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In this paper, we study the well-posedness and the asymptotic behavior of a one-
dimensional laminated beam system, where the heat conduction is given by Fourier’s
law effective in the rotation angle displacements. We show that the system is well-
posed by using the Hille-Yosida theorem and prove that the system is exponentially
stable if and only if the wave speeds are equal. Furthermore, we show that the system
is polynomially stable provided that the wave speeds are not equal.
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1 Introduction

With the increasing demand of advanced performance, the vibration suppression of the laminated

beams has been one of the main research topics in smart materials and structures. These com-

posite laminates usually have superior structural properties such as adaptability. The design of

their piezoelectric materials can be used as both actuators and sensors [1]. Hansen and Spies in

[2] derived the mathematical model for two-layered beams with structural damping due to the

interfacial slip, the system is given by the following equations:
ρφtt +G(ψ − φx)x = 0, (x, t) ∈ (0, 1)× (0,+∞),

Iρ(3w − ψ)tt −G(ψ − φx)−D(3w − ψ)xx = 0, (x, t) ∈ (0, 1)× (0,+∞),

3Iρwtt + 3G(ψ − φx) + 4γw + 4βwt − 3Dwxx = 0, (x, t) ∈ (0, 1)× (0,+∞),

(1.1)

where ρ,G, Iρ, D, γ, β are positive constant coefficients, ρ is the density of the beams, G is the

shear stiffness, Iρ is the mass moment of inertia, D is the flexural rigidity, γ is the adhesive stiffness

of the beams, and β is the adhesive damping parameter. The function φ denotes the transverse

displacement of the beam which departs from its equilibrium position, ψ represents the rotation

angle, w is proportional to the amount of slip along the interface at time t and longitudinal spatial

variable x, 3w − ψ denotes the effective rotation angle, (1.1)3 describes the dynamics of the slip.

In recent years, an increasing interest has been developed to determine the asymptotic behavior

of the solution of several laminated beam problems. For example, Wang et al. [1] considered

system (1.1) with the cantilever boundary conditions and two different wave speeds (
√
G/ρ and√

D/Iρ). The authors proved the well-posedness and pointed out that system (1.1) can obtain

the asymptotic stability but it does not reach the exponential stability due to the action of the

slip w. Furthermore, to achieve the exponential decay result, the authors added an additional

boundary control such that the boundary conditions become

φ(0, t) = ξ(0, t) = w(0, t) = 0, wx(1, t) = 0,

3w(1, t)− ξ(1, t)− φx(1, t) = u1(t) := k1φt(1, t),
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ξx(1, t) = u2(t) := −k2ξt(1, t),

where ξ = 3w−ψ. Cao et al. [3] considered the system (1.1) with following boundary conditions

ψ(0, t)− φx(0, t) = u1(t) := −k1φt(0, t)− φ(0, t),

3wx(1, t)− ψx(1, t) = u2(t) := −k2ξt(1, t)− ξ(1, t),

where ξ = 3w − ψ. The authors obtained an exponential stability result provided k1 ̸=
√
ρ/G

and k2 ̸=
√
Iρ/D. More importantly, the authors proved that the dominant part of the system

is itself exponentially stable. Raposo [4] considered system (1.1) with two frictional dampings of

the form
ρφtt +G(ψ − φx)x + k1φt = 0, (x, t) ∈ (0, 1)× (0,+∞),

Iρ(3w − ψ)tt −G(ψ − φx)−D(3w − ψ)xx + k2(3w − ψ)t = 0, (x, t) ∈ (0, 1)× (0,+∞),

3Iρwtt + 3G(ψ − φx) + 4γw + 4βwt − 3Dwxx = 0, (x, t) ∈ (0, 1)× (0,+∞)

(1.2)

and obtained the exponential decay result under appropriate initial and boundary conditions.

It is easy to find that if the slip w is assumed to be identically zero, then the first two equations

of system (1.1) can be reduced exactly to the Timoshenko beam system. For the case of the Tim-

oshenko beam with Fourier’s law, many authors have shown various decay estimates depending

on the wave speeds. Rivera and Racke [5] studied the Timoshenko system with thermoelastic

dissipation, i.e.,
ρ1φtt − k(φx + ψ)x = 0, (x, t) ∈ (0, L)× (0,+∞),

ρ2ψtt − bψxx + k(φx + ψ) + γθx = 0, (x, t) ∈ (0, L)× (0,+∞),

ρ3θt − κθxx + γψtx = 0, (x, t) ∈ (0, L)× (0,+∞),

(1.3)

with positive constants ρ1, ρ2, ρ3, k, b, γ, κ. The authors showed that the exponential stability

holds if and only if the wave speeds are equal
(

k
ρ1

= b
ρ2

)
. Júnior and Rivera [6] considered a new

coupling to the thermoelastic Timoshenko beam of the form
ρ1φtt − k(φx + ψ)x + σθx = 0, (x, t) ∈ (0, L)× (0,+∞),

ρ2ψtt − bψxx + k(φx + ψ)− σθ = 0, (x, t) ∈ (0, L)× (0,+∞),

ρ3θt − γθxx + σ(φx + ψ)t = 0, (x, t) ∈ (0, L)× (0,+∞).

