theorem 6 of [5].
(iii) By letting p→∞ and k = 1 in (3.3), we obtain the result of Theorem 2.2 of

[7].

Theorem 9. Let p ∈ N and k > 0. Then for x > k, y > k, 1
α + 1

β = 1 such that
x
α + y

β > k, the inequality

Γp,k

(
x
α + y

β

)
(Γp,k(x))

1
α (Γp,k(y))

1
β

≤ (ζp,k(x))
1
α (ζp,k(y))

1
β

ζp,k

(
x
α + y

β

) (3.5)

holds.

Proof. We employ the Hölder’s inequality:∫ b

a

f(t)g(t) dt ≤

(∫ b

a

(f(t))α dt

) 1
α
(∫ b

a

(g(t))β dt

) 1
β

(3.6)

where α > 1, 1
α + 1

β = 1. Let f(t) = t
x−k
α((

1+ tk

pk

)p
−1

) 1
α

, g(t) = t
y−k
β((

1+ tk

pk

)p
−1

) 1
β

, a = 0

and b = p. Then (3.6) implies

∫ p

0

t
x
α+ y

β−k(
1 + tk

pk

)p
− 1

dt ≤

∫ p

0

tx−k(
1 + tk

pk

)p
− 1

dt

 1
α
∫ p

0

ty−k(
1 + tk

pk

)p
− 1

dt

 1
β

.

By relation (3.1) we obtain

Γp,k

(
x

α
+
y

β

)
ζp,k

(
x

α
+
y

β

)
≤ (Γp,k(x)ζp,k(x))

1
α (Γp,k(y)ζp,k(y))

1
β

which when rearranged gives (3.5) as required. �

Remark 10. (i) By letting p→∞ in (3.5), we obtain the result of Theorem 3.3
of [4].

(ii) By letting p → ∞ and k = 1 in (3.5), we obtain the result of Theorem 7 of
[5].

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 January 2017                   doi:10.20944/preprints201701.0055.v1

Peer-reviewed version available at Communications Series A1 Mathematics & Statistics 2017; doi:10.1501/Commua1_0000000807

http://dx.doi.org/10.20944/preprints201701.0055.v1
https://doi.org/10.1501/Commua1_0000000807


CONVEXITY PROPERTIES AND INEQUALITIES 9

(iii) In particular, let k = 1 in (3.5). Then by replacing x and y respectively by
x− 1 and y + 1, we obtain

Γp

(
x−1
α + y+1

β

)
(Γp(x− 1))

1
α (Γp(y + 1))

1
β

≤ (ζp(x− 1))
1
α (ζp(y + 1))

1
β

ζp

(
x−1
α + y+1

β

)
which corresponds to Theorem 2.7 of [8].

Lemma 5 ([11]). Let f : (0,∞)→ (0,∞) be a differentiable, logarithmically convex
function. Then the function

g(x) =
(f(x))α

f(αx)
, α ≥ 1

is decreasing on its domain.

Lemma 6. Let p ∈ N, k > 0 and α ≥ 1. Then the inequality

[Γp,k(y + k)]
α

Γp,k(αy + k)
≤ [Γp,k(x+ k)]

α

Γp,k(αx+ k)
≤ 1 (3.7)

holds for 0 ≤ x ≤ y.

Proof. Note that the function f(x) = Γp,k(x + k) is differentiable and logarith-

mically convex. Then by Lemma 5, G(x) =
[Γp,k(x+k)]α

Γp,k(αx+k) is decreasing and for

0 ≤ x ≤ y, we have G(y) ≤ G(x) ≤ G(0) yielding the result. �

Theorem 10. Let p ∈ N, k > 0 and α ≥ 1. Then the inequality

[Γp,k(y + k)ζp,k(y + k)]
α

Γp,k(αy + k)ζp,k(αy + k)
≤ [ζp,k(x+ k)]

α

ζp,k(αx+ k)
(3.8)

is satisfied for 0 < x ≤ y.

Proof. Let H be defined x > 0 by

H(x) = Γp,k(x+ k)ζp,k(x+ k) =

∫ p

0

tx(
1 + tk

pk

)p
− 1

dt. (3.9)

Then for x, y > 0 and a, b > 0 such that a+ b = 1, we have

H(ax+ by) =

∫ p

0

tax+by(
1 + tk

pk

)p
− 1

dt

=

∫ p

0

tax((
1 + tk

pk

)p
− 1
)a · tby((

1 + tk

pk

)p
− 1
)b dt

≤

∫ p

0

tx(
1 + tk

pk

)p
− 1

dt

a∫ p

0

ty(
1 + tk

pk

)p
− 1

dt

b

= (H(x))a(H(y))b.

Therefore, H(x) is logarithmically convex. Then by Lemma 5, the function

T (x) =
[Γp,k(x+ k)ζp,k(x+ k)]

α

Γp,k(αx+ k)ζp,k(αx+ k)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 January 2017                   doi:10.20944/preprints201701.0055.v1

Peer-reviewed version available at Communications Series A1 Mathematics & Statistics 2017; doi:10.1501/Commua1_0000000807

http://dx.doi.org/10.20944/preprints201701.0055.v1
https://doi.org/10.1501/Commua1_0000000807


10 KWARA NANTOMAH

is decreasing. Hence for 0 < x ≤ y, we have

[Γp,k(y + k)ζp,k(y + k)]
α

Γp,k(αy + k)ζp,k(αy + k)
≤ [Γp,k(x+ k)ζp,k(x+ k)]

α

Γp,k(αx+ k)ζp,k(αx+ k)
.

Then by the right hand side of (3.7), we obtain

[Γp,k(y + k)ζp,k(y + k)]
α

Γp,k(αy + k)ζp,k(αy + k)
≤ [ζp,k(x+ k)]

α

ζp,k(αx+ k)

concluding the proof. �
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