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Abstract Topological indices have important role in theoretical chemistry for QSPR researches. Among the all 

topological indices the Randić and the Zagreb indices have been used more considerably than any other topological 

indices in chemical and mathematical literature. Most of the topological indices as in the Randić and the Zagreb 

indices are based on the degrees of the vertices of a connected graph. Recently novel two degree concepts have 

been defined in graph theory; ev-degrees and ve-degrees. In this study we define ev-degree Zagreb index, ve-degree 

Zagreb indices and ve-degree Randić index by using these new graph invariants as parallel to their corresponding 

classical degree versions. We compare these new group ev-degree and ve-degree indices with the other well-known 

and most used topological indices in literature such as; Wiener, Zagreb and Randić indices by modelling some 

physicochemical properties of octane isomers. We show that the ev-degree Zagreb index, the ve-degree Zagreb 

and the ve-degree Randić indices give better correlation than Wiener, Zagreb and Randić indices to predict the 

some specific physicochemical properties of octanes. We investigate the relations between the second Zagreb 

index and ev-degree and ve-degree Zagreb indices and some mathematical properties of ev-degree and ve-degree 

Zagreb indices. 
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1 Introduction 

Graph theory which is an important branch of applied mathematics has many applications to modelling real world 

problems from science to technology. Chemical graph theory which is a fascinating branch of graph theory has 

many applications related to chemistry. Chemical graph theory provides many information about molecules and 

atoms by using pictorial representation (chemical graph) of these chemical compounds. A topological index which 

is a numerical quantity derived from the chemical graph of a molecule is used to modelling chemical and physical 
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properties of molecules in QSPR/QSAR researches. Quantitative structure-property/activity relationships 

(QSPR/QSAR) studies have very important role in theoretical chemistry. Octane isomers have been used widely 

in QSPR studies. The role of octane isomers in QSPR studies, we refer the interested reader [1-4] and references 

therein. Among the all topological indices, Wiener, Randić and Zagreb indices are the most used topological 

indices in the chemical and mathematical literature so far.   

Very recently, Chellali, Haynes, Hedetniemi and Lewis have published a seminal study:  On ve-degrees and ev-

degrees in graphs  [5]. The authors defined two novel degree concepts in graph theory; ev-degrees and ve-degrees 

and investigate some basic mathematical properties of both novel graph invariants with regard to graph regularity 

and irregularity [5]. After given the equality of the total ev-degree and total ve-degree for any graph, also the total 

ev-degree and the total ve-degree were stated as in relation to the first Zagreb index. It was proposed in the article 

that the chemical applicability of the total ev-degree (and the total ve-degree) could be an interesting problem in 

view of chemistry and chemical graph theory.   

In this study we define ev-degree Zagreb index, ve-degree Zagreb indices and ve-degree Randić index by using 

these new graph invariants. We define these novel topological indices invariants as parallel to corresponding 

original definitions of based on classical degree concept. We compare these new group ev-degree, ve-degree 

Zagreb and ve-degree Randić indices with the other well-known and most used topological indices such as Wiener, 

Zagreb and Randić indices by modelling some physicochemical properties of octane isomers.  

2 Preliminaries 

In this section we give some basic and preliminary concepts which we shall use later.  A graph ܩ = (ܸ,  consists (ܧ

of two nonempty sets ܸ and 2-element subsets of ܸ namely ܧ. The elements of ܸ are called vertices and the 

elements of ܧ are called edges. For a vertex ݒ, deg (ݒ) show the number of edges that incident to ݒ.   The set of 

all vertices which adjacent to ݒ  is called the open neighborhood of ݒ and denoted by ܰ(ݒ).  If we add the vertex ݒ to ܰ(ݒ), then we get the closed neighborhood of ݒ, ܰሾݒሿ. For the vertices ݑ and ݑ)݀ ,ݒ,  denotes the distance (ݒ

between ݑ and ݒ which means that minimum number of edges between ݑ and ݒ.  In [6], the Wiener index of a 

connected graph G, the first topological index, was defined as; 

