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In this paper, we study the global existence and exponential decay for a dynamic con-
tact problem between a Timoshenko beam with second sound and two rigid obstacles,
of which the heat flux is given by Cattaneo’s law instead of the usual Fourier’s law.
The main difficulties arise from the irregular boundary terms, from the low regularity
of the weak solution and from the weaker dissipative effects of heat conduction in-
duced by Cattaneo’s law. By considering related penalized problems, proving some a
priori estimates and passing to the limit, we prove the global existence of the solutions.
By considering the approximate framework, constructing some new functionals and
applying the perturbed energy method, we obtain the exponential decay result for
the approximate solution, and then prove the exponential decay rate to the original

problem by utilizing the weak lower semicontinuity arguments.
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1 Introduction

In this paper, we investigate the mechanical behavior of thermoelastic Timoshenko homogeneous
beam, of natural length [, which may come in contact with two rigid obstacles (see Figure 1). We
denote by ¢ = ¢(z,t),¥ = (z,t),0 = 0(x,t) and ¢ = q(z,t) the transverse displacement, angle,

relative temperature and heat flow, respectively, we consider the following system:

prow(x,t) — kpa(z,t) + ¥(z,1)], + agpe(x, t) = 0, (z,t) € (0,1) x (0,T),
P2 (x,t) — bippy(,t) + k [0z (x, t) + (2, t)] — mbOy(z,t) =0, (x,t) € (0,1) x (0,7, w1
Or(z,t) + rqe(x,t) — mipy(x,t) =0, (x,t) € (0,1) x (0,7),
Tq(x,t) + q(x, t) + r0,(z,t) = 0, (x,t) € (0,1) x (0,7T),

with the initial conditions

z,0) = Y1(z), = €[0,1], (1.2)
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and
©(0,t) =0, ¥(0,t) =0, ¢(0,t) =0, tel0,T], (1.3)

Y (l,t) =0, 0(,t)=0, tel0,T], (1.4)

for some given functions g, @1, W0, ¥1,00,q0. The coefficients p1, p2, b, k, ¢, m and 7 represent
the mass density, the moment of mass inertia, the rigidity coefficient of cross section, the shear
modulus of elasticity, the coefficient of the damping force, the coupling coefficient depending on

the material properties and the thermal diffusivity, respectively, with p1, p2,k,b, 7,0 € R} and
m € R\ {0}.

s 2

Figure 1: A thermoelastic Timoshenko beam and the tip at x = [ with clearance g = g1 + g2.

The tip at z = [ is modeled with the Signorini non-penetration condition, see [21, 28]. In
particular, the tip with gap ¢ is the asymmetrical so that g = g1 + g2, where g; > 0 and g > 0
are, respectively, the upper and lower clearances, when the system is at rest (see Figure 1). Then,

the right end of the beam is assumed to move vertically only between two stops, namely
-2 <pl,t)<g, te(0,T). (1.5)
We denote by o(t) the shear stress at x =1, i.e.,

o(t) := klpa(l,t) + (L, )]

We require that when there is no contact, namely —go < ¢(l,t) < g1, the right end is free and
o(t) = 0. On the other hand, when u(l,t) is in contact, namely ¢(l,t) = —g2 or ¢(l,t) = g1,
the stress is opposite to the displacement: o(t) > 0 if ¢(I,t) = —g2 and o(t) < 0 if p(l,t) = g1.
Accordingly, we prescribe

—o(t) € 0X(p(l,t)), te€][0,T], (1.6)

where 0X denotes the subdifferential of the indicator function X

07 if — g2 < @ <41,
X(p) = .
400, otherwise,
namely
(—00,0], if ¢ =—go,
0X(p) =1 0, if —go <<y,

[0,+00), if ¢ =g.
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Many researchers got interested in studying the dynamics contact problems involving only a
single displacement and/or a single variation of temperature, see for example [2, 3, 21, 22, 28,
38, 44]. Carlson [12] and Day [18] found that two or more materials may come in contact as a
result of thermoelastic expansion or contraction in industrial processes. Copetti [15], Kuttler and
Shillor [27] proposed the dynamic evolution of a thermoviscoelastic rod which may contact or
impact a rigid or reactive obstacle, whereas the exponential energy decay rate for weak solutions
of a thermoelastic rod, contacting a rigid obstacle, has been analyzed in [36]. Copetti [16] proved
existence and uniqueness results and proposed finite element approximations in space with back-
ward Euler discretization in time for a contact problem in generalized thermoelasticity under the
theory of thermoelasticity proposed by Green and Lindsay [24]. Berti and Naso [10] considered
the existence and longtime behavior of solutions for a dynamic contact problem between a non-
linear viscoelastic beam and two rigid obstacles. Afterward, thermal effects have been also taken
into account in [7, 9], where Berti et al. proved the existence and uniqueness of the solution as
well as the exponential decay of the related energy.