(1.4)

The authors showed this system is exponentially stable if and only if the wave speeds are equal(
k
ρ1

= b
ρ2

)
. On the contrary, the authors obtained the polynomially stable depending on the

different boundary conditions. For system (1.4) with Dirichlet boundary conditions

φ(t, 0) = φ(t, L) = ψ(t, 0) = ψ(t, L) = θ(t, 0) = θ(t, L) = 0,

the authors obtained that the semigroup decay as
1
4
√
t
. For system (1.4) with Dirichlet-Neumann

boundary conditions

φ(t, 0) = φ(t, L) = ψx(t, 0) = ψx(t, L) = θx(t, 0) = θx(t, L) = 0,

the authors obtained that the semigroup decay as
1√
t
. We refer the reader to [7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17], for some other related results.
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Motivated by the above results, we intend to study the well-posedness and the asymptotic

stability of the laminated beam system where the heat flux is given by Fourier’s law. The system

is written as

ρφtt +G(ψ − φx)x = 0, (x, t) ∈ (0, 1)× (0,+∞),

Iρ(3w − ψ)tt −G(ψ − φx)−D(3w − ψ)xx + σθx = 0, (x, t) ∈ (0, 1)× (0,+∞),

Iρwtt +G(ψ − φx) +
4

3
γw +

4

3
βwt −Dwxx = 0, (x, t) ∈ (0, 1)× (0,+∞),

kθt − τθxx + σ(3w − ψ)tx = 0, (x, t) ∈ (0, 1)× (0,+∞),

(1.5)

where ρ,G, Iρ, D, σ, γ, β, k, τ are positive constant coefficients. We consider following initial and

boundary conditions

φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), x ∈ [0, 1],

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), x ∈ [0, 1],

w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ [0, 1],

θ(x, 0) = θ0(x), x ∈ [0, 1],

φ(0, t) = ψx(0, t) = wx(0, t) = θ(0, t) = 0, t ∈ [0,+∞),

φx(1, t) = ψ(1, t) = w(1, t) = θx(1, t) = 0, t ∈ [0,+∞).

(1.6)

By using Hille-Yosida theorem, we first prove the well-posedness result. By using the perturbed

energy method, we then establish the exponential result if and only if ρ
G =

Iρ
D and the polynomial

stability if ρ
G ̸= Iρ

D . Furthermore, by using Gearhart-Herbst-Prüss-Huang theorem, we obtain the

lack of exponential stability. The main difficulty in carry out this paper is the appearance for the

Fourier’s law of heat conduction. For this purpose, we use the appropriated multiplies and energy

method to build an equivalent Lyapunov functional.

We now briefly sketch the outline of the paper. In Section 2, we state and prove the well-

posedness of problem (1.5)-(1.6). In Section 3, we establish an exponential stability result of the

energy. In Section 4, the lack of exponential stability has been studied. Finally, Section 5 is

devoted to the statement and proof of the polynomial stability.

2 The well-posedness

In this Section, we prove the well-posedness of problem (1.5)-(1.6) by using Hille-Yosida theorem.

Firstly, we introduce the vector function

U = (φ,φt, 3w − ψ, (3w − ψ)t, w, wt, θ)
T .

Then system (1.5)-(1.6) can be written as{
∂tU = A U,

U(x, 0) = U0(x) = (φ0, φ1, 3w0 − ψ0, 3w1 − ψ1, w0, w1, θ0)
T ,

(2.1)
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where A is a linear operator defined by

A U =



φt

−G
ρ
(ψ − φx)x

(3w − ψ)t

G

Iρ
(ψ − φx) +

D

Iρ
(3w − ψ)xx −

σ

Iρ
θx

wt

−G
Iρ
(ψ−φx)−

4γ

3Iρ
w − 4β

3Iρ
wt +

D

Iρ
wxx

τ

k
θxx −

σ

k
(3w − ψ)tx



.

We consider the following spaces:

H1
∗ (0, 1) =

{
η

∣∣∣∣ η ∈ H1(0, 1) : η(0) = 0

}
, H̃1

∗ (0, 1) =

{
η

∣∣∣∣ η ∈ H1(0, 1) : η(1) = 0

}
,

H2
∗ (0, 1) = H2(0, 1) ∩H1

∗ (0, 1), H̃2
∗ (0, 1) = H2(0, 1) ∩ H̃1

∗ (0, 1),

and

H = H1
∗ (0, 1)× L2(0, 1)× H̃1

∗ (0, 1)× L2(0, 1)× H̃1
∗ (0, 1)× L2(0, 1)× L2(0, 1), (2.2)

equipped with the inner product(
U, Ũ

)
H

=ρ

∫ 1

0
φtφ̃tdx+ Iρ

∫ 1

0
(3w − ψ)t(3w̃ − ψ̃)tdx+ 3Iρ

∫ 1

0
wtw̃tdx+ k

∫ 1

0
θθ̃dx

+G

∫ 1

0
(ψ − φx)(ψ̃ − φ̃x)dx+D

∫ 1

0
(3w − ψ)x(3w̃ − ψ̃)xdx+ 4γ

∫ 1

0
ww̃dx

+ 3D

∫ 1

0
wxw̃xdx.

Then, the domain of A is given by

D(A ) =

{
U ∈ H | φ ∈ H2

∗ (0, 1), 3w − ψ,w ∈ H̃2
∗ (0, 1), θ ∈ H1

∗ (0, 1), φt ∈ H1
∗ (0, 1),

3wt − ψt, wt ∈ H̃1
∗ (0, 1), φx(1, t) = 0, ψx(0, t) = wx(0, t) = 0

}
.

The well-posedness of problem (2.1) is ensured by

Theorem 2.1 Let U0 ∈ H , then problem (2.1) exists a unique weak solution U ∈ C(R+;H ).

Moreover, if U0 ∈ D(A ), then

U ∈ C(R+;D(A )) ∩ C1(R+;H ).
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Proof. To obtain the above result, we need to prove that A : D(A ) → H is a maximal

monotone operator. For this purpose, we need the following two steps: A is dissipative and

Id− A is surjective.

Step 1. A is dissipative.

For any U ∈ D(A ), by using the inner product and integration by parts, we can imply that

⟨A U,U⟩H = −τ
∫ 1

0
θ2xdx− 4β

∫ 1

0
w2
t dx ≤ 0. (2.3)

Hence, A is a dissipative operator.

Step 2. Id− A is surjective.

To prove that the operator Id− A is surjective, that is, for any F = (f1, · · ·, f7) ∈ H , there

exists V = (v1, · · ·, v7) ∈ D(A ) satisfying

(Id− A )V = F, (2.4)

which is equivalent to

v1 − v2 = f1,

ρv2 −G∂xxv1 −G∂xv3 + 3G∂xv5 = ρf2,

v3 − v4 = f3,

Iρv4 +G∂xv1 +Gv3 −D∂xxv3 − 3Gv5 + σ∂xv7 = Iρf4,

v5 − v6 = f5,(
Iρ +

4β

3

)
v6 −G∂xv1 −Gv3 +

(
3G+

4γ

3

)
v5 −D∂xxv5 = Iρf6,

kv7 − τ∂xxv7 + σ∂xv4 = kf7.

(2.5)

(2.5)1, (2.5)3 and (2.5)5 give 
v2 = v1 − f1,

v4 = v3 − f3,

v6 = v5 − f5.

(2.6)

Inserting (2.6) into (2.5)2, (2.5)4, (2.5)6 and (2.5)7, we get

ρv1 −G∂xxv1 −G∂xv3 + 3G∂xv5 = ρ(f1 + f2),

(Iρ +G)v3 +G∂xv1 −D∂xxv3 − 3Gv5 + σ∂xv7 = Iρ(f3 + f4),(
Iρ + 3G+

4β

3
+

4γ

3

)
v5 −G∂xv1 −Gv3 −D∂xxv5 = Iρ(f5 + f6) +

4β

3
f5,

kv7 + σ∂xv3 − τ∂xxv7 = σ∂xf3 + kf7.

(2.7)

Multiplying (2.7)1-(2.7)4 by ṽ1, ṽ3, 3ṽ5 and ṽ7 respectively, and integrating over (0, 1), we arrive
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at 

∫ 1

0
ρv1ṽ1dx−

∫ 1

0
G∂xxv1ṽ1dx−

∫ 1

0
G∂xv3ṽ1dx+

∫ 1

0
3G∂xv5ṽ1dx =

∫ 1

0
ρ(f1 + f2)ṽ1dx,∫ 1

0
(Iρ +G)v3ṽ3dx+

∫ 1

0
G∂xv1ṽ3dx−

∫ 1

0
D∂xxv3ṽ3dx−

∫ 1

0
3Gv5ṽ3dx+

∫ 1

0
σ∂xv7ṽ3dx

=
∫ 1
0 Iρ(f3 + f4)ṽ3dx,∫ 1

0
(3Iρ + 9G+ 4β + 4γ) v5ṽ5dx−

∫ 1

0
3G∂xv1ṽ5dx−

∫ 1

0
3Gv3ṽ5dx−

∫ 1

0
3D∂xxv5ṽ5dx

=

∫ 1

0
3Iρ(f5 + f6)ṽ5dx+

∫ 1

0
4βf5ṽ5dx,∫ 1

0
kv7ṽ7dx+

∫ 1

0
σ∂xv3ṽ7dx−

∫ 1

0
τ∂xxv7ṽ7dx =

∫ 1

0
σ∂xf3ṽ7dx+

∫ 1

0
kf7ṽ7dx.

(2.8)

The sum of the equations in (2.8) gives the following variational formulation:

a
(
(v1, v3, v5, v7)

T , (ṽ1, ṽ3, ṽ5, ṽ7)
T
)
= ã

(
(ṽ1, ṽ3, ṽ5, ṽ7)

T
)
,

∀ (ṽ1, ṽ3, ṽ5, ṽ7)
T ∈ H1

∗ (0, 1)× H̃1
∗ (0, 1)× H̃1

∗ (0, 1)× L2(0, 1), (2.9)

where

a
(
(v1, v3, v5, v7)

T , (ṽ1, ṽ3, ṽ5, ṽ7)
T
)

=

∫ 1

0
G(−∂xv1 − v3 + 3v5)(−∂xṽ1 − ṽ3 + 3ṽ5)dx+

∫ 1

0
ρv1ṽ1dx+

∫ 1

0
Iρv3ṽ3dx

+

∫ 1

0
(3Iρ + 4γ + 4β)v5ṽ5dx+

∫ 1

0
kv7ṽ7dx+

∫ 1

0
D∂xv3∂xṽ3dx+

∫ 1

0
3D∂xv5∂xṽ5dx

+ τ

∫ 1

0
∂xv7∂xṽ7dx+ σ

∫ 1

0
(∂xv7)ṽ3dx+ σ

∫ 1

0
(∂xv3)ṽ7dx

and

ã
(
(ṽ1, ṽ3, ṽ5, ṽ7)

T
)

=

∫ 1

0
(ρ(f1 + f2)ṽ1 + Iρ(f3 + f4)ṽ3 + 3Iρ(f5 + f6)ṽ5 + 4βf5ṽ5 + σ∂xf3ṽ7 + kf7ṽ7) dx.

Now, we introduce the Hilbert space V = H1
∗ (0, 1)× H̃1

∗ (0, 1)× H̃1
∗ (0, 1)× L2(0, 1) equipped

with the norm

∥(v1, v3, v5, v7)∥2V = ∥ − ∂xv1 − v3 + 3v5∥22 + ∥v1∥22 + ∥∂xv3∥22 + ∥∂xv5∥22 + ∥∂xv7∥22.

It is clear that a(·, ·) and ã(·) are bounded. Furthermore, we can obtain that there exists a positive

constant m such that

a
(
(v1, v3, v5, v7)

T , (v1, v3, v5, v7)
T
)

=

∫ 1

0
G(−∂xv1 − v3 + 3v5)

2dx+

∫ 1

0
ρv21dx+

∫ 1

0
Iρv

2
3dx+

∫ 1

0
(3Iρ + 4γ + 4β)v25dx
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+

∫ 1

0
kv27dx+

∫ 1

0
D(∂xv3)

2dx+

∫ 1

0
3D(∂xv5)

2dx+ τ

∫ 1

0
(∂xv7)

2dx

≥m∥(v1, v3, v5, v7)∥2V ,

which implies that a(·, ·) is coercive.
Hence, we assert that a(·, ·) is a bilinear continuous coercive form on V × V , and ã(·) is a

linear continuous form on V . Applying the Lax-Milgram theorem [18], we obtain that (2.8) has

a unique solution (v1, v3, v5, v7)
T ∈ V. Then, by substituting v1, v3, v5 into (2.6), we obtain

v2 ∈ H1
∗ (0, 1), v4 ∈ H̃1

∗ (0, 1), v6 ∈ H̃1
∗ (0, 1).

Next, it remains to show that

v1 ∈ H2
∗ (0, 1), v3 ∈ H̃2

∗ (0, 1), v5 ∈ H̃2
∗ (0, 1), v7 ∈ H1

∗ (0, 1), ∂xv1(1) = ∂xv3(0) = ∂xv5(0).

Furthermore, if (ṽ3, ṽ5, ṽ7) ≡ (0, 0, 0) ∈ H̃1
∗ (0, 1)× H̃1

∗ (0, 1)× L2(0, 1), then (2.9) reduces to∫ 1

0
G∂xxv1ṽ1dx =

∫ 1

0
ρv1ṽ1dx−

∫ 1

0
G∂xv3ṽ1dx+

∫ 1

0
3G∂xv5ṽ1dx−

∫ 1

0
ρ(f1 + f2)ṽ1dx, (2.10)

for all ṽ1 ∈ H1
∗ (0, 1), which implies

G∂xxv1 = ρv1 −G∂xv3 + 3G∂xv5 − ρ(f1 + f2) ∈ L2(0, 1). (2.11)

Thus, by the L2 theory for the linear elliptic equations, we obtain that

v1 ∈ H2
∗ (0, 1).

Moreover, (2.10) is also true for any ϕ ∈ C1([0, 1]) ⊂ H1
∗ (0, 1) (ϕ(0) = 0). Hence, we get∫ 1

0
G∂xv1∂xϕdx+

∫ 1

0
ρv1ϕdx−

∫ 1

0
G(∂xv3)ϕdx+

∫ 1

0
3G(∂xv5)ϕdx =

∫ 1

0
ρ(f1 + f2)ϕdx.

By using the integration by parts, we have

∂xv1(1)ϕ(1) = 0, ∀ϕ ∈ C1([0, 1]), ϕ(0) = 0.

Therefore,

∂xv1(1) = 0.

In the same way, we get

v3 ∈ H̃2
∗ (0, 1), v5 ∈ H̃2

∗ (0, 1), v7 ∈ H1
∗ (0, 1), ∂xv3(0) = ∂xv5(0) = 0.

Finally, the application of the classical regularity theory for linear elliptic equations guarantees

the existence of unique solution V ∈ D(A ) which satisfies (2.4). Hence, the operator Id − A is

surjective. Moreover, it is easy to see that D(A ) is dense in H .

At last, by Hille-Yosida theorem (see [19, 20]) we have the well-posedness result stated in

Theorem 2.1. �
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3 Exponential stability

In this Section, we prove the exponential decay for problem (1.5)-(1.6). It will be achieved by

using the perturbed energy method. We define the energy functional E(t) as

E(t) := E(u(t)) =
1

2

(
ρ

∫ 1

0
φ2
tdx+ Iρ

∫ 1

0
(3wt − ψt)

2dx+ 3Iρ

∫ 1

0
w2
t dx+G

∫ 1

0
(ψ − φx)

2dx

+D

∫ 1

0
(3wx − ψx)

2dx+ 3D

∫ 1

0
w2
xdx+ 4γ

∫ 1

0
w2dx+ k

∫ 1

0
θ2dx

)
(3.1)

If the wave speeds are equal, we have the following exponentially stable result.

Theorem 3.1 Assume that ρ
G =

Iρ
D hold. Let U0 ∈ H , then there exists positive constants c0, c1

such that the energy E(t) associated with problem (1.5)-(1.6) satisfies

E(t) ≤ c0e
−c1t, t ≥ 0. (3.2)

To prove our this result, we will state and prove some useful lemmas in advance.

Lemma 3.2 Let (φ,ψ,w, θ) be the solution of (1.5)-(1.6). Then the energy functional satisfies

d

dt
E(t) = −4β

∫ 1

0
w2
t dx− τ

∫ 1

0
θ2xdx ≤ 0, ∀ t ≥ 0. (3.3)

Proof. First, multiplying (1.5)1 by φt, integrating over (0, 1), using integration by parts and the

boundary conditions in (1.6), we have

d

dt

{
1

2
ρ

∫ 1

0
φ2
tdx

}
−G

∫ 1

0
(ψ − φx)φxtdx = 0. (3.4)

Note that

G

∫ 1

0
(ψ − φx)φxtdx =−G

∫ 1

0
(ψ − φx)(ψ − φx − ψ)tdx

=
d

dt

{
− 1

2
G

∫ 1

0
(ψ − φx)

2dx

}
+G

∫ 1

0
(ψ − φx)ψtdx.

Hence, equation (3.4) becomes

d

dt

{
1

2

(
ρ

∫ 1

0
φ2
tdx+G

∫ 1

0
(ψ − φx)

2dx

)}
= G

∫ 1

0
(ψ − φx)ψtdx. (3.5)

Similarly, multiplying (1.5)2, (1.5)3, (1.5)4 by 3(w − ψ)t, 3wt, θ and integrating over (0, 1), using

integration by parts the boundary conditions in (1.6), we can get

d

dt

{
1

2

(
Iρ

∫ 1

0
(3wt − ψt)

2dx+D

∫ 1

0
(3wx − ψx)

2dx

)}
=G

∫ 1

0
(ψ − φx)(3w − ψ)tdx− σ

∫ 1

0
θx(3w − ψ)tdx, (3.6)

d

dt

{
1

2

(
3Iρ

∫ 1

0
w2
t dx+ 4γ

∫ 1

0
w2dx+ 3D

∫ 1

0
w2
xdx

)}
8
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=− 3G

∫ 1

0
(ψ − φx)wtdx− 4β

∫ 1

0
w2
t dx, (3.7)

d

dt

{
1

2
k

∫ 1

0
θ2dx

}
= σ

∫ 1

0
(3w − ψ)tθxdx− τ

∫ 1

0
θ2xdx. (3.8)

Finally, adding (3.5)-(3.8), we obtain (3.3), which completes the proof. �
Next, in order to construct a Lyapunov functional equivalent to the energy, we will prove

several lemmas with the purpose of creating negative counterparts of the terms that appear in

the energy.

Lemma 3.3 Let (φ,ψ,w, θ) be the solution of (1.5)-(1.6). Then the functional

I1(t) = −ρ
∫ 1

0
φφtdx

satisfies the estimate

I ′1(t) ≤ −ρ
∫ 1

0
φ2
tdx+ (G+ ε1)

∫ 1

0
(ψ − φx)

2dx+ c(ε1)

∫ 1

0
(3wx − ψx)

2dx+ c(ε1)

∫ 1

0
w2
xdx,

(3.9)

for any ε1 > 0.

Proof. By differentiating I1(t) with respect to t, using (1.5)1 and integrating by parts, we obtain

I ′1(t) = −ρ
∫ 1

0
φ2
tdx−G

∫ 1

0
φx(ψ − φx)dx.

Note that

−G
∫ 1

0
(ψ − φx)φxdx = G

∫ 1

0
(ψ − φx)

2dx−G

∫ 1

0
ψ(ψ − φx)dx.

Then, we deduce that

I ′1(t) = −ρ
∫ 1

0
φ2
tdx+G

∫ 1

0
(ψ − φx)

2dx−G

∫ 1

0
ψ(ψ − φx)dx.

Making use of Young’s inequality with ε1 > 0, we obtain

I ′1(t) ≤ −ρ
∫ 1

0
φ2
td + (G+ ε1)

∫ 1

0
(ψ − φx)

2dx+ c(ε1)

∫ 1

0
ψ2
xdx.

Note that ∫ 1

0
ψ2
xdx =

∫ 1

0
(ψx − 3wx + 3wx)

2dx ≤ 2

∫ 1

0
(3wx − ψx)

2dx+ 18

∫ 1

0
w2
xdx.

Then the estimate (3.9) is established. �

Lemma 3.4 Let (φ,ψ,w, θ) be the solution of (1.5)-(1.6). Then the functional

I2(t) = Iρ

∫ 1

0
(3w − ψ)(3w − ψ)tdx

9
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satisfies the estimate

I ′2(t) ≤− (D − ε2)

∫ 1

0
(3wx − ψx)

2dx+ Iρ

∫ 1

0
(3wt − ψt)

2dx

+ c(ε2)

∫ 1

0
(ψ − φx)

2dx+ c(ε2)

∫ 1

0
θ2dx, (3.10)

for any ε2 > 0.

Proof. Taking the derivative of I5(t) with respect to t, using (1.5)2 and integrating by parts, we

get

I ′2(t) =−D

∫ 1

0
(3wx − ψx)

2dx+ Iρ

∫ 1

0
(3wt − ψt)

2dx

+G

∫ 1

0
(ψ − φx)(3w − ψ)dx+ σ

∫ 1

0
(3w − ψ)xθdx.

Then, using Young’s inequality, we arrive at (3.10). �

Lemma 3.5 Let (φ,ψ,w, θ) be the solution of (1.5)-(1.6). Then the functional

I3(t) = Iρ

∫ 1

0
wwtdx

satisfies the estimate

I ′3(t) ≤−
(
4γ

3
− ε3

)∫ 1

0
w2dx−D

∫ 1

0
w2
xdx+ (Iρ + c (ε3))

∫ 1

0
w2
t dx

+ c(ε3)

∫ 1

0
(ψ − φx)

2dx, (3.11)

for any ε3 > 0.

Proof. By differentiating I1(t) with respect to t, using (1.5)3 and integrating by parts, we obtain

I ′3(t) = Iρ

∫ 1

0
w2
t dx−G

∫ 1

0
w(ψ − φx)dx− 4γ

3

∫ 1

0
w2dx− 4β

3

∫ 1

0
wwtdx−D

∫ 1

0
w2
xdx.

We then use Young’s inequality with ε3 > 0 to obtain (3.11). �

Lemma 3.6 Let (φ,ψ,w, θ) be the solution of (1.5)-(1.6). Then the functional

I4(t) =
kIρ
σ

∫ 1

0
(3w − ψ)t

∫ x

0
θdydx

satisfies the estimate

I ′4(t) ≤− (Iρ − ε5)

∫ 1

0
(3wt − ψt)

2dx+ (k + c(ε4))

∫ 1

0
θ2dx+ ε4

∫ 1

0
(ψ − φx)

2dx

+ ε4

∫ 1

0
(3wx − ψx)

2dx+ c(ε5)

∫ 1

0
θ2xdx, (3.12)

for any ε4, ε5 > 0.
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Proof. Taking the derivative of I4(t) with respect to t, using (1.5)2, (1.5)4 and integrating by

parts, we get

I ′4(t) =− Iρ

∫ 1

0
(3wt − ψt)

2dx+
kG

σ

∫ 1

0
(ψ − φx)

∫ x

0
θdydx− kD

σ

∫ 1

0
(3w − ψ)xθdx

+ k

∫ 1

0
θ2dx+

τIρ
σ

∫ 1

0
(3w − ψ)tθxdx.

Using Young’s inequality with ε4, ε5 > 0, we establish the (3.12). �

Lemma 3.7 Let (φ,ψ,w, θ) be the solution of (1.5)-(1.6). Then the functional

I5(t) = Iρ

∫ 1

0
wt(ψ − φx)dx+ Iρ

∫ 1

0
wtφxdx− Dρ

G

∫ 1

0
(wxφt − wxtφ)dx

satisfies the estimate

I ′5(t) ≤− (G− ε6)

∫ 1

0
(ψ − φx)

2dx+ ε6

∫ 1

0
(3wt − ψt)

2dx

+ c(ε6)

∫ 1

0
w2dx+ c(ε6)

∫ 1

0
w2
t dx, (3.13)

for any ε6 > 0.

Proof. By (1.5)1, (1.5)3 and integrating by parts, we get

d

dt

{
Iρ

∫ 1

0
wt(ψ − φx)dx

}
=−D

∫ 1

0
wx(ψ − φx)xdx−G

∫ 1

0
(ψ − φx)

2dx− 4γ

3

∫ 1

0
w(ψ − φx)dx− 4β

3

∫ 1

0
wt(ψ − φx)dx

+ Iρ

∫ 1

0
wtψtdx− Iρ

∫ 1

0
wtφxtdx

=
Dρ

G

∫ 1

0
wxφttdx−G

∫ 1

0
(ψ − φx)

2dx− 4γ

3

∫ 1

0
w(ψ − φx)dx− 4β

3

∫ 1

0
wt(ψ − φx)dx

+ Iρ

∫ 1

0
wtψtdx− d

dt

{
Iρ

∫ 1

0
wtφxdx

}
+ Iρ

∫ 1

0
wttφxdx

=
Dρ

G

{
d

dt

∫ 1

0
(wxφt − wxtφ)dx−

∫ 1

0
wttφxdx

}
−G

∫ 1

0
(ψ − φx)

2dx− 4γ

3

∫ 1

0
w(ψ − φx)dx

− 4β

3

∫ 1

0
wt(ψ − φx)dx+ Iρ

∫ 1

0
wtψtdx− d

dt

{
Iρ

∫ 1

0
wtφxdx

}
+ Iρ

∫ 1

0
wttφxdx.

We conclude for

I ′5(t) =D

(
Iρ
D

− ρ

G

)∫ 1

0
wttφxdx−G

∫ 1

0
(ψ − φx)

2dx− 4γ

3

∫ 1

0
w(ψ − φx)dx

− 4β

3

∫ 1

0
wt(ψ − φx)dx+ Iρ

∫ 1

0
wtψtdx.

Using Young’s inequality and ρ
G =

Iρ
D , we get (3.13). �
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Now, we turn to prove our main result in this section.

Proof of Theorem 3.1. Let δ1, δ2, δ3, δ4, δ5 > 0 and ρ
G =

Iρ
D , we define

L1(t) = E(t) + δ1I1(t) + δ2I2(t) + δ3I3(t) + δ4I4(t) + δ5I5(t). (3.14)

Using Cauchy-Schwarz inequality and Poincaré inequality, one can easily see that all the Ii(t), i =

1, 2, 3, 4, 5 are bounded by an expression containing the existing terms in the energy E(t). This

leads to the equivalence of L1(t) and E(t).

Gathering the estimates in the previous lemmas, we obtain

L′
1(t) ≤− δ1ρ

∫ 1

0
φ2
tdx− (δ4Iρ − δ4ε5 − δ2Iρ − δ5ε6)

∫ 1

0
(3wt − ψt)

2dx

− (4β − δ3Iρ − δ3c (ε3)− δ5c (ε6))

∫ 1

0
w2
t dx

− (δ5G− δ5ε6 − δ1G− δ1ε1 − δ2c(ε2)− δ3c(ε3)− δ4ε4)

∫ 1

0
(ψ − φx)

2dx

− (δ2D − δ1c(ε1)− δ2ε2 − δ4ε4)

∫ 1

0
(3wx − ψx)

2dx

− (δ3D − δ1c(ε1))

∫ 1

0
w2
xdx−

(
4γ

3
δ3 − δ3ε3 − δ5c(ε6)

)∫ 1

0
w2dx

− (τ − δ4c(ε5))

∫ 1

0
θ2xdx+ (δ2c(ε2) + δ4k + δ4c(ε4))

∫ 1

0
θ2dx. (3.15)

At this point, we need to choose our constants very carefully. First, we choose ε1, ε2, ε3, ε4, ε5, ε6
small enough so that

L′
1(t) ≤− δ1ρ

∫ 1

0
φ2
tdx−

(
δ4Iρ
2

− δ2Iρ

)∫ 1

0
(3wt − ψt)

2dx

− (4β − δ3Iρ − δ3c (ε3)− δ5c (ε6))

∫ 1

0
w2
t dx

−
(
δ5G

2
− δ1G− δ2c(ε2)− δ3c(ε3)

)∫ 1

0
(ψ − φx)

2dx

−
(
δ2D

2
− δ1c(ε1)

)∫ 1

0
(3wx − ψx)

2dx− (δ3D − δ1c(ε1))

∫ 1

0
w2
xdx

−
(
2γ

3
δ3 − δ5c(ε6)

)∫ 1

0
w2dx− (τ − δ4c(ε5))

∫ 1

0
θ2xdx

+ (δ2c(ε2) + δ4k + δ4c(ε4))

∫ 1

0
θ2dx. (3.16)

Then, we select δ4 small enough so that

τ − δ4c(ε5) > 0.

Next, we choose δ2 small enough so that

δ4Iρ
2

− δ2Iρ > 0.
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Furthermore, we select δ3 and δ5 small enough so that

4β − δ3Iρ − δ3c (ε3)− δ5c (ε6) > 0, δ3D − δ1c(ε1) > 0,
δ5G

2
− δ3c(ε3) > 0.

Finally, we select δ3 even smaller (if needed) and δ1 small enough so that

δ2D

2
− δ1c(ε1) > 0, δ3D − δ1c(ε1) > 0,

δ5G

2
− δ1G− δ2c(ε2)− δ3c(ε3) > 0.

From the above, we deduce that there exist positive constants C1 and C2 such that (3.16) becomes

L′
1(t) ≤− C1E(t)− (τ − δ4c(ε5))

∫ 1

0
θ2xdx+ C2

∫ 1

0
θ2dx

≤− C1E(t) + C2

∫ 1

0
θ2xdx. (3.17)

By (3.3), we get

L′
1(t) ≤− C1E(t)− C3E

′(t), (3.18)

for some positive constant C3. It is obvious that

L1(t) = L(t) + C3E(t) ∼ E(t).

Recalling (3.18), we obtain

L ′
1(t) = L′(t) + C3E

′(t) ≤ −C1E(t) ≤ −cL1(t), (3.19)

for some positive constant c1. Then, a simple integration of (3.19) over (0, t) yields

L1(t) ≤ L1(0)e
−c1t, ∀ t ≥ 0. (3.20)

At last, estimate (3.20) gives the desired result (3.2) when combined with the equivalence of L(t)

and E(t). �

4 The lack of exponential stability

This Section is concerning the lack of exponential stability. Our result is achieved by Gearhart-

Herbst-Prüss-Huang theorem to dissipative systems, see Prüss [21] and Huang [22].

Theorem 4.1 Let S(t) = eAt be a C0-semigroup of contractions on Hilbert space H. Then S(t)

is exponentially stable if and only if

ρ(A) ⊃ {iλ : λ ∈ R} ≡ iR

and

lim
|λ|→∞

∥(iλI −A)−1∥L(H) <∞

hold, where ρ(A) is the resolvent set of the differential operator A.

Next, we state and prove the main result of this section.
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Theorem 4.2 Assume that ρ
G ̸= Iρ

D hold. Then the semigroup associated to problem (1.5)-(1.6)

is not exponentially stable.

Proof. We will prove that there exists a sequence of imaginary number λµ and function Fµ ∈ H
with ∥Fµ∥H ≤ 1 such that ∥(λµI −A)−1Fµ∥H = ∥Uµ∥H → ∞, where

λµUµ −AUµ = Fµ, (4.1)

with Uµ = (v1, v2, v3, v4, v5, v6, v7)
T not bounded. Rewrite spectral equation (4.1) in term of its

components, we have for λµ = λ

λv1 − v2 = g1,

ρλv2 −G∂xxv1 −G∂xv3 + 3G∂xv5 = ρg2,

λv3 − v4 = g3,

Iρλv4 +G∂xv1 +Gv3 −D∂xxv3 − 3Gv5 + σ∂xv7 = Iρg4,

λv5 − v6 = g5,

Iρλv6 +
4β

3
v6 −G∂xv1 −Gv3 +

(
3G+

4γ

3

)
v5 −D∂xxv5 = Iρg6,

kλv7 − τ∂xxv7 + σ∂xv4 = kg7,

(4.2)

where λ ∈ R and F = (g1, g2, g3, g4, g5, g6, g7)
T ∈ H. Taking g1 = g3 = g5 = 0, then the above

system becomes

ρλ2v1 −G∂xxv1 −G∂xv3 + 3G∂xv5 = ρg2,

Iρλ
2v3 +G∂xv1 +Gv3 −D∂xxv3 − 3Gv5 + σ∂xv7 = Iρg4,

Iρλ
2v5 +

4β

3
λv5 −G∂xv1 −Gv3 +

(
3G+

4γ

3

)
v5 −D∂xxv5 = Iρg6,

kλv7 − τ∂xxv7 + λσ∂xv3 = kg7.

(4.3)

Because of the boundary conditions in (1.6), we can suppose that

v1 = A sin
(µπ

2
x
)
, v3 = B cos

(µπ
2
x
)
, v5 = C cos

(µπ
2
x
)
, v7 = E sin

(µπ
2
x
)
.

Now, choosing

g2 =
1

ρ
sin
(µπ

2
x
)
, g4 = g6 = g7 = 0,

we arrive at 

(
ρλ2 +G

(µπ
2

)2)
A+G

(µπ
2

)
B − 3G

(µπ
2

)
C = 1,

G
(µπ

2

)
A+

(
Iρλ

2 +G+D
(µπ

2

)2)
B − 3GC + σ

(µπ
2

)
E = 0,

−G
(µπ

2

)
A−GB +

(
Iρλ

2 +
4β

3
λ+ 3G+

4γ

3
+D

(µπ
2

)2)
C = 0,

−λσ(µπ
2
)B +

(
kλ+ τ

(µπ
2

)2)
E = 0.

(4.4)
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Now, we take λ = λµ such that

ρλ2 +G
(µπ

2

)2
= 0,

then the above system can be written as

G
(µπ

2

)
B − 3G

(µπ
2

)
C = 1,

G
(µπ

2

)
A+

(
G+ Iρ

(
D

Iρ
− G

ρ

)(µπ
2

)2)
B − 3GC + σ

(µπ
2

)
E = 0,

−G
(µπ

2

)
A−GB +

(
4β

3
λ+ 3G+

4γ

3
+ Iρ

(
D

Iρ
− G

ρ

)(µπ
2

)2)
C = 0,

−iσ

√
G

ρ

(µπ
2

)2
B +

(
ik

√
G

ρ

(µπ
2

)
+ τ

(µπ
2

)2)
E = 0.

(4.5)

Adding (4.5)2 to (4.5)3, we get

Iρ

(
D

Iρ
− G

ρ

)(µπ
2

)2
B + σ

(µπ
2

)
E +

(
4β

3
λ+

4γ

3
+ Iρ

(
D

Iρ
− G

ρ

)(µπ
2

)2)
C = 0. (4.6)

From (4.5)4, we get

E =
iσ
√

G
ρ

(µπ
2

)
ik
√

G
ρ + τ

(µπ
2

)B.
Substituting E into (4.6), we get

C = −Λµ

Γµ
B,

where

Λµ = Iρ

(
D

Iρ
− G

ρ

)(µπ
2

)2
+

iσ2
√

G
ρ

(µπ
2

)2
ik
√

G
ρ + τ

(µπ
2

) ,
Γµ =

4β

3
λ+

4γ

3
+ Iρ

(
D

Iρ
− G

ρ

)(µπ
2

)2
.

Substituting C into (4.5)3, we get

A = −GΓµ + ΛµΓµ + 3GΛµ

G
(µπ

2

)
Γµ

B.