ܹ = (ܩ)ܹ = 12 ෍ ,ݑ)݀ (ீ)௨,௩∈௏(ݒ . 
In his study, Wiener used the total distance between all different atoms (vertices) of paraffin to predict boiling 

point.  We refer the interested reader to [7-9] and the references therein for the detailed discussion of Wiener index. 
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The first and second Zagreb indices [10] defined as follows: The first Zagreb index of a connected graph ܩ, defined 

as;  

ଵܯ = (ܩ)ଵܯ = ∑ deg (ݑ)ଶ =௨∈௏(ீ) ∑ (deg(ݑ) + deg (ݒ))௨௩∈ா(ீ) . 

 And the second Zagreb index of a connected graph ܩ, defined as; 

ଶܯ = (ܩ)ଶܯ = ∑ deg(ݑ) . deg (ݒ)௨௩∈ா(ீ)  . 

The authors investigated the relationship between the total π-electron energy on molecules and Zagreb indices 

[10]. For the details see the references [11-13]. Randić investigated the measuring the extent of branching of the 

carbon-atom skeleton of saturated hydrocarbons via Randić index [14].  The Randić index of a connected graph G 

defined as; 

ܴ = (ܩ)ܴ = ∑ (deg(ݑ) . deg(ݒ))ିଵ ଶ⁄௨௩∈ா(ீ) . 

We refer the interested reader to [15-17] and the references therein for the up to date arguments about the Randić 

index.  And now we give the definitions of ev-degree and ve-degree concepts which were given by Chellali et al.  

in [5]. 

Definition 2.1 [5] Let ܩ be a connected graph and ݒ ∈  equals the ,(ݒ)௩௘݃݁݀ ,ݒ The ve-degree of the vertex . (ܩ)ܸ

number of different edges that incident to any vertex from the closed neighborhood of  ݒ. For convenience we 

prefer to show the ve-degree of the vertex ݒ,  ܿ௩.  

Definition 2.2 [5] Let ܩ be a connected graph and  ݁ = ݒݑ ∈  The ev-degree of the edge ݁, ݀݁݃௘௩(݁), equals .(ܩ)ܧ

the number of vertices of the union of the closed neighborhoods of ݑ and ݒ.  For convenience we prefer to show 

the ev-degree of the edge  ݁ =   .௘ or ܿ௨௩ܿ ,ݒݑ

We illustrate these new degree definitions for the vertices and edges of the graph ܩ which are shown in Figure 1. 

 
Figure 1 The graph G for the Example 2.3 and Example 2.13 
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Example 2.3 Notice that for the vertices of ܩ, we get ܿ௫ = 3 ,  ܿ௨ = 4, ܿ௩ = 6, ܿ௥ = 3, ܿ௣ = 6, ܿ௦ = 3, ܿ௧ = 6 , ܿ௭ = 4 and ܿ௬ = 4.  And for the edges of ܩ, we get ܿ௫௨ = 4, ܿ௨௩ = 5, ܿ௨௥ = 4 , ܿ௩௣ = 5, ܿ௣௧ = 6, ܿ௣௦ = 4, ܿ௧௭ =4, ܿ௧௬ = 4 and ܿ௬௭ = 3.  

Definition 2.4 [5] Let ܩ be a connected graph and ݒ ∈   ;is defined as ܩ The total ev-degree of the graph . (ܩ)ܸ

௘ܶ = ௘ܶ(ܩ) = ∑ ܿ௘௘∈ா(ீ) . 

And the total ve-degree of the graph ܩ is defined as;  

௩ܶ = ௩ܶ(ܩ) = ∑ ܿ௩௩∈௏(ீ) .  

Observation 2.5 [5] For any connected graph G, 

௘ܶ(ܩ) = ௩ܶ(ܩ).  
The following theorem states the relationship between the first Zagreb index and the total ve-degree of a connected 

graph ܩ.  

Theorem 2.6 [5] For any connected graph G,  

௘ܶ(ܩ) = ௩ܶ(ܩ) = (ܩ)ଵܯ −   .(ܩ)3݊

where ݊(ܩ) denotes the total number of triangles in G.  

We can restate the Theorem 2.1 for the trees which are acyclic and are not contain any triangles. 

Corollary 2.7 For any tree ܶ,  

௘ܶ(ܶ) = ௩ܶ(ܶ) =   .(ܶ)ଵܯ

And from this last equality we naturally consider to apply these two novel degree concepts to chemical graph 

theory by introducing ev-degree and ve-degree Zagreb indices as well as ve-degree Randić index.  

Definition 2.8 Let ܩ be a connected graph and ݁ ∈  is defined ܩ The ev-degree Zagreb index of the graph .(ܩ)ܧ

as;  

ܵ = (ܩ)ܵ = ∑ ܿ௘ଶ௘∈ா(ீ)  . 

Definition 2.9 Let ܩ be a connected graph and ݒ ∈  ܩ The first ve-degree Zagreb alpha index of the graph .(ܩ)ܸ

is defined as;  
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ܵఈ = ܵఈ(ܩ) = ∑ ܿ௩ଶ௩∈௏(ீ) . 

Definition 2.10 Let ܩ be a connected graph and ݒݑ ∈  ܩ The first ve-degree Zagreb beta index of the graph .(ܩ)ܧ

is defined as;  

ܵఉ = ܵఉ(ܩ) = ∑ (ܿ௨ + ܿ௩)௨௩∈ா(ீ) . 

Definition 2.11 Let ܩ be a connected graph and ݒݑ ∈  ܩ The second ve-degree Zagreb index of the graph  .(ܩ)ܧ

is defined as;  

ܵఓ = ܵఓ(ܩ) = ∑ ܿ௨ܿ௩௨௩∈ா(ீ) . 

Definition 2.12 Let ܩ be a connected graph and ݒݑ ∈  is defined ܩ The  ve-degree Randić index of the graph  .(ܩ)ܧ

as;   

ܴఈ(ܩ) = ∑ ( ܿ௨ܿ௩ )ିଵ ଶ⁄௨௩∈ா(ீ) . 

Example 2.13 We compute these novel topological indices for the graph G in the Example 2.3 (see Figure 2.1). 

ܵ = (ܩ)ܵ = ∑ ܿ௘ଶ௘∈ா(ீ) =175, ܵఈ = ܵఈ(ܩ) = ∑ ܿ௩ଶ௩∈௏(ீ) = 183, ܵఉ = ܵఉ(ܩ) = ∑ (ܿ௨ + ܿ௩)௨௩∈ா(ீ) = 84,  

ܵఓ = ܵఓ(ܩ) = ∑ ܿ௨ܿ௩௨௩∈ா(ீ) =202, ܴఈ(ܩ) = ∑ 1 ( ܿ௨ܿ௩ )ଵ ଶ⁄⁄௨௩∈ா(ீ) = 13.425 and ܯଶ(ܩ) = 46. 
3 Results and Discussions 

In this section we compare all above mentioned old and new topological indices with each other by using strong 

correlation coefficients acquired from the chemical graphs of octane isomers. We get the experimental results at 

the www.moleculardescriptors.eu (see Table 1). The following physicochemical features have been modeled: 

• Entropy, 

• Acentric factor (AcenFac), 

• Enthalpy of vaporization (HVAP), 

• Standard enthalpy of vaporization (DHVAP). 

We select those physicochemical properties of octane isomers for which give reasonably good correlations, i.e. the 

absolute value of correlation coefficients are larger than 0.8 except from the property HVAP (see Table 2). Also 

we find the Wiener index, the first Zagreb index, the second Zagreb index and the Randić indices of octane isomers 
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values at the www.moleculardescriptors.eu (see Table 3).  We also calculate and show the ev-degree Zagreb index, 

the ve-degree Zagreb indices and the ve-degree Randić index of octane isomers values in Table 3.   

Table 1. Some physicochemical properties of octane isomers 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. The correlation coefficients between new and old topological indices and some physicochemical 
properties of octane isomers 

 

 

 

 

 

 

Molecule Entropy AcenFac HVAP DHVAP 

n-octane 111.70 0.39790 73.19 9.915 

2-methyl-heptane 109.80 0.37792 70.30 9.484 

3-methyl-heptane 111.30 0.37100 71.30 9.521 

4-methyl-heptane 109.30 0.37150 70.91 9.483 

3-ethyl-hexane 109.40 0.36247 71.70 9.476 

2,2-dimethyl-hexane 103.40 0.33943 67.70 8.915 

2,3-dimethyl-hexane 108.00 0.34825 70.20 9.272 

2,4-dimethyl-hexane 107.00 0.34422 68.50 9.029 

2,5-dimethyl-hexane 105.70 0.35683 68.60 9.051 

3,3-dimethyl-hexane 104.70 0.32260 68.50 8.973 

3,4-dimethyl-hexane 106.60 0.34035 70.20 9.316 

2-methyl-3-ethyl-pentane 106.10 0.33243 69.70 9.209 

3-methyl-3-ethyl-pentane 101.50 0.30690 69.30 9.081 

2,2,3-trimethyl-pentane 101.30 0.30082 67.30 8.826 

2,2,4-trimethyl-pentane 104.10 0.30537 64.87 8.402 

2,3,3-trimethyl-pentane 102.10 0.29318 68.10 8.897 

2,3,4-trimethyl-pentane 102.40 0.31742 68.37 9.014 

2,2,3,3-tetramethylbutane 93.06 0.25529 66.20 8.410 

Index Entropy AcenFac HVAP DHVAP 

S -0.9614 -0.9829 -0.8425 -0.9043 

Sα -0.9565 -0.9906 -0.8279 -0.8931 

Sβ -0.9410 -0.9864 -0.7281 -0.8118 

Sµ -0.9481 -0.9863 -0.7552 -0.8118 

Rα 0.9486 0.9829 0.8351 0.8924 

W 0.8772 0.9656 0.7381 0.8202 

M1 -0.9543 -0.9731 -0,8860 -0.9361 

M2 -0.9410 -0.9864 -0.7281 -0.8118 

R 0.9063 0.9043 0.9359 0.9580 
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Table 3. Topological indices of octane isomers 

 

Table 4. The squares of correlation coefficients between topological indices and some physicochemical 
properties of octane isomers 

 

 

 

 

 

 

 

 

 

Molecule M1 M2 W R S Sα Sβ Sµ 
 

Rα 

n-octane 26 24 84 3.914 98 90 48 84 2.144

2-methyl-heptane 28 26 79 3.770 114 104 52 98 1.971

3-methyl-heptane 28 27 76 3.808 116 98 54 106 1.956

4-methyl-heptane 28 27 75 3.808 116 110 54 107 1.991

3-ethyl-hexane 28 28 72 3.846 118 114 56 115 1.964

2,2-dimethyl-hexane 32 30 71 3.561 152 138 60 132 1.754

2,3-dimethyl-hexane 30 30 70 3.681 134 126 60 129 1.784 

2,4-dimethyl-hexane 30 29 71 3.664 132 124 58 121 1.799 

2,5-dimethyl-hexane 30 28 74 3.626 130 118 56 113 1.801 

3,3-dimethyl-hexane 32 32 67 3.621 156 146 64 148 1.718 

3,4-dimethyl-hexane 30 31 68 3.719 136 130 62 136 1.753 

2-methyl-3-ethyl-pentane 30 31 67 3.719 136 132 62 137 1.770 

3-methyl-3-ethyl-pentane 32 34 64 3.682 160 152 68 163 1.645 

2,2,3-trimethyl-pentane 34 35 63 3.481 174 162 70 171 1.527 

2,2,4-trimethyl-pentane 34 32 66 3.417 168 156 64 147 1.606 

2,3,3-trimethyl-pentane 34 36 62 3.504 176 164 72 179 1.489 

2,3,4-trimethyl-pentane 32 33 65 3.553 152 144 66 151 1.589 

2,2,3,3-tetramethylbutane 38 40 58 3.250 214 194 80 217 1.277 

Index Entropy AcenFac HVAP DHVAP 

S 0.9242 0.9660 0.7098 0.8177 

Sα 0.9148 0.9812 0.6854 0.7976 

Sβ 0.8854 0.9729 0.5301 0.6590 

Sµ 0.8988 0.9727 0.5703 0.6590 

Rα 0.8998 0.9660 0.6973 0.7963 

W 0.7694 0.9323 0.5447 0.6727 

M1 0.9106 0.9469 0.7849 0.8762 

M2 0.8854 0.9729 0.5301 0.6590 

R 0.8213 0.8177 0.8759 0.9177 
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It can be seen from the Table 2 that the most convenient indices which are modelling the Entropy, Enthalpy of 

vaporization (HVAP), Standard enthalpy of vaporization (DHVAP) and Acentric factor (AcenFac) are ve-degree 

Zagreb index (S) for entropy, the first ve-degree Zagreb alpha index (Sα) for Acentric Factor and the Randić index 

(R) for the Enthalpy of vaporization (HVAP) and Standard enthalpy of vaporization (DHVAP), respectively. But 

notice that the first two indices show the negative strong correlation and the third index show the positive strong 

correlation. Because of this fact we compare these graph invariants with each other by using the squares of 

correlation coefficients for ensure the compliance between the positive and negative correlation coefficients (see 

Table 4).  

Entropy: We can see from the Table 4 that the ve-degree Zagreb index (S) gives the highest square of correlation 

coefficient for entropy. After that the first ve-degree Zagreb alpha index (Sα), the first Zagreb index (M1), the ve-

degree Randić index (Rα) and the second ve-degree Zagreb index (Sµ) give the highest square of correlation 

coefficients, respectively. 

Acentric factor (AcenFac): We can see from the Table 4 that the first ve-degree Zagreb alpha index (Sα) gives 

the highest square of correlation coefficient for Acentric factor. After that the first ve-degree Zagreb beta index 

(Sβ) and the second Zagreb index (M2) give the same value. And the the second ve-degree Zagreb index (Sµ), the  

ev-degree Zagreb index (S) and  ve-degree Randić index (Rα) give the highest square of correlation coefficients, 

respectively. 

Enthalpy of vaporization (HVAP): It can be seen from the Table 4 that the Randić index (R) gives the the highest 

square of correlation coefficient for Enthalpy of vaporization. After that the first Zagreb  index (M1), the  ev-degree 

Zagreb index (S) , the ve-degree Randić index (Rα)  and the the first ve-degree Zagreb alpha index (Sα) give the 

highest square of correlation coefficients, respectively.  

Standard enthalpy of vaporization (DHVAP): We can observe from the Table 4 that the Randić index (R) gives 

the the highest square of correlation coefficient for Enthalpy of vaporization. After that the first Zagreb index (M1), 

the  ev-degree Zagreb index (S) , the first ve-degree Zagreb alpha index (Sα)  and the ve-degree Randić index (Rα) 

give the highest square of correlation coefficients, respectively.  

