Preprint
Article

A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signal

Altmetrics

Downloads

2170

Views

1364

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

30 January 2017

Posted:

30 January 2017

You are already at the latest version

Alerts
Abstract
Intelligent fault diagnosis techniques have replaced the time-consuming and unreliable human analysis, increasing the efficiency of fault diagnosis. Deep learning model can improve the accuracy of intelligent fault diagnosis with the help of its multilayer nonlinear mapping ability. This paper has proposed a novel method named Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN). The proposed method uses raw vibration signals as input (data augmentation is used to generate more inputs), and uses the wide kernels in first convolutional layer for extracting feature and suppressing high frequency noise. Small convolutional kernels in the preceding layers are used for multilayer nonlinear mapping. AdaBN is implemented to improve the domain adaptation ability of the model. The proposed model addresses the problem that currently, the accuracy of CNN applied to fault diagnosis is not very high. WDCNN can not only achieve 100% classification accuracy on normal signals, but also outperform state of the art DNN model which is based on frequency features under different working load and noisy environment.
Keywords: 
Subject: Engineering  -   Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated