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In this paper, we study the well-posedness and the asymptotic behavior of a one-
dimensional laminated beam system, where the heat conduction is given by Fourier’s
law effective in the rotation angle displacements. We show that the system is well-
posed by using the Hille-Yosida theorem and prove that the system is exponentially
stable if and only if the wave speeds are equal. Furthermore, we show that the system
is polynomially stable provided that the wave speeds are not equal.
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1 Introduction

With the increasing demand of advanced performance, the vibration suppression of the laminated
beams has been one of the main research topics in smart materials and structures. These com-
posite laminates usually have superior structural properties such as adaptability. The design of
their piezoelectric materials can be used as both actuators and sensors [1]. Hansen and Spies in
[2] derived the mathematical model for two-layered beams with structural damping due to the
interfacial slip, the system is given by the following equations:

PPt + G(Q;[) - ‘Pz)x = 07 (."L‘,t) € (07 1) X (07 —I—OO),
Ip(?’w - w)tt - GW’ - 3033) - D(3w - w)wm = 07 ([If, t) € (07 1) X (07 +OO)7 (11)
31wy + 3G (Y — u) + 4yw + 4Bwy — 3Dwy, = 0, (2,t) € (0,1) x (0, +00),

where p,G,1,,D,~, 3 are positive constant coefficients, p is the density of the beams, G is the
shear stiffness, I, is the mass moment of inertia, D is the flexural rigidity, - is the adhesive stiffness
of the beams, and f is the adhesive damping parameter. The function ¢ denotes the transverse
displacement of the beam which departs from its equilibrium position, 1 represents the rotation
angle, w is proportional to the amount of slip along the interface at time ¢ and longitudinal spatial
variable x, 3w — v denotes the effective rotation angle, (1.1); describes the dynamics of the slip.

In recent years, an increasing interest has been developed to determine the asymptotic behavior
of the solution of several laminated beam problems. For example, Wang et al. [1] considered
system (1.1) with the cantilever boundary conditions and two different wave speeds (\/Gi/p and
/D/I,). The authors proved the well-posedness and pointed out that system (1.1) can obtain
the asymptotic stability but it does not reach the exponential stability due to the action of the
slip w. Furthermore, to achieve the exponential decay result, the authors added an additional
boundary control such that the boundary conditions become

©(0,t) =£(0,t) = w(0,t) =0, wy(1,t) =0,

3w(17t) - f(l,t) - Sox(lat) = ul(t) = kl@t(lvt)>
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Eo(1,1) = ua(t) := —ka&i(1,1),
where £ = 3w — 1. Cao et al. [3] considered the system (1.1) with following boundary conditions
¢(07t) ng(O t) = ul( ) = _klgot(o t) (O’t)v

3wx(17t) %(1 t) = UQ( ) = _k2§t(1 t) 5(1775))

where £ = 3w — 1. The authors obtained an exponential stability result provided ki1 # \/p/G
and ky # \/1,/D. More importantly, the authors proved that the dominant part of the system
is itself exponentially stable. Raposo [4] considered system (1.1) with two frictional dampings of

the form
po + G — pz)e + ki =0, (z,t) € (0,1) x (0,+00),
I,(3w — )i — G(¢ — pz) = DBw — ¥)aa + k2 (3w — 1) = 0, (z,t) € (0,1) x (0, +00), (1.2)
31wy + 3G (Y — pz) + dyw + 4Bw; — 3Dwy, = 0, (z,t) € (0,1) x (0,400)

and obtained the exponential decay result under appropriate initial and boundary conditions.

It is easy to find that if the slip w is assumed to be identically zero, then the first two equations
of system (1.1) can be reduced exactly to the Timoshenko beam system. For the case of the Tim-
oshenko beam with Fourier’s law, many authors have shown various decay estimates depending
on the wave speeds. Rivera and Racke [5] studied the Timoshenko system with thermoelastic
dissipation, i.e.,

prow — k(pa +¥)e =0, (z,t) € (0, L) x (0, +00),

p2bi — bibaa + k(pa + ) + 902 =0, (x,t) € (0, L) x (0,+00), (1.3)

p30r — K0z + Ytz = 0, (z,t) € (0,L) x (0, +00),
with positive constants p1, p2, p3, k,b,v, k. The authors showed that the exponential stability
holds if and only if the wave speeds are equal <p1 = p2) Junior and Rivera [6] considered a new
coupling to the thermoelastic Timoshenko beam of the form

p1ew — k(pe +¥)e + 00, =0, (@,t) € (0,L) x (0, +00),

P2t — baa + k(pe + 1) — 00 =0, (2,t) € (0,L) x (0,400), (1.4)

p30; = Y0z + 0 (0 +¢): = 0, (z,1) € (0, L) x (0, +00).

The authors showed this system is exponentially stable if and only if the wave speeds are equal

<p£1 = p%). On the contrary, the authors obtained the polynomially stable depending on the

different boundary conditions. For system (1.4) with Dirichlet boundary conditions
gp(t,()) = (,D(t,L) = 7/}(ta 0) = ¢(t7 L) = Q(t, 0) = H(ta L) =0,

1
the authors obtained that the semigroup decay as T For system (1.4) with Dirichlet-Neumann

boundary conditions
©(t,0) = @(t, L) = 1.(t,0) = 0, (t, L) = 0,(t,0) = 0,(t,L) =0,

1
the authors obtained that the semigroup decay as \% We refer the reader to [7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17], for some other related results.
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Motivated by the above results, we intend to study the well-posedness and the asymptotic
stability of the laminated beam system where the heat flux is given by Fourier’s law. The system
is written as

peit + G — pz)e =0, (z,t) € (0,1) x (0, 400),
I,(3w — )i — G — 0z) = D(Bw — )zz + 00, =0, (x,t) € (0,1) x (0, +00),
L+ Gl = ¢ + oyt 28w —Duge =0, (e 0. x 0450, P
kOr — 70,0 + 0 (3w — ) = 0, (x,t) € (0,1) x (0, +00),

\

where p,G,1,,D,0,7,3,k, 7 are positive constant coefficients. We consider following initial and
boundary conditions

o(z,0) = ¢o(x), pi(x,0) = ¢1(x), z € 10,1],

¥(2,0) = tho(x), Yi(z,0) = 1 (), z € [0,1],

w(z,0) = wo(z), w(z,0) = wi(z), x € [0,1], (16)
0(x,0) = Oy(z), x € [0,1],

©(0,t) = 1,(0,t) = w,(0,t) = 0(0,¢) =0, t € [0,400),

©z(1,t) = ¥(1,t) = w(l,t) = 0,(1,¢) =0, t € [0,400).

By using Hille-Yosida theorem, we first prove the well-posedness result. By using the perturbed
energy method, we then establish the exponential result if and only if g and the polynomial
stability if & ;é 24 - Furthermore, by using Gearhart-Herbst- Pruss—Huang theorem, we obtain the
lack of exponentlal stability. The main difficulty in carry out this paper is the appearance for the
Fourier’s law of heat conduction. For this purpose, we use the appropriated multiplies and energy
method to build an equivalent Lyapunov functional.

We now briefly sketch the outline of the paper. In Section 2, we state and prove the well-
posedness of problem (1.5)-(1.6). In Section 3, we establish an exponential stability result of the
energy. In Section 4, the lack of exponential stability has been studied. Finally, Section 5 is
devoted to the statement and proof of the polynomial stability.

2 The well-posedness

In this Section, we prove the well-posedness of problem (1.5)-(1.6) by using Hille-Yosida theorem.
Firstly, we introduce the vector function

U= (‘Pv oty 3w — ¢7 (3’LU - ¢)t7 w, wt, ‘9)T

Then system (1.5)-(1.6) can be written as

U = AU,
{ (2.1)

U(.%',O) = UO(x) = (@07@1)31'00 - ¢0,3w1 - wbw(];wl?eo)T?
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where &7 is a linear operator defined by

Pt
G
N w - ¥z
p( Pz)
(3w—¢)t
G D o
dU = Tp(w_SOw)‘i_Tp(?’w_Qﬁ)xx Tpgm
Wi
G 4ry 44 D
—IPW— z) - 3Ipw - 3Ipwt + Ipwwx
%em %(310 )i

We consider the following spaces:
0.0 = o] ne m 0.0 0 =0f w01 = {n | 5 0.1 01 <0}

H2(0,1) = H*(0,1) N HX(0,1), H?*(0,1) = H*(0,1) N H(0,1),

and
A = HN0,1) x L*(0,1) x HX(0,1) x L*(0,1) x H}(0,1) x L?(0,1) x L?(0,1), (2.2)
equipped with the inner product
~ 1 1 ~ 1 1
(U, U) —p / orprda + 1, / (3w — ), (30 — )da + 31, / wpyda + k / 00da
A 0 0 0 0
1 1 1
4G [ 0=~ oo+ D [ (B 0)a(30 ~ D)ado+ 4y [ winds
0 0 0
1
+ 3D/ WeWdx.
0
Then, the domain of & is given by
D(et) = {U € o | € H20.1,30 - vyw € F20.1),0 € HA0. 1), € HEO.1),
Sue — iy € B0, 1),02(11) = 0.6.(0.0) = wa(0.0) =0}.

The well-posedness of problem (2.1) is ensured by

Theorem 2.1 Let U° € S, then problem (2.1) exists a unique weak solution U € C(R*; ).
Moreover, if U’ € D(</), then

UecCR";D())NCHRT; 7).
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Proof. To obtain the above result, we need to prove that «: D(&/) — . is a maximal
monotone operator. For this purpose, we need the following two steps: & is dissipative and
Id — o/ is surjective.

Step 1. & is dissipative.

For any U € D(4/), by using the inner product and integration by parts, we can imply that

1 1
(AU U) p = —T/O 02dx — 4ﬁ/0 w?dz < 0. (2.3)

Hence, 7 is a dissipative operator.

Step 2. Id — & is surjective.

To prove that the operator Id — & is surjective, that is, for any F' = (f1,- - -, f7) € €, there
exists V = (v1,- - -,v7) € D() satisfying

(Id— o)V = F, (2.4)
which is equivalent to

U1 — V2 = f17
puv2 — GOrpv1 — GOz + 3G 0,5 = pf?)
v3 —v4 = f3,

Ipv4 + GOyv1 + Guz — DOyyv3 — 3GUs + 00,07 = Ipf4,

(2.5)
v5 — v = [5,
4 4
<Ip + {f) Vg — Gax’Ul — Gvg + <3G + ;/> Vs — Daxm’l)5 = pfﬁ,
| kur — TOprV7 + 00,04 = k f7.
(2.5)1, (2.5)5 and (2.5); give
vy =v1 — f1,
vy = v3 — f3, (2.6)
v = v5 — [5.
Inserting (2.6) into (2.5),, (2.5),, (2.5)4 and (2.5),, we get
pU1 — Gaxavvl - Gaarv3 + 3G8:cv5 = p(fl + f2)7
(I, + G)vs + GOpv1 — Dyyvg — 3Gu5 + 00,v7 = L(f3 + f4),
43 4 4 (2.7)
<Ip + 3G + ?ﬂ + ;) vs — GOyv1 — Guz — DOyyus = I,(f5 + f6) + ?ﬁf&
kvy + 00,v3 — TOpev7 = 00, f3 + k f7.

Multiplying (2.7),-(2.7), by 01, 03, 305 and 07 respectively, and integrating over (0,1), we arrive
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at

S 1 1 1 1
/ pv101de — / GOpyv101dz — / GOyv301dx + / 3G O vst1dr = / p(f1+ fo)o1de,
0 0 0 0 0

1 1 1 1 1
/ (Ip + G)Ug@y,dl‘-l—/ GOy v3de —/ DO, v303dx —/ 3Gusv3dx +/ 00,v7U3dx
0 0 0 0
= fo (f3 + fa)Usdx,

1 1 1 1
/ (3Ip +9G + 48 + 4’)’) vsUsdr — / 3G, v105dx — / 3Gu3Usda — / 3D0,,v505dx
0 0 0 0

1 1
— [ 880+ fa)isda + | 48fsinda,
0 0

1 1 1 1 1
/ kvrordx + / 00, v3U7dx — / TOpeU707dx = / 00, f307da + / k fro7dx.
\Jo 0 0 0 0
(2.8)
The sum of the equations in (2.8) gives the following variational formulation:

a ((v1,v3,vs,v7)", (01,03, 5, 07) ") = @ (91, 03, U5, 97)7 )
V (01, 03, 05, 07)T € HY(0,1) x HX(0,1) x H}(0,1) x L?(0,1), (2.9)

where

a ((vla V3, Vs, v7)T7 (771) @3) 657 7'-}7)T)

1 1 1
G(—0zv1 — v3 + 3v5)(—0,01 — U3 + 305)dx + / pv10rde + / I,u303dx
0 0

1

1 1 1
+ / (3Ip + 4~ + 4,3)1}5175d$ + / kvrordx + DO,v30,03dx + / 3D0,v50,Usdx
0 0 0 0

+7 01 070, U7dx + 0 /01(8xv7)173da: +o /01(8xv3)177da:
and
a (91, 03,95, 97)7)
= /01 (p(f1r + f2)or + 1p(f3 + fa)3 + 31,(f5 + f6)Us + 4B f505 + 00, f307 + k f707) da

Now, we introduce the Hilbert space V = H(0,1) x HL(0,1) x HL(0,1) x L?(0,1) equipped
with the norm

(o1, v3, 05, v7) 5 = || = Oav1 — v3 + 3vs|[3 + [[vall3 + 19avsl|3 + 1Oavs]I3 + [[Ozvrl3.

It is clear that a(-, -) and a(-) are bounded. Furthermore, we can obtain that there exists a positive
constant m such that

a ((Uh v3, Vs, U7)T7 (Ula V3, Vs, U7)T)

1 1 1 1
:/ G(—0yv1 — v3 + 305)2dx + / pvlda: + / pvgdx + / (31, +4v + 4B)U§dx
0
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1 1 1 1
-I-/ kv%dx—l—/ D(@xvg)de—I—/ 3D(8xv5)2d$—|—r/ (Dyv7)?da
0 0 0 0
>ml| (v1, v3, vs,v7) |7,

which implies that a(-,-) is coercive.

Hence, we assert that a(-,-) is a bilinear continuous coercive form on V' x V, and a(-) is a
linear continuous form on V. Applying the Lax-Milgram theorem [18], we obtain that (2.8) has
a unique solution (v, vs, vs, v7)T € V. Then, by substituting vy, vs,vs into (2.6), we obtain

vy € H(0,1),v4 € H}0,1),v6 € H(0,1).
Next, it remains to show that
V1 € HE(O, 1),?]3 S E’E(O, 1),’05 S f{f(o, 1),’07 S Hj(O, 1),611}1(1) = 6xv3(0) = 611}5(0).

Furthermore, if (3,75, 97) = (0,0,0) € H}(0,1) x HL(0,1) x L?(0,1), then (2.9) reduces to

/01 GOppv101dx = /01 pv101de — /01 GOyv3v1de + /01 3G v501dx — /01 p(f1 + f2)vrdz, (2.10)
for all 91 € H}(0,1), which implies
GOppv1 = pv1 — GOy + 3G0,v5 — p(f1 + f2) € L?(0,1). (2.11)
Thus, by the L? theory for the linear elliptic equations, we obtain that
v, € H2(0,1).

Moreover, (2.10) is also true for any ¢ € C*([0,1]) € H}(0,1) (¢(0) = 0). Hence, we get

1 1 1 1 1
/ G010, ¢dx —i—/ pvipdr — / G(0yv3)pdz + / 3G (0pv5)pdx = / p(f1 + f2)odz.
0 0 0 0 0
By using the integration by parts, we have
dzv1(1)¢(1) = 0, Vo € C*([0,1]), ¢(0) = 0.

Therefore,
Oxvl(l) =0.

In the same way, we get
vz € H2(0,1),vs € H2(0,1),v7 € H(0,1), 8,v3(0) = d,v5(0) = 0.

Finally, the application of the classical regularity theory for linear elliptic equations guarantees
the existence of unique solution V' € D(«/) which satisfies (2.4). Hence, the operator Id — o7 is
surjective. Moreover, it is easy to see that D(<7) is dense in 7.

At last, by Hille-Yosida theorem (see [19, 20]) we have the well-posedness result stated in
Theorem 2.1. ([
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3 Exponential stability

In this Section, we prove the exponential decay for problem (1.5)-(1.6). It will be achieved by
using the perturbed energy method. We define the energy functional E(t) as

1

1 1 1
E(t) := E(u(t)) :;<p/0 cpfdx—l—fp/o (3wt—wt)2dx+3lp/0 w?dw—i—G/O (w—gox)de

1 1 1 1
+ D/ (3w, — b)) 2dx + 3D/ w2dax + 47/ w?dz + k:/ 92dx> (3.1)
0 0 0 0
If the wave speeds are equal, we have the following exponentially stable result.

Theorem 3.1 Assume that % = %’ hold. Let U° € 3¢, then there exists positive constants cg,cy
such that the energy E(t) associated with problem (1.5)-(1.6) satisfies

B(t) < cpe™ ™, t > 0. (3.2)
To prove our this result, we will state and prove some useful lemmas in advance.
Lemma 3.2 Let (¢, ¥, w,8) be the solution of (1.5)-(1.6). Then the energy functional satisfies

d 1 1
B = —45/ w?dx — T/ 62dz <0, Vt>0. (3.3)
0 0

Proof. First, multiplying (1.5); by ¢, integrating over (0, 1), using integration by parts and the
boundary conditions in (1.6), we have

d (1 1 1

dt{2p/0 cp?dm} — G/o (Y — pz)ozdx = 0. (3.4)
Note that

1 1
G/O (Y = ¢z)purdr = — G/O (Y — ) (Y — oz — P)eda
d 1 1 9 1
—{ -3¢ [[w-wrach 4o [ povan

Hence, equation (3.4) becomes

jt{; <p/01 i + G/Ol(w - %)20195) } = G/Ol(w — @) d. (3.5)

Similarly, multiplying (1.5)4, (1.5)5, (1.5), by 3(w — %), 3wy, 0 and integrating over (0, 1), using
integration by parts the boundary conditions in (1.6), we can get

Lo o o)

1 1
—G /O (W — ) (3w — ¥)ydz — o /0 0, (3w — ¥)da, (3.6)

df1 b b Lo
)2 31, | widr+4y [ w'drx+3D [ widr
0 0 0

8
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1 1
- 3(;/0 () — @g )wydaz — 45/0 widz, (3.7)

d 1 1 1 1
— k:/ 6%dx :a/ (3w—¢)t6’xdx—7/ 62dz. (3.8)

Finally, adding (3.5)-(3.8), we obtain (3.3), which completes the proof. O

Next, in order to construct a Lyapunov functional equivalent to the energy, we will prove
several lemmas with the purpose of creating negative counterparts of the terms that appear in
the energy.

Lemma 3.3 Let (¢, ¥, w,8) be the solution of (1.5)-(1.6). Then the functional

1
L(t) = —P/ pprdr
0
satisfies the estimate

1 1 1 1
I(t) < —p/o pidz + (G + 61)/0 (Y — @z)?dx + 0(61)/0 (Bwy — ¥p)%dx + 0(61)/0 w2dz,
(3.9)

for any g1 > 0.

Proof. By differentiating I;(¢) with respect to ¢, using (1.5); and integrating by parts, we obtain

1 1
I(t) = —p /0 2z~ G /0 ot — pa)de.
Note that
1 1 1
e /0 (4 — g2)pudz = G /0 (b — gu)?dz — G /0 B — pu)da.
Then, we deduce that

1 1 1
I(t) = - /O Pdr+ G /0 (4 — pu)’da — G /O B — pa)da.

Making use of Young’s inequality with €; > 0, we obtain

1 1 1
I(t) < —p /0 P2+ (G + &) /O (@ — pa)da + cle) /O 2da.

Note that

1

1 1 1
/ Yidr = / (Y — 3wy + 3wy )?da < 2/ 3wy — ) *dx + 18/ w2dz.
0 0 0 0
Then the estimate (3.9) is established. d

Lemma 3.4 Let (¢, 9, w,8) be the solution of (1.5)-(1.6). Then the functional

1
L) =1, /0 (3w — ) (3w — )
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satisfies the estimate
1 1
B(O) <= (D-2) [ Bun—vaPdo+ 1, [ (oo
0 0

1 1
— g 2d 92d ’ )
+C(62)/0 (¥ — ¥z) x+c(62)/0 x (3.10)
for any g9 > 0.

Proof. Taking the derivative of I5(t) with respect to ¢, using (1.5), and integrating by parts, we

get
1 1
L) =-D / (Bws — o)2dz + 1, / (3w — vr)’da
0 0
1 1
+G | (Y—ps)Bw—)dx + 0/ (Bw — 1) 0dz.
0 0
Then, using Young’s inequality, we arrive at (3.10). O

Lemma 3.5 Let (¢, ¥, w,8) be the solution of (1.5)-(1.6). Then the functional

1
I3(t) = Ip/ wwydx
0

satisfies the estimate

, 4 1 1 1
I(t) < — (; - 53) /0 wdx — D/o w2dx + (I, + 0(63))/0 widx
1
wele) [ (0= pod (3.11)

for any g3 > 0.

Proof. By differentiating I; (¢) with respect to ¢, using (1.5)5 and integrating by parts, we obtain

1 1
Ii(t) —Ip/ w?dz — G w(¢—¢m)dx—3/ w?dz —/ wwtdx—D/ w2dz.
0 0

We then use Young’s inequality with 3 > 0 to obtain (3.11).

Lemma 3.6 Let (¢, 1, w,0) be the solution of (1.5)-(1.6). Then the functional

L) = 2 /0 3w [ oayds

g

satisfies the estimate

1

1 1
It) < — (I, — 55)/0 (3w — ve)*da + (k + c(e4)) / 6dax + 84/0 (¥ — ¢u)?da

0
1 1
+€4/ (3wx—¢x)2dx+c(s5)/ 62dz, (3.12)
0 0

for any g4, €5 > 0.

10
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Proof. Taking the derivative of I4(t) with respect to ¢, using (1.5),, (1.5), and integrating by

parts, we get

1 1 x 1
kG kD
50 =1, [ Gu - v+ 5 [ @) [ odyde = "2 [ - v)0de

0 g Jo 0 g Jo

1 I 1

+k / 0*dx + —2 / (3w — )0 dz.
0 g Jo
Using Young’s inequality with €4, €5 > 0, we establish the (3.12). ([

Lemma 3.7 Let (o, 1, w,0) be the solution of (1.5)-(1.6). Then the functional

1

1 D 1
I5(t) = Ip/ wi (1) — pg)da +Ip/ wypyde — Gp/ (wept — wypp)de
0 0 0

satisfies the estimate
1 1
B <= (G2 [ 0 p)dote | Gui-biPds
0 0

1 1
+ c(6) / w?dx + c(eg) / widr, (3.13)
0 0

for any g > 0.

Proof. By (1.5);, (1.5); and integrating by parts, we get

;i{]p /01 wy (Y — %)diﬂ}

1 1 4 1 46 1
- _ _ _ o 2dr — 2T _ _F _
=D [ waw—pade =G [ (@w=pdr =T [wto—eote = [Cww - e
1 1
+Ip/0 wt@btdm—lp/o Wypgprdx

D 1 1 4 1 4 1
==L wpppda — G/ (¢ — @g)?dx — 7/ w(y) — o )dx — ’8/ wi (Y — pz)dw
G Jo 0 3 Jo 3 Jo

1 1 1
d
+Ip/ wtzptdx{lp/ wttpmdﬁ} +Ip/ W ppda
0 dt 0 0

:710 / (wx@t - thso)dl' - / Wit dT p — G/ (¢ - 901‘)2(11: St / w(¢ - tpx)dx
G Ldt J, 0 0 3 Jo

46 1 1 d 1 1
_ w (VY — @g)dx + Ip/ wehpdr — {Ip/ wtgpgcdx} + Ip/ Wepppda.
3 Jo 0 dt 0 0

We conclude for

I 1 1 4 1
Ié(t) =D <l§ - g) /0 wippdr — G/o (1/) - @z)zdx - ;/0 w(@b - @x)dff

4ﬂ 1 1
-3 we (Y — g )dx + Ip/ wpppde.
0 0

Using Young’s inequality and & = %’, we get (3.13). O
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Now, we turn to prove our main result in this section.
Proof of Theorem 3.1. Let 1, do, 03, 94,05 > 0 and % = %’, we define

Ll(t) = E(t) + 51[1(t) + 52[2(t) + 53]3(t) + 54]4(?5) + (55[5(15). (3.14)

Using Cauchy-Schwarz inequality and Poincaré inequality, one can easily see that all the I;(t),i =
1,2,3,4,5 are bounded by an expression containing the existing terms in the energy E(¢). This
leads to the equivalence of L;(t) and E(t).

Gathering the estimates in the previous lemmas, we obtain

1 1
.mwg—&@/¢%w4&5—@%—@5—&%%/gw—@ﬁm
0 0
1
—%M—%%—&W@—%d%»/w%m
0
1
— (65G — d566 — 01G — 0161 — dac(e2) — d3c(e3) — 5464)/ (¥ — pg)da
0
1
— (02D = Gucler) — faza — Guea) [ (B — )%
0
1 4,_}/ 1
— (53D — (510(81))/ wgdl‘ — <353 — d3e3 — 550(56)> / widr
0 0
1 1
— (17 — d04c¢(e5)) / 0§dx + (02¢(g2) + 04k + dac(ey)) / 0%dz. (3.15)

0 0

At this point, we need to choose our constants very carefully. First, we choose €1,¢9,¢3, €4, €5, €6
small enough so that

, 1 Sul 1
Li(t) <— (51/)/0 go?d:v — (42‘) — (52[,,) /0 (3w — ¢t)2dm
1
— (48 — 631, — 93¢ (e3) — 05¢ (g6)) /0 w?da:
1
- (5 - 06— bt~ duclen)) [ (- o
0

_ (“’ - alc<el)) / (e — ) — (53D — Sre(er)) / wlde

2
1 1
- (2;63 - 550(66)> /0 w?dz — (1 — 540(55))/0 02dx
+ (d2¢(e2) + 4k + d4¢(e4)) /01 62dz. (3.16)

Then, we select §4 small enough so that
T — 540(55) > 0.

Next, we choose do small enough so that

64l
%ﬁ—@5>u
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Furthermore, we select §3 and 5 small enough so that

1
£ — (536(63) > 0.

4B — 53]p — 03¢ (83) — d5¢ (86) > 0, 03D — 510(81) > 0, 5

Finally, we select d3 even smaller (if needed) and §; small enough so that

oD
27 — (516(61) > 0, 53D — (510(61) > 0,

1)
57G — 061G — 526(62) — (536(83) > 0.

From the above, we deduce that there exist positive constants C; and C5 such that (3.16) becomes
1 1
Li(t) <—C1E(t) — (1 — 546(55))/ 02dx + 02/ 6%dx
0 0
1
< —CLE(t) + 02/ 62dz. (3.17)
0

By (3.3), we get
Li(t) < — C1E(t) — C5E' (), (3.18)
for some positive constant Cs. It is obvious that
L(t) = L(t) + C3E(t) ~ E(t).
Recalling (3.18), we obtain
L) =L'(t)+ C3E'(t) < —C1E(t) < —cA (1), (3.19)
for some positive constant ¢;. Then, a simple integration of (3.19) over (0,t) yields
Z1(t) < Z(0)e M, Vi >0. (3.20)
At last, estimate (3.20) gives the desired result (3.2) when combined with the equivalence of L(t)
and E(t). O
4 The lack of exponential stability

This Section is concerning the lack of exponential stability. Our result is achieved by Gearhart-
Herbst-Priiss-Huang theorem to dissipative systems, see Priiss [21] and Huang [22].

Theorem 4.1 Let S(t) = et be a Cy-semigroup of contractions on Hilbert space H. Then S(t)
is exponentially stable if and only if

p(A) D {ix: A e R} =iR

and
lim [|(iA] — A) 7| ) < 00
[A| =00

hold, where p(.A) is the resolvent set of the differential operator A.

Next, we state and prove the main result of this section.
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Theorem 4.2 Assume that & # % hold. Then the semigroup associated to problem (1.5)-(1.6)
1s not exponentially stable.

Proof. We will prove that there exists a sequence of imaginary number A, and function F,, € H
with || F,,|l3 < 1 such that ||(A, T — A) "' Fll3 = |Uu|l% — oo, where

AU, — AU, = F, (4.1)

with U, = (v1, v2, v3,v4,05,06,v7)] not bounded. Rewrite spectral equation (4.1) in term of its
components, we have for A, = A

)
Avp —v2 = g1,

pAV2 — GOpav1 — GOyu3 + 3G0U5 = pgo,

Av3 — Vg = g3,

I, vy + GOzv1 + Gug — DOyypv3 — 3GUs + 00,07 = 1,94, (4.2)
Avs — vg = gs,

4 4
I, vg + va — GOpv1 — Gug + <3G + ;) v5 — D0Oyavs = 196,

k)\U7 — 7'(9sz7 + 0'8337}4 = kg77

where A € R and F' = (g1, 92, 93, 94, g5, g6, g7)° € H. Taking g1 = g3 = g5 = 0, then the above
system becomes

(

/0)‘21)1 — GOyzv1 — GOzv3 + 3G 0,5 = pga,
Ip)\2v3 + GOyv1 + Gus — DOyypvg — 3Gus + 00,v7 = 1,94,

4 4 (4.3)

Ip>\2v5 + ?ﬁ)\% — GOyv1 — Gug + <3G + 37) vs — DOypvs = 1,06,

kAvr — 70307 + AoOzvs = kg7,
Because of the boundary conditions in (1.6), we can suppose that

v1 = Asin (ﬂaz) , v3 = Bcos (Maj) , vs = C cos <@x> , v7 = E'sin (ﬂaz) .
2 2 2 2
Now, choosing
1 . wm
go = fsnl(—x), gs=ge = g7 =0,
P 2
we arrive at
( 2
(2 ra () )ara () p-sc () c =1,
2 2 2
2
6 () a+ (e rcen(t)) B-sco o (i) B =0
A A ) (4.4)
G () a-GB+ IpA2+—ﬂA+3G+—7+D(“—”> C =0,
2 3 3 2
2
oM B (k/\ +r (’ﬂ) ) E=o0.
\ 2 2
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Now, we take A = A, such that

a5 -

then the above system can be written as
() 556 ()=
6 (i) a+(cri,(2-2) (5)) p-sccro (i) B

2

G(“;)AGB+< 5A+3G+—+I <DG) (‘”T)Q)c

0,

I, »p 2

S () e (S ) () )

Adding (4.5), to (4.5)4, we get

)

3 3

L(7-5) (5 s (D) e (e o0 (2 -5)(

i FTV2 o =
2))0-0 (4.6)
From (4.5),, we get

I, p

B
ik /S +7 ()
Substituting E into (4.6), we get
ot
where

Substituting C into (4.5)5, we get

4 _OTut ALy + 3GA,

B.
G(5) T
Similarly, substituting C' into (4.5),, we get
B = Ly .
G (&) (Du+ 3A.)
Let 4 — oo, we get
,zm) 1
— | B— —.
(5) 2= 4

Substituting this expression into A, C' and E, we obtain for u — oo

p 1, 1
As— (L _22 E ~).
_%4m?<G D) ¢ O(M)’ _+O<u>
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Thus
2 ! 2 j% 2 1 A
NUull% > G/ (Y —@g)dz =G (36’ - B-— (7) A) / cos (7.13) dx
0 0
1 2
:§G<BC—B—(%)A> — 00, as fL — 00.
Therefore, there is no exponential stability. This completes the proof. O

5 Polynomial stability

In this section, we consider the situation when the wave propagations are not the same.

Theorem 5.1 Assume that % #* %’) hold. Let U° € 3¢, then there exists a positive constant co
such that the energy E(t) associated with problem (1.5)-(1.6) satisfies

2

B(t) < 2, t>0. (5.1)

Proof. In this regard, we establish a polynomial decay result. As we will see, due to the presence
of the fol weppdx, we cannot directly perform the same proof as for the case where % #* %’”. To
overcome this difficulty, the second-order energy method is needed. The second-order energy is
defined by

1 1 1 1 1
(‘:(t) :5 (p/ gogtdflf + Ip/ (3wtt — TZJtt)ZdIIZ' + 3Ip/ wftda: + G/ (wt — ngt)2d$
0 0 0 0

1 1 1 1
+ D/ (Bwat — ge)?da + 3D/ w?,dx + 47/ widx + k/ afd:c>.
0 0 0 0

A simple calculation (Similar to (3.3)) implies that

1 1
E'(t) = —4p / widr — 7 / 62,dz. (5.2)
0 0
As in (3.14), we also define a Lyapunov functional Lo(t) as follows:
Lo(t) = E(t) + E(t) + 0111 (1) + d212(t) + d313(t) + dala(t) + 515(2), (5.3)

where I;(t),i = 1,2, 3,4 remain as defined in Lemma 3.3-Lemma 3.4 with derivatives of I;(¢)-14(t)
remain the same while the derivative of I5(t) is given as

I 1 1 4 1
Ié(t) =D <l§ - g) /O Wy pedr — G/O (¢ - (Pz)2dx - ;//0 w(w - (Px)dx

4/8 1 1
3 wi () — pg)dx + / Tywypd
0 0

1 1 1
< (G- o) /0 (W — o) 2dz + 2 /0 (Bwr — )?da + () /0 w2da

1 1 1
+ c(e6) / widz + c(ey) / w2 dz + 57/ 2d, (5.4)
0 0 0
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for any €g,e7 > 0. Observing
1 1 1
/ prdw gz/ (¢ — ¢o)?dz + 2/ Pdw
0 0 0
1 1 1
32/ (¢ — @z)2da + 4/ (3wy — ¥y)?dx + 36/ w2dz. (5.5)
0 0 0
Then, combining (5.4)-(5.5), we get
1 1 1
) <= (Geo—e) [ (0= pPdutes [ (un—unPdoteles) [ ulde
0 0 0
1 1 1 1
+ 6(66)/ widz + c(e7) / widx + 57/ (3wy — ¥)?dz + 57/ w2dz. (5.6)
0 0 0 0
Next, differentiating Lo(t), we obtain
1 1
Ly(t) < — 51,0/ pidx — (641, — d4e5 — 821, — J5¢6) / (3w — y)*dx
0 0
1
— (48 = dul, — By (ea) e () [ wias
0
1
— (55G — 5566 — 51G — 5151 — 520(62) — 536(53) — 5464 — (5567)/ (w — ‘Pm)Qdﬁ
0
1
_ (52D — 516(61) — 5282 — 5464 — 5567) / (3wm — 1[195)2(127
0
1 1
2 4y 2
— (53D — 510(61) — 5587) wxdm — 353 — 5363 — 556(66) wdx
0 0
1 1 1
— (7 — dac(es)) / 02dx + (6ac(en) + d4k + 540(54))/ 0% dx + 550(57)/ widz. (5.7)
0 0 0

At this point, we need to choose our constants very carefully. First, we choose €1,¢e9,¢€3,¢4,¢€5
small enough so that

1 Sal 1
Li(t) < — 51p/ ?da — <42p - 521p> / (3w — y)?dx
0 0
1
— (4B — 831, — 03¢ (e3) — S5c (56))/ widx
0

1
— <652CTY — 51G — *520(62) — 536(83)> /0 (1/) — QOI)Zdl‘

D ! D !
- <52 - 510(51)> / (3wy — ) ?dx — <53 - 510(51)> / w2dz

2 0 2 0

2y ! 2 ! 2
- 353 — d5¢(g6) wdr — (7 — dac(es)) | Oydx
0 0
1 1
+ (02¢(g2) 4 04k + dyc(ey)) / 0%dz + dsc(er) / thtdx. (5.8)
0 0
Then, we select §4 small enough so that

T — d4¢(e5) > 0.
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Next, we choose do small enough so that

5ul,

T - 521p > 0.
Furthermore, we select d3 and d5 small enough so that
05G
48 — (ngp — 03¢ (2’53) — J5c¢ (56) >0, 3D — (516(61) > 0, 7 — (530(63) > 0.

Finally, we select d3 even smaller (if needed) and ¢; small enough so that

82D 855G
27 — S1¢(e1) > 0, 83D — d1c(eq) > 0, 57 — 61G — Sa¢(e2) — 3c(e3) > 0.

Thus, we deduce that there exist positive constants Cy, C5 and Cg such that (5.8) becomes
1 1 1
Lh(t) < — CLE(t) — (T — d4¢(es)) / 02dx + Cs / 0%dz + Cs / wida
0 0 0
1 1
< — C4E(t) + Cs / 62dz + Cs / w2 da. (5.9)
0 0
By (3.3) and (5.2), we get
Ly(t) < — C1E(t) — C1E'(t) — Cs€'(0), (5.10)
for some positive constant C7 and Cg. It is obvious that
L5(t) = La(t) + CrE(t) + C3E(t) ~ La(t). (5.11)
Next, recalling (5.10), we obtain
Ly(t) = Ly(t) + CrE'(t) + Cs&'(t) < —C4E(t). (5.12)
From the above, we deduce that there exist positive constant ¢ such that (5.12) becomes
Ly(t) < — cE(t). (5.13)

A simple integration of (5.13) over (0,t), recalling that F is non-increasing, yields

L»(0)

LE(t) < /0 " B(s)ds < %(LQ(O) L) < (5.14)

Finally, for a positive constant co, we have

E(t) <

%,vwo,

which completes the proof. ]
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