And now we investigate the relations between the old topological indices and the novel topological indices. The 

correlation coefficients between the Wiener, Zagreb, Randić indices and the ev-degree and ve-degree indices are 

shown in Table 5.  It can be shown from the Table 5 that the first ve-degree Zagreb beta index (Sβ) gives the highest 

absolute value of correlation coefficient with the Wiener index.  The ev-degree Zagreb index (S) gives the highest 
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correlation coefficient with the first Zagreb index (M1).  The first ve-degree Zagreb beta index (Sβ) gives the highest 

absolute value of correlation coefficient with the Randić index.  And it is very surprisingly see that the correlation 

coefficient between the second Zagreb index (M2) and the first ve-degree Zagreb beta index (Sβ) is one. We can 

see from the Table 3 that   ܵఉ(ܩ) = (ܩ)for the molecular graphs of octane isomers. But we know that ܵఉ (ܩ)ଶܯ2 ≠  from the Example 2.3. The following section we investigate the relation between the second (ܩ)ଶܯ2

Zagreb index and the first ve-degree Zagreb beta index.   

Table 5.  The correlation coefficients between old and corresponding novel topological indices 

 

 

 

 

 

 

 

The cross correlation matrix of ev-degree and ve-degree indices are given in Table 6. 

 Table 6. The cross correlation matrix of the ev-degree and ve-degree topological indices 

 

 

 

 

 

 

Index W M1 M2 R 

S -0.9177 0.9951 0.9676 -0.9441 

Sα 0.9483 0.9818 0.9774 -0.9182 

Sβ -0.9683 0.9495 1.000 -0.8609 

Sµ -0.9567 0.9523 0.9982 -0.8645 

Rα 0.9478 -0.9764 -0.9758 0.9365 

Index S Sα Sβ Sµ Rα

S 1.0000 

Sα 0.9901 1.0000

Sβ 0.9676 0.9774 1.0000

Sµ 0.9738 0.9797 0.9982 1.0000

Rα -0.9758 -0.9752 -0.9758 -0.9701 1.0000
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It can be shown from the Table 6 that the minimum correlation efficient among the all ve-degree and ev-degree 

indices is 0.9676 which is indicate strong correlation among all these novel indices. From the above arguments, 

we can say that the ve-degree and ev-degree indices are possible tools for QSPR researches. 

4 Lower and upper bounds of ev-degree and ve-degree Zagreb indices for general graphs  

In this section are given the relations between second Zagreb index and ve-degree and ev-degree Zagreb indices. 

And also fundamental mathematical properties of ev-degree and ve-degree Zagreb indices are given.   

Lemma 4.1 Let T be a tree and ݒ ∈ ܸ(ܶ) then,  

ܿ௩ = ෍ deg (ݑ)௨∈ே(௩) . 
Proof  From the Definition  2.1 we know that ܿ௩ equals the number of different edges incident to any vertex from ܰ(ݒ). Clearly for any tree, this definition corresponds the sum of all degrees of the vertices lie in ܰ(ݒ). Hence ܿ௩ = ∑ deg (ݑ)௨∈ே(௩) .                                                                                     □ 

Theorem 4.2 Let T be a tree with the vertex set  ܸ(ܶ) = ሼݒଵ, ,ଶݒ … ,  ௡ሽ thenݒ

ܵఉ(ܶ) =  .(ܶ)ଶܯ2
Proof  From the Definition 2.10 and Lemma 4.1 we can directly write 

ܵఉ(ܶ) = ෍ (ܿ௩೔ + ܿ௩ೕ)௩೔௩ೕ∈ா(்) = ෍ (෍ deg(ݓ) + ෍ deg (ݓ))௪∈ே(௩ೕ)௪∈ே(௩೔)௩೔௩ೕ∈ா(்)   
= deg (ݒଵ) ෍ deg(ݓ) + deg (ݒଶ) ෍ deg(ݓ) + ⋯ +௪∈ே(௩మ)௪∈ே(௩భ)  deg (ݒ௡) ෍ deg (ݓ)௪∈ே(௩೙)  

Notice that the above sum contains the multiplication of the degree of end vertices of each edge exactly two times. 