Timoshenko beam with thermal contribution have been investigated by many authors and
some results related to global existence and decay properties have been obtained, see for example
[13, 14, 19, 20, 23, 25, 29, 32, 35, 43, 46]. For the case of nonlinear internal frictional damping and
without thermal effects, we refer the readers to Boussouira [1], Rivera and Racke [37], Raposo
et al. [42] and Soufyane [45]. The boundary stabilization and boundary control have been
studied in [26, 48] (see also references therein). Arantes and Rivera in [5] proved that the energy
associated with the thermoelastic Timoshenko beam system decays exponentially as time goes
to infinity. Meanwhile, a great number of researchers have devoted considerable amount time
studying Timoshenko beam with contact problems. For instances, in [6], Araruna et al. showed the
existence of solutions and the exponential stability of the energy for a contact problem associated
with an elastic Timoshenko beam and a rigid obstacle under the assumption of a dissipative
boundary feedback. Berti et al. [8] proved global existence in time of solutions and exponential
decay for a dynamic contact problem between a Timoshenko beam and two rigid obstacles. In
[17], well-posedness and fully discrete approximations for a dynamic contact problem between a
viscoelastic Timoshenko beam and a deformable obstacle was analyzed.

In the above-mentioned result of Berti et al. [8], the heat dissipation is given through Fourier’s
law. As it is well known, by using the Fouriers law for the heat conduction, the thermal effect
is propagated in an infinite speed in thermoelasticity. To overcome this physical paradox, many
theories have been developed. Lord and Shulman [31] suggested that Fouriers law was replaced
by Cattaneos law to describe the heat conduction, which transforms the classical thermoelastic
system into the thermoelastic system with second sound, in which the thermal disturbance is
propagated in a finite speed. Over the past decade, sevaral asymptotic behavior results have been
obtained for the thermoelasticity system with second sound ([4, 11, 30, 33, 34, 39, 40, 41, 47]).
Berti et al. [9] investigated a dynamic contact problem describing the mechanical and thermal

evolution of a damped extensible thermoviscoelastic beam under the Cattaneo law.
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Motivated by these results, the aim of the present paper is to establish a global in time
existence result to problem (1.1)-(1.6) and analyze its longtime behavior. In particular, we prove
that the system possesses an energy decaying exponentially as time goes to infinity. Problem (1.1)-
(1.6) can be regarded as an extension and improvement of Berti et al. [8] to the thermoelastic
Timoshenko beam with second sound. It has been shown in [23] that the dissipative effects of heat
conduction induced by Cattaneo’s law are usually weaker than those induced by Fourier’s law,
and the coupling via Cattaneo’s law may cause loss of the exponential decay usually obtained in
the case of coupling via Fouriers law. The main difficulties also arise from the irregular boundary
terms induced by the constraint (1.6) and from the low regularity of the weak solution. In order
to prove the global existence result, we consider an approximate version of problem (1.1)-(1.6) by
introducing a normal compliance condition as regularization of the Signorini condition (1.6). We
first prove a well-posedness result for the penalized problem by means of a Faedo-Galerkin scheme,
and then derive suitable a priori estimates and pass to the limit in the regularization parameter
obtaining the existence of a solution to the original problem. In order to get the exponential
decay result to problem (1.1)-(1.6), we consider the approximate framework. By introducing a
suitable Lyapunov functional and using the multiplier method, we first obtain the exponential
decay result for the approximate solution. Then, under weak lower semicontinuity arguments, we
prove the exponential decay rate for a solution to the original problem.

The paper is organized as follows. In Section 2, a variational formulation of problem (1.1)-(1.6)
has been introduced and the main results have been stated. In Section 3, we study the existence

of a weak solution to problem (1.1)-(1.6). The exponential stability result is proved in Section 4.

2 Main results

To give a variational formulation of the problem, we introduce the following spaces:
V={feHY0,0): f(0)=0},
K={peV: —g2 <o) <a},
H={feH0,): f(l)=0}.

The initial data

(00, %0, 00, q0) € K x V x L*(0,1) x L*(0,1), (¢1,%1) € [L*(0,1)]. (2.1)

We define

l
B() = B(t.0.0.0.0) =5 [ [l OF + palin(@ ) +10(a. O + rlafa. )

koo (2, 1) + (@, ) + bl (2, 1) ] do (2.2)

as the energy associated with system (1.1)-(1.5).
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Definition 2.1 Let ¢, %0, 60, qo, ¢1,%1 be given as in (2.1) and 0 < T < oo. We say that
(p,9,0,q) is a weak solution to problem (1.1)-(1.6) when

¢ € Wh(0,T; L*(0,1)) N L>(0,T; K),
Y e Wh(0,T; L*(0,1)) N L>®(0,T; V),
6 € L*(0,T; L?(0,1)),
g € L>(0,T; L*(0,1)),

with initial data satisfying (1.2), the inequality

T l
/0 /0 (= prou(a, Dlwr @, 1) — e, )] + klipa (@, 1) + (2, )] [wala 1) — 9a (e, 1)

!
+ap(z, t)[w(x,t) — p(z,t)]} dedt > p1/0 ©1(z)[w(z,0) — @o(x)]dz, (2.3)

for every w € WHL(0,T; L%(0,1)) N L?(0, T; K) such that w(-,T) = (-, T), and the equations
T pl
| [ oo, )2i(o.0) + bl + Flga 1) + 0. 0] 1)
0 0

l
+mb(x, t) Xy (x,t)} dedt = p2/0 P1(x) X (x,0)dx, (2.4)

T l
/ / (=0(z, )y (2, ) — ra (z, Dns (2, 1) + mibeny(z, £)} dadt
0 0
!
:/0 [0(z,0) — map,(z, 0)]n(z, 0)dz, (2.5)

T l
/0 /0 (=7, (2, 1) + ¢ (2, Oy (. £) + 10 (2, )y, )} dardlt
[
:/0 7q(z,0)y(z,0)dx, (2.6)

for every X € WH(0,T;L?(0,1)) N L*(0,T;V) such that X(-,T) = ¥(-,T), for every n €
WLL(0,T; L2(0,1) N L2(0, T3 H)) and y € WH(0, T; L2(0,1) (1 L2(0, T; V) such that y(-, T) = 0,
n(-,T) =0.

Here are the main results of the paper.

Theorem 2.2 (Global existence) Under assumption (2.1), there exists a weak solution (in the
sense of Definition 2.1) of problem (1.1)-(1.6).

By a regularization, a priori estimates, and passage to the limit procedure, the proof of this
result will be carried out in Section 3. In Section 4, we shall prove the following exponential decay

result.

Theorem 2.3 (Exponential decay) Let ¢ be a weak solution to problem (1.1)-(1.6) provided by

Theorem 2.2. Then there exist two positive constants R and w, independent of t, such that

E(t) < RE(0)e ', forall t > 0. (2.7)

do0i:10.20944/preprints201702.0038.v2
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3 Global existence

In this section, we show that the solution for problem (1.1)-(1.6) is global. Firstly, in Section 3.1,
we approximate problem (1.1)-(1.6) by a penalization procedure and we prove well-posedness for
the regularized problem (Proposition 3.1 below). Then, in Section 3.2, we show that a sequence

of approximate solutions converges to a solution to the original problem.

3.1 Approximating problem

For any € > 0, we introduce the families of initial data (¢f, ¢, 05, ¢§)e>0, satisfying
(15, 45, 65, 45) € [H?(0,1) N K] x [H*(0,)) N1 V] x H x V, (9§, 1) € [H(0,)]*. (3.1)

We introduce a penalized version of problem (1.1)-(1.6) by regularizing the Signorini contact

condition with a normal compliance condition. We consider the following system:

prgy (@, t) — K [05 (. 8) + o (x, 1)), + o (2, 1) = 0, (z,t) € (0,1) x (0,T),
p2ti(x, t) — by, (x,0) + k[5 (. 1) + ¢ (2, t)] — mb5 (2, 1) =0, (x,t) € (0,1) x (0,T), (3.2)
0 (x,t) + rg(x, t) — myS,(z,t) =0, (z,t) € (0,1) x (0,7),
7q; (x,t) + ¢ (x,t) + ré5(x,t) =0, (x,t) € (0,1) x (0,7,

together with

The boundary conditions at x = 0 are
©°(0,t) =0, ¥°(0,t) =0, ¢°(0,t) =0, tel0,T]. (3.4)
At the tip z = [, for t € [0, T}, we set
Ye(l,t) =0, 0°(1,t) =0, o°(t) = 6°(1), (3.5)

where
0% () = K1, 1) + (1 0),
5(0) =~ {0~ 9]~ [-9°(L.1) — 9T} — i (L), (36

Here and in the sequel, [f]T := max{f,0} denotes the positive part of a function f.

Henceforth, we will also use the following functionals:

() = o {600 — P+ 0.0) - el TP} (37)

E5(t) = ES (1) + J5(1), (3.8)

where E°(t) = E(t, ¢%,¢%,0%,¢%).
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Proposition 3.1 (Ezistence of an approzimate solution) Given any T > 0, problem (3.2) has a

solution
O € W2(0,T; L*(0,1)) N WHee(0,T; HL(0,1)) N L*°(0, T; H*(0,1)),
P™e € W2(0,T; L2(0,1)) N WHo(0,T; H(0,1)) N L>=(0,T; H?(0,1)),
ge e Whee(0,T; L2(0,1)) N L>(0,T; H*(0,1)), (3.9)
g™ € Wheo(0,T; L?(0,1)) N L*(0, T; H'(0,1)),
3.3)

with initial data satisfying (3.1), ( and compatible with the boundary conditions (3.4)-(3.6)

for t = 0.
Proof. (Construction of Faedo-Galerkin approximations) Let {w;}32;, be a basis of V and
{§j} ©, is basis of H such that wy = ¢f, w2 = ¢j, w3 = ¢¥f, ws = Y3, ws = ¢f and & = 05. We

construct the approximate solutions of the form

n
¢ xt227 wi(z), P™°(2,t) = ij Jw;(x

6" (z,t) = Y uf (1) (x) Zv

verifying, for j =1,...,n

1
/0 {pro1° (z, Dwj(z) + k[ (z,t) + ™ (@, 1) wjz (z) + ap)” (z, t)w;j(x) } dz
— 5" (t)w; (1) = 0, (3.10)

l
/0 {p20y" (2, hw; () + b ® (2, Ywjo () + Kkl ® (2, 1) + "5 (2, 1) |w; (2)

—mby* (z, t)w;(x)} de =0, (3.11)
l

/0 07 (2, 1)&;(z) — rq™* (2, )€ (x) + map"* (x, 1)z (x)] da = 0, (3.12)
!

/0 [7q" (2, )wj(z) + ¢ (z, t)w;(z) — r0™° (2, t)w,z (z)] dz = 0, (3.13)

where

5%(1) = —= {40 1) — ] — [0 0) — gl T} - et (L)
and initial data
™ (2,0) = p§(@), ¢ (2,0) = ¢i(z), = €01,
PE(z,0) = P (), wl”(x 0) =¢i(z), = €l0,1], (3.14)
0= (x,0) = 05(z), ¢"*(2,0) =q5(x), x€l0,1].
Accordingly, the standard theory of ordinary differential equations guarantees, under Lipschitz

conditions, system (3.10)-(3.13) appended by initial conditions (3.14) admits a local solution. We
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now need the a priori estimates that permit us to extend the solution to the whole interval [0, T,
for any T > 0.
(A priori estimates) We multiply (3.10) by hj;, (3.11) by pj;, (3.12) by u?, (3.13) by v7,

respectively, summing over j and adding the resulting equations, we infer

Jt

S o +0</|<P (2,1)] 2dx+/|q"€xt>|2dx—o ()6 (1,1),

where E™(t) = E(t, "™, y™, 0™, ¢™). Note that if we denote by f* = max{—f,0} the negative
part of a function f, we have fTf, = fT(fT — f ) = fHf;7 = fT]?. Thus, the previous

equality becomes

2dt[

8"5 —|—a/ |01 (z, 1) 2dx+/ g™ (z, t) |2 dz + el ° (1, 1)]* = 0.
An integration over (0,¢) and initial conditions (3.14) ensure that

EMS(t) + % {lle™= (1) = g TP + [ (L) — o] TP} < K, (3.15)

where K is a positive constant independent of n. Note that for any ¢f € K we get that 6™¢(0) =

_5(10?’6 (la 0)
After a differentiation of Eqgs. (3.10)-(3.13) with respect to t, we have

l
/0 {prepiis (, hw; () + Ky (2,8) + 9 (@, )]wje () + aspi(x, thw; (2) } da

— 51 (Hw; (1) = 0, (3.16)

l
/0 {p2iiy (2, hw; (@) + b (2, hwe (2) + ki (2, 1) + ¥ (2, 1) |w; ()

—mby (z, tyw;(2)} dz = 0, (3.17)
l
/0 (03" (2, 1)&5 () — ¢ (2, )2 (@) + iy (2, 8)€jo ()] dz = 0, (3.18)
l
/ (7" (2, D)wj(z) + ¢, (z, t)w;(z) — 70, (z, t)w,z (z)] dz = 0. (3.19)
0
We multiply (3.16) by hl,, (3.17) by pj,, (3.18) by uj;, (3.19) by vf,, summing over j and
adding the resulting equations, we have
3 5 1 n n,e
SR o [ @R+ [ @R e 0P = - 1B g, 320

where E;"°(t) = E(t, "%, ¢, 0;"%,¢;"°) and E;"(t) , B"(t) are defined as follows

1

l
EPE(t) =5 /0 oLty (@ ) + pal oy (2, D) + bl (2, 1) %] da

8
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]‘ : n n n n
" 2/0 [kl (2,8) + 9 (2, ) + 7l (2, 0) 2 + 10, (2, )] dr,

BY(0) = {[¢"(0.1) - 1] ~ [-9"4(1.8) ~ o]}

In addition, by applying the Young’s and Sobolev’s inequalities and noting that |(f )| < |fi,

we can estimate the last term in (3.20) as follows (see [8])

1 n

LB )

6 n

<l O + OB (D)

Mﬂ”|+0/w xw+w%mnm+c/w)xwm%

where C; is a positive constant depending on € but independent of n, which is allowed to vary

even in the same formula. From (3.20), we have
—E”a +a/ | (z, 1) 2dx+/ g/ (x, )| *de + = |<pZ;E(l,t)|2

<c. / 0" (2, £) + 4 (o, 1) 2z + C. / ™ (, ) 2. (3.21)

An integration over (0,¢) implies

t rl
+/ / [y (2, t)|* + g1 (@, ) *] dadt
<E;(0) + Cc // [l (2, t) + 0 (2, ) + [ (2, 1)[?] dadt. (3.22)

We can show that the second order energy is initially bounded, independently of n, namely