Hence, 

   = 2 ∑ deg(ݑ) deg(ݒ) = (்)ଶ(ܶ)௨௩∈ாܯ2 .                                                                 □ 

Before we give the following interesting theorem, we mention the forgotten topological index [10]. The forgotten 

topological index for a connected graph G defined as; 

ܨ = (ܩ)ܨ = ∑ deg (ݒ)ଷ = ∑ (deg(ݑ)ଶ + deg(ݒ)ଶ)௨௩∈ா(ீ)௩∈௏(ீ) . 
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It was showed in [18] that the predictive power of the forgotten topological index is very close to the first Zagreb 

index for the entropy and acentric factor. For further studies about the forgotten topological index we refer to the 

interested reader [18-20] and references therein. 

Theorem 4.3 Let G be a triangle free connected graph, then; 

(ܩ)ܵ = (ܩ)ܨ +   .(ܩ)ଶܯ2
Proof.  It was showed in [5] that ܿ௘ = ܿ௨௩ = deg(ݑ) + deg (ݒ) for any triangle free graph. By using this equality, 

we get that; 

 ܵ = (ܩ)ܵ = ∑ ܿ௘ଶ௘ୀ௨௩∈ா(ீ) = ∑ (deg(ݑ) + deg(ݒ))ଶ௘ୀ௨௩∈ா(ீ)   
= ෍ (deg(ݑ)ଶ + deg(ݒ)ଶ) + 2 ෍ deg(ݑ) deg (ݒ)௘ୀ௨௩∈ா(ீ)௘ୀ௨௩∈ா(ீ)  

= (ܩ)ܨ +  □                                                                                       .(ܩ)ଶܯ2

We can state the following corollary which describe the relation between the ev-degree Zagreb index and the first 

ve-degree  Zagreb alpha index for trees by using the Theorem 4.3. 

Corollary 4.4 Let T be a tree then; 

ܵ(ܶ) = (ܶ)ܨ + ܵఉ(ܶ).  
And now we give the maximum and minimum graph classes with respect to ev-degree and ve-degree Zagreb 

indices. 

Theorem 4.5 Let G be a simple connected graph of order ݊ ≥ 3 vertices then; 

16݊ − 30 ≤ (ܩ)ܵ ≤ 12 ݊ଷ(݊ − 1). 
Lower bound is achieved if and only if G is a path and upper bound is achieved if and only if G is a complete 

graph. 

Proof  We get that ܿ௘ = ܿ௨௩ = (ݑ)ܰ| ∪ ܰ(ܸ)| from the definition of ev-degree of any edge of G. |ܰ(ݑ) ∪ ܰ(ܸ)| 
reaches its maximum value for the complete graphs and its minimum value for the path for an edge of G. There 

are ݊ − 3 edges with their ev-degrees equals 4 and 2 edges with their ev-degrees equals 3 for the n-vertex path. 
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And the ev-degrees of all edges of the complete graph are ݊. From this, the desired result is acquired.                             

□ 

Theorem 4.6 Let T be a  tree of order ݊ ≥ 3 vertices  then; 

16݊ − 30 ≤ ܵ(ܶ) ≤ ݊ଶ(݊ − 1). 
Lower bound is achieved if and only if T is a path and upper bound is achieved if and only if T is a star. 

Proof  The lower bound comes from Theorem 4.5. From the same arguments of the Theorem 4.5, the maximum 

tree of the ev-degree Zagreb index is star graph. The ev-degrees of all edges of the star graph are ݊. From this, the 

proof is completed.                                                                                                                                                      □ 

Theorem 4.7 Let G be a simple connected graph of order ݊ ≥ 5 vertices then; 

16݊ − 6 ≤ ܵఈ(ܩ) ≤ 14 ݊ଷ(݊ − 1)ଶ. 
Lower bound is achieved if and only if G is a path and upper bound is achieved if and only if G is a complete 

graphs. 

Proof  We know that ܿ௨ equals the number of different edges that incident to any vertex from the closed 

neighborhood of  ݒ.  Clearly  ܿ௨  reaches its maximum value for the complete graphs and its minimum value for 

the path for a vertex of G. There are ݊ − 2 vertices with their ve-degrees equals 4, 2 vertices with their ve-degrees 

equals 3 and 2 vertices with their ve-degrees equals 2. And the ve-degrees of all vertices of the complete graph are ݊(݊ − 1) 2⁄ . From this, the desired result is acquired.                                                                                              □ 

Theorem 4.8 Let T be a tree of order ݊ ≥ 5 vertices then; 

16݊ − 6 ≤ ܵఈ(ܶ) ≤ ݊(݊ − 1)ଶ. 
Lower bound is achieved if and only if T is a path and upper bound is achieved if and only if T is a star. 

Proof  The lower bound comes from Theorem 4.6. From the same arguments of the Theorem 4.7, the maximum 

tree of the ve-degree first Zagreb alpha index is star graph. The ve-degrees of all vertices of the star graph are  

݊ − 1. From this, the proof is completed.                                                                                                                                     □ 

Theorem 4.9 Let G be a simple connected graph of order ݊ ≥ 5 vertices then; 
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8݊ − 16 ≤ ܵఉ(ܩ) ≤ 12 ݊ଶ(݊ − 1)ଶ. 
Lower bound is achieved if and only if G is a path and upper bound is achieved if and only if G is a complete 

graph. 

Proof  The proof is similar the proof of Theorem 4.7.                                                                                            □ 

Theorem 4.10 Let T be a tree of order ݊ ≥ 5 vertices then; 

16݊ − 6 ≤ ܵఉ(ܩ) ≤ 2݊(݊ − 1). 
Lower bound is achieved if and only if T is a path and upper bound is achieved if and only if T is a star. 

Proof  The proof is similar the proof of Theorem 4.8.                                                                                     □ 

Theorem 4.11 Let G be a simple connected graph of order ݊ ≥ 5 vertices then; 

16݊ − 44 ≤ ܵఓ(ܩ) ≤ 18 ݊ଷ(݊ − 1)ଷ. 
Lower bound is achieved if and only if G is a path and upper bound is achieved if and only if G is a complete 

graph. 

Proof  The proof is similar the proof of Theorem 4.7.                                                                                       □ 

Theorem 4.12 Let T be a tree of order ݊ ≥ 5 vertices then; 

16݊ − 6 ≤ ܵఓ(ܶ) ≤ (݊ − 1)ଷ. 
Lower bound is achieved if and only if T is a path and upper bound is achieved if and only if T is a star. 

Proof  The proof is similar the proof of Theorem 4.8.                                                                                     □ 

5 Conclusion 

We proposed novel topological indices based on ev-degree and ve-degree concept which have been defined very 

recently in graph theory. It has been shown that these indices can be used as predictive means in QSAR researches. 

Predictive power of these indices have been tested on by using some physicochemical properties of octanes. 

Acquired results show that the new ev-degree and ve-degree indices give somewhat better results by analogy well-

known Wiener, Zagreb and Randić indices. In addition, we investigated basic mathematical properties of these 

novel topological indices. We have found a lower and upper bounds for the simple connected graphs. It can be 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 January 2017                   doi:10.20944/preprints201701.0101.v1

http://dx.doi.org/10.20944/preprints201701.0101.v1


interesting to find the exact value of the  ev-degree and ve-degree Zagreb indices of some graph operations such 

as;  direct, Cartesian, corona, tensor, hierarchical and generalized hierarchical product of graphs for further studies. 

It can also be interesting to investigate the relations between the ev-degree and ve-degree Zagreb indices and the 

other well-known topological indices.  
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