1 l
E;(0) 1=2/0 [o1leti™ (2, 0)* + palbyy® (2, 0)* + |67 (2, 0)* + 7]g"" (x, 0)[*] dz

1 : n,e n,e n,e
by [ [ @)+ 9L @) + Vol @) ] da
0

is bounded independently of n. To this aim, we multiply (3.10) by h?tt, wesum upover j =1,....n
and we let ¢ — 0. By (3.14), we have

l
/0 {p1loti™(@, 00 + klphs () + v§(2)] i (2, 0) + avi () ¢y (2,0) } dz

— " (0)p"(1,0) =

After an integration by parts and owing to the compatibility conditions (3.4)-(3.6) for t = 0, we
find

[ (1A O — Hlghate) + .01 (0,0) + i A0, 0)

+ {kle6. () + 96 (1] = 6™(0)} " (1, 0) = 0.
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In the light of Holder’s inequality and Young’s inequality, we deduce that there exists a constant

C independent of n such that

l
rgo (£.0)2dr < C / 660 (212 + 06 (@) + |5 (2)]2)da < C.

Similarly, multiplying (3.11) by p,;, (3.12) by uj;, summing up over j = 1,...,n and letting t — 0,

gt
we get

l [
/0 e (2,0)*de < C /0 (6600 ()% + 060 (2) 2 + 650 (2) Plde < C
and
l
/0 (107 (2, O) + e (@)01 (2, 0) — mus ()0 (2,0)} da = 0,

which leads to the inequality

l l
[ opas < [1g,@F + @R < c.
0 0

Finally, multiplying (3.13) by v7,, summing up over j = 1,...,n and letting ¢ — 0, we obtain

Jt

/{T|q?5x0|2+qo (@)qP (@) — r8E g (2,0)} dz = 0,

then, we have

/|q;”xo 2dsc<0/ (@) + 165, (x))dz < C.
By (3.1), we infer that
[
EMe(0) < C /0 (660 ()2 4 [ (@) 4 105, (@) + (@) + |65 (@) + [ (@)?] do < C.

Thus, from (3.22) and applying Gronwall’s inequality, we find that E;"“(t) is bounded in [0, 7).
(Passage to the limit) Inequalities (3.15) and (3.22) guarantee that

@™ is bounded in W2 (0,T; L*(0,1)) n W'*°(0,T; H'(0,1)),
Y™ is bounded in W2°°(0,T; L*(0,1)) n Wh>°(0,T; H(0,1)),
0" is bounded in W*(0,T; L*(0,1)),

q"* is bounded in W*(0,T; L*(0,1)),

[¢™=(I,t) — g1] is bounded in L*(0,T),

[—¢™=(1,t) — g2]* is bounded in L>(0,T).

Therefore we deduce, up to a subsequence, the convergence
O™ = ¢°  weak® in W2(0,T; L*(0,1)) N W1(0, T; H(0,1)),

10
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[0 (L) — gu] " = [¢°(L,t) — 1] * weak™ in L(0,
[—™ (1) — go]* = [=¢™(1,t) — g2] © weak™ in L>(0,
By standard procedure, by letting n — oo in (3.10), we recover (3.2) and the initial and boundary

conditions (3.3)-(3.6). In particular, from equations (3.2)5 and (3.2),, we deduce that 605,q; €
L>(0,T; L%(0,1)) and hence the regularity (%, 1%, 6%, ¢°) verifies the regularity specified in (3.9).

Proposition 3.2 (Uniqueness) For any T > 0, the solution (¢, 9%, 0%,¢%) to problem (3.2), with
initial data satisfying (3.3) and compatible with the boundary conditions (3.4)-(3.6), is unique.

Proof. Let (¢,1°%,0% ¢°) and (9, U¢, ©%, 1) be two solutions of (3.2), (3.4)-(3.6) whose regu-
larity is specified by (3.9). We define

U= ¢ — @, QF:¢° — 0%, R*:=0F — ©°, 5% :=¢° — Y7,

satisfying
p1Us(x,t) — kU (z,t) + Q°(x,t)], + aUs (x,t) =0, (x,t) € (0,1) x (0,T),
p2Qfy(, 1) — bQ5, (2, 1) + k[Uz(z,1) + Q%(2,1)] — mRL(2,t) = 0, (x,t) € (0,1) x (0,T),
RS (z,t) + rS5(z,t) — mQ5,(x,t) =0, (x,t) € (0,1) x (0,T),
755 (x,t) + S¢(x,t) + rRS(z,t) = 0, (x,t) € (0,1) x (0,T),

with the initial conditions
Qa(wa 0) = 07 Q%(CL‘,O) = O’ HANS [Oa l]? (323)

and
Us(0,t) =0, Q;(0,t)=0, R°(0,t)=0, S°0,t)=0, (3.24)

Q°(I,t) =Q5(l,t) =0, R°(l,t)=0, S°(,t)=0, < (t)=<(t), te][0,T], (3.25)
where
< (t) = kU (1, 1) + (1, 1)],
1
F() = ——{lPF L) =g = [ (L8) = g T — [@°( 1) — ] "+ [=9°(L6) — go] "} — U (1),
Multiplying (3.16) by Us, (3.17) by @3, (3.18) by R, (3.19) by S¢ and integrating over [0, ],
we get,

d

! !
T E(t, (U, Q°, R, 5)) + /0 |Uf(x,t)|2da:+/0 |S¢(z, t)|2dx = &E(8)US (1, 1). (3.26)
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In view of the relation |f* — ¢g™| < |f — g|, we obtain the estimate

(1) =)™ = [=9° (1) — go] "+ [2°(1, 1) — ] T — [=°(1, 1) — go] |
<2le*(l,t) — (1, )| = 2|U= (1, 1)].

By means of Poincaré’s inequality and the Sobolev embedding theorem, we have

SOV 1) ==~ {l57(0) — 1)~ [-97(0) = ]~ [9°(0,1) - 1]
[—¢€<z,t aps +} UF(1,1) — elUF (0. 0)
<UL U7 (0,0)] - <lUF (1,

<= I OP + ColUP (L)
l

< SWEGLOP +C. [ VR0
0

A substitution into (3.26) leads to

1 l
GECUSQ RS va [ VR 0P+ [ |55 0Pde + SIUF0L0P < CE().
0 0

In view of initial conditions (3.23)-(3.25), E(0,U¢,Q°, R¢,S%) = 0. Thus, by the Gronwall
lemma, we find that E(t,U¢,Q°, R%,5°) = 0 on [0,7]. This implies that (¢°,¢%,6°,¢°) =

(P, &, 0%, T¢), and our conclusion follows.

3.2 Proof of Theorem 2.2

The idea is to consider a sequence of approximate solutions (provided by Proposition 3.1) and
to show their convergence (as ¢ — 0) to a weak solution of problem (1.1)-(1.6). Given data
(08,05, 05,45) € K x V x L2(0,1) x L?(0,1), (¢1,91) € [L%(0,1)]?, let us consider the sequences of
functions (¢§, ¥§, 05, ¢5), (¢7,v¢5) with the regularity expressed in (3.1) and such that
(@87¢87987QS) — (@071/}07907(10) € VXVx L2(O7l) X L2(O7l)7
(‘Piﬂﬁ‘f) - ((101’17[)1) € [L2(07 l)]2

Multiplying equations (3.2),, (3.2),, (3.2)5, (3.2),, by ¢}, ¥f, 6°, ¢° and summing up the resulting

(3.27)

equations. An integration over (0,/) and boundary conditions (3.4)-(3.6) lead to

d l l
GEO+a [ Ie@nfds [ ¢ @nPde +eleitnf = o (3.25)
0 0
where the functional £° is defined in (3.8). Now we integrate over t, by (3.1); and J*(0) = 0, we

have
t ! !
Sg(t)—l—/ [a/ |<p§(a:,s)\2da:+/ ¢ (, 8)|2dx + £|@5 (1, 8))* | ds < E5(0) < K, (3.29)
0 0 0

where K is a positive constant independent of €. By (3.29), we obtain the estimate
*{\ g P+ t) — gl TP} < K. (3.30)

12
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The boundedness of E¢(t) implies the existence of a subsequence, we get

0 — ¢ weak* in W1H>(0,T; L%(0,1)) N L>(0,T; H'(0,1)),
WF — b weak® in WLoo(0,T; L2(0, 1)) N L(0, T; HY(0,1)),

(3.31)
6 — 6 weak* in L>(0,T; L*(0,1)),
¢ — q weak* in L>=(0,T;L?(0,1)).
Moreover, we have
eps(l,-) = 0 in L*(0,T). (3.32)

Next, we will prove that (¢,,6, q) is a weak solution to problem (1.1)-(1.6). Inequality (3.30)
assures that (-, t) € K for all t € [0,T]. Now, let w € WH1(0,T;L?(0,1)) N L*(0,T;K) such
that w(-,T) = ¢(-,T). Multiplying (3.2); by w — ¢ and integrate over (0,7") x (0,1). By taking
(3.5)-(3.6) into account, we obtain

T [
/ / (=15, ) wn, ) — 5 (s 8)] + Kl (2, £) + 6 (2, D) wa (i, £) — 52, )]
0 0
!
Fagi(e, Ow(a,t) — o (e, O]} dedt > py /0 5 () w(, 0) — ()] d.
Similarly, from (3.2),, (3.2)5 and (3.2),, we have
T l
/O /0 (ol (s )Xol ) + WS X (2, £) + Kl (2, 8) + 0 (2, )] X (2, 1)

l
b (0 (o, )} dndt = 1 [ 05 (@)X (2, 0)d
0

T l
/O /0 (=05 (2, O)ma(, 1) — 1 (2, ) (@, ) + mSng (o, £)} dadt

l
_ /0 10° (2, 0) — mas (x, 0)|n(, 0)da,

T
/0 /0 {=7¢ (z, )ye(z, t) + ¢° (z, )y(x, t) + rO5(z, t)y(z,t)} dedt
l
:/0 7¢° (z,0)y(z,0)dx,

for every X € Wh1(0,T; L?(0,1)) N L?(0,T;V) such that X(-,T) = 0, for every n € W11(0,T;
L%(0,1)) N L2(0,T;H)) such that n(-,T) = 0 and for every y € W1(0,T; L?(0,1)) N L?(0,T;V))
such that v(-,7) = 0. Next, we pass to the limit as ¢ — 0 in the previous relations. By [6], one

can obtain the relations

T l
lim sup /0 /0 {15 (2, 8)2 — KlE (@, 1) + 4 (2 D] (@, 1) — ag®(a, £)gf (2, £)} ddt

e—0

13
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/ / {1l ()7 — Rl (1) + 4 (2, D) (1) — 0 (. )5 (. 1) dlacl,

which allows us to pass to the limit in the nonlinear terms even though the convergences are
only weak. Accordingly, in view of convergences (3.31) and (3.32), we recover (2.3)-(2.6). This

completes the proof.

4 Exponential decay

In this section, we prove an exponentially stability result of system (1.1)-(1.6). We introduce the

following Lyapunov functional:
LE(t) = E°(t) + 011 () + 6215(F) + 315(2), (4.1)

where

l o t
150) = [ I 09 (@ t) + paviGe 0@ e+ 5 [l nPde+ S OR, (42

B6=- [ s [ [ 0E<y,t>dy] 5 (2, )d, (43)

I5(t) = — /O ' [ /0 ’ Hs(y,t)dy} ¢ (z, t)dz, (4.4)

for §1, 09, 03 are positive constants which will be fixed later.
It is easy to check that, by using Young’s inequality, Poincaré’s inequality and Sobolev em-

bedding theorem, there exist two constants 81 and B2 such that
B1E°(t) < LE(t) < B2E°(t). (4.5)
Next, we estimate the derivative of L#(t) according to the following lemmas.

Lemma 4.1 Let (¢%,9°,0%,¢%) be the solution provided by Proposition 3.1. Then there holds
d
S0t <p [ 1eiG0Par + o [ 0P -k [ e + v 0P

— (b—mm / 0 (. )2 — 25t / 6% (2, 1) 2z, (4.6)

where Cy, is a Poincaré constant, J*(t) is defined in (3.7) and n1 is a positive constant to be

chosen later.

Proof. By differentiating (4.2) with respect to ¢ and by means of equation (3.2), we have

l
i{éhﬁ@ﬁf@ﬁ+mﬁ@ﬁﬁ@ﬁ@*
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—Pl/ |05 (x t)\de—i-k/[gox (x,t) + ¢ (z, )] 29" (z, tdx—zdt/ % (2, t)|*da
+p2/ |5 (2,t) 2dx+b/¢) mtdf(mtdx—k/ (05 (x,t) + Y% (x, t)]Y° (x, t)dx

+ m/ 05 (z, t)Y° (x, t)dx
0
By Holder’s inequality and Young’s inequality, we get

l a l
i { [ e 0@ + prvi (v ot + 5 [ 1ot 0Pas

dt
[ l l
—o1 /0 5 (1) Pda — /O (5 () + 47 (2, )2z + po /0 5 (2, 1) Pdz
l l
b / 2 (2, 1) 2 + m / 05 (2, 0% 2, )z + 0*(£)g° (1, )
0 0
! l l
€ 2 _ € € 2 € 2
<p /0 5 (1) P — /O 5, 1) + 0 (2, )dz + po /0 5 (2, 1) Pda
[ l
—(b—mm)/o ]¢§(x,t)|2dx+inm/0 |9€(x,t)|2d$+&€(t)g0€(l,t). (4.7)

For the last term on the right-hand side of (4.7), we can obtain

5 (01, 1) =~ - {[¢00) — o]~ =97 (01) — a] "} 670, 1) — ¥ (L )i )
<= 200~ al T 0) — il + L9 7(0) — T (L) + g2
s
S-éMﬁ@ﬂ—mll+H “(1,1) ~ o] ) - Gl
=27 () - S SIF 1D,

Substituting into the previous inequality, we reach the conclusion.
Lemma 4.2 Let (¢°,9°,0%, ¢%) be the solution provided by Proposition 3.1. Then there holds

d mp2

() s—/ 5 (2, 1) 2dx+knz/ 65 (2 ) + 05 (2, D)2

v [ weoPar + 52 [P
0

b / 9
+ —+—+m 0% (z,t)|°dz, 4.8
[4772 4npo ] | (48)

for a positive constant ng to be chosen later.

Proof. By using (3.2)-(3.3) and (3.5), we find

% £(t) :—m/ [/ 05 (y, t) ] (:U,t)dx—pQ/Ol [/Oxea(y,t)dy} P (, t)dx
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=p2 /l onrqy(y, )dy — / miy(y, )dy} A t)dx—b/l Umﬁg(y, )d :|¢§:x(x7t)d$
+I<:/ [/ 0°(y, t dy} (05 (2, 1) + U (2, 1)] dx—m/ [/ 0° (y, t ] J)dz. (4.9)

We now estimate the right-hand side of (4.9). For a positive constant 73, by Young’s inequality,

P2 /Ol [/OI rq, (y, t)dy — /Ox mwyt(y’t)dy] ¥ (2, t)dx
—rpx [ l { / e >dy] vite. e = mps [ | [ / ’ wyt<y,t>dy] 05 (2, t)da

l l
e / ¢° (e, 0) Pz + 22 / [f (. )| Pdz — mps / 5 (2, 1) da. (4.10)
0 0

_2m

we get

By Holder’s inequality, Young’s inequality, Poincaré’s inequality and (3.4), (3.5), we have

l T I ;
_b/o |:/0 Qs(y’t)dy:| w;x(l',t)dx < anA |¢i($,t)‘2dx+4i)’2/o |9€(x,t)]2da:, (411)

g | [ 0] e + oo < | () + 0 (e )P

6 (z,t)|*dz, 4.12
b [ (1.12)

—m /Ol [/Ox 95(y,t)dy] 0Eda — mfol 10°(z, ) 2d. (4.13)

Combining (4.9)-(4.13), we arrive at (4.8).
Lemma 4.3 Let (¢°,9°,0%,¢%) be the solution provided by Proposition 3.1. Then there holds

1
jtl?’() [T—ngl]/o |05(:U,t)\2dx—|— |:’I"T+-‘r4773:|/ lq°(x, t) 2d:v

!
+mrm [ iz, 0)Pds, (4.14)
0
for a positive constant ns to be chosen later.

Proof. By using (3.2)-(3.3) and (3.5), we find

(?tI?’( t)= /OlT [ Ox ef(yat)dy} ¢°(z,t)dz — /OlT [/Ox 9£(y,t)dy] ¢ (z,t)dz
[ v
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Integrating by parts, we obtain
d l T
dtlg —7“7'/ ¢ (z t)‘Qdﬂjm’T/ Vi (x,t)q" (z, t)d:n+/ [/ Qf(y,t)dy] ¢ (z,t)dz
o LJo

—r/ |0° (z, t)|*dz.
0

By means of Hélder’s inequality, Young’s inequality, Poincaré’s inequality, we deduce (4.14).
Proof of Theorem 2.3. From (3.28), (4.6), (4.8) and (4.14), then from (4.1), we obtain

d

l
ELE() [01—51,01]/0 |‘P§($,t)|2dx— |:

dampa

l
_ 51p2 — 537717'773] / |¢§(.’L‘,t>|2d.’1}
0

I l
KI5y o] [ 65 ) 4070, 0P~ 5100~ o) = 82 [ 0P
- {(53(7'—7730—617”—5 <b++m>} / 16° (2, t)[*d

4 dne A
— [1 — 62;;” — 03 <7“7'+ s + 4773” / g% (2, t)[Pda — 261 J¢(t) — e|f (1, 1)[2
In fact, we first choose 1 < — o N3 < ﬂ and 9y < p small enough so that
b—mn >0,
r—mn3l >0,
1)
1— 227‘mp2 > 0.

By choosing d3 < ( L -

2 T’T-‘t—%‘i‘%

Sor? 1
1_M_53(M+W+)>o.
2m n

) small enough, we have

Next, we take 1 < 5‘—1 and 12 < 2% such that

o — 51:01 > Oa
01 — dame > 0,
(51([) — m771) — 52b772 > 0.

Once 62, d3 are fixed, we take §; < min{‘SQWP2 — 53"”773, 4m 93 (r —msl) — 4110 <4n2 + 4772 + m)}

2p2 P2 m m
so that 5
222 — b1z — S > 0,
om < b Ik >
S3(r—mgl) — — — s (| — + — 4+m | >0,
3(r =) 4m dny - Anp

combined with §; < po‘—l, we can obtain

) ) 4m o 4m 6 b lk
51<m1n{a, 20 3mm3, mg(r—ngl)— n12<+ + >}
p1 2p2 P2 m mo \4n2 4
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Hence, We infer the estimate

d c € Co €
aL (t) < —Cp&(t) < _EL (t),

with a positive constant Cy. By direct integration over (tg,t), we have

_Co,

LE(t) < LE(0)e 72",

C C
which, combined with (4.5) with M = —> and ~ = FO
1 2

ES(t) < ME*(0)e . (4.15)

, we can obtain

By (3.1), we get
1
J5(0) =5 {lle°(1,0) = ga] "I + [[=°(LO) T [P} = 0.
Accordingly, we have £5(0) = J¢(0) + E<(0) = E¢(0). In view of (4.15), the inequality
E(t) < E5(t) < ME*(0)e " = ME®(0)e™ "

holds. By passing to lin% inf and on account of (3.27) and (3.31), we reach the conclusion.
E—
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