Similarly, substituting C into (4.5)1, we get

B =
Γµ

G
(µπ

2

)
(Γµ + 3Λµ)

.

Let µ→ ∞, we get (µπ
2

)
B → 1

4G
.

Substituting this expression into A, C and E, we obtain for µ→ ∞,

A→ D

4ρG

(
ρ

G
− Iρ
D

)
, C → O

(
1

µ

)
, E → O

(
1

µ

)
.
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Thus

∥Uµ∥2H ≥ G

∫ 1

0
(ψ − φx)

2dx = G
(
3C −B −

(µπ
2

)
A
)2 ∫ 1

0
cos2

(µπ
2
x
)
dx

=
1

2
G
(
3C −B −

(µπ
2

)
A
)2

→ ∞, as µ→ ∞.

Therefore, there is no exponential stability. This completes the proof. �

5 Polynomial stability

In this section, we consider the situation when the wave propagations are not the same.

Theorem 5.1 Assume that ρ
G ̸= Iρ

D hold. Let U0 ∈ H , then there exists a positive constant c2
such that the energy E(t) associated with problem (1.5)-(1.6) satisfies

E(t) ≤ c2
t
, t > 0. (5.1)

Proof. In this regard, we establish a polynomial decay result. As we will see, due to the presence

of the
∫ 1
0 wttφxdx, we cannot directly perform the same proof as for the case where ρ

G ̸= Iρ
D . To

overcome this difficulty, the second-order energy method is needed. The second-order energy is

defined by

E(t) =1

2

(
ρ

∫ 1

0
φ2
ttdx+ Iρ

∫ 1

0
(3wtt − ψtt)

2dx+ 3Iρ

∫ 1

0
w2
ttdx+G

∫ 1

0
(ψt − φxt)

2dx

+D

∫ 1

0
(3wxt − ψxt)

2dx+ 3D

∫ 1

0
w2
xtdx+ 4γ

∫ 1

0
w2
t dx+ k

∫ 1

0
θ2t dx

)
.

A simple calculation (Similar to (3.3)) implies that

E ′(t) = −4β

∫ 1

0
w2
ttdx− τ

∫ 1

0
θ2xtdx. (5.2)

As in (3.14), we also define a Lyapunov functional L2(t) as follows:

L2(t) = E(t) + E(t) + δ1I1(t) + δ2I2(t) + δ3I3(t) + δ4I4(t) + δ5I5(t), (5.3)

where Ii(t), i = 1, 2, 3, 4 remain as defined in Lemma 3.3-Lemma 3.4 with derivatives of I1(t)-I4(t)

remain the same while the derivative of I5(t) is given as

I ′5(t) =D

(
Iρ
D

− ρ

G

)∫ 1

0
wttφxdx−G

∫ 1

0
(ψ − φx)

2dx− 4γ

3

∫ 1

0
w(ψ − φx)dx

− 4β

3

∫ 1

0
wt(ψ − φx)dx+

∫ 1

0
Iρwtψtdx

≤− (G− ε6)

∫ 1

0
(ψ − φx)

2dx+ ε6

∫ 1

0
(3wt − ψt)

2dx+ c(ε6)

∫ 1

0
w2dx

+ c(ε6)

∫ 1

0
w2
t dx+ c(ε7)

∫ 1

0
w2
ttdx+ ε7

∫ 1

0
φ2
xdx, (5.4)
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for any ε6, ε7 > 0. Observing∫ 1

0
φ2
xdx ≤2

∫ 1

0
(ψ − φx)

2dx+ 2

∫ 1

0
ψ2dx

≤2

∫ 1

0
(ψ − φx)

2dx+ 4

∫ 1

0
(3wx − ψx)

2dx+ 36

∫ 1

0
w2
xdx. (5.5)

Then, combining (5.4)-(5.5), we get

I ′5(t) ≤− (G− ε6 − ε7)

∫ 1

0
(ψ − φx)

2dx+ ε6

∫ 1

0
(3wt − ψt)

2dx+ c(ε6)

∫ 1

0
w2dx

+ c(ε6)

∫ 1

0
w2
t dx+ c(ε7)

∫ 1

0
w2
ttdx+ ε7

∫ 1

0
(3wx − ψx)

2dx+ ε7

∫ 1

0
w2
xdx. (5.6)

Next, differentiating L2(t), we obtain

L′
2(t) ≤− δ1ρ

∫ 1

0
φ2
tdx− (δ4Iρ − δ4ε5 − δ2Iρ − δ5ε6)

∫ 1

0
(3wt − ψt)

2dx

− (4β − δ3Iρ − δ3c (ε3)− δ5c (ε6))

∫ 1

0
w2
t dx

− (δ5G− δ5ε6 − δ1G− δ1ε1 − δ2c(ε2)− δ3c(ε3)− δ4ε4 − δ5ε7)

∫ 1

0
(ψ − φx)

2dx

− (δ2D − δ1c(ε1)− δ2ε2 − δ4ε4 − δ5ε7)

∫ 1

0
(3wx − ψx)

2dx

− (δ3D − δ1c(ε1)− δ5ε7)

∫ 1

0
w2
xdx−

(
4γ

3
δ3 − δ3ε3 − δ5c(ε6)

)∫ 1

0
w2dx

− (τ − δ4c(ε5))

∫ 1

0
θ2xdx+ (δ2c(ε2) + δ4k + δ4c(ε4))

∫ 1

0
θ2dx+ δ5c(ε7)

∫ 1

0
w2
ttdx. (5.7)

At this point, we need to choose our constants very carefully. First, we choose ε1, ε2, ε3, ε4, ε5
small enough so that

L′
2(t) ≤− δ1ρ

∫ 1

0
φ2
tdx−

(
δ4Iρ
2

− δ2Iρ

)∫ 1

0
(3wt − ψt)

2dx

− (4β − δ3Iρ − δ3c (ε3)− δ5c (ε6))

∫ 1

0
w2
t dx

−
(
δ5G

2
− δ1G−−δ2c(ε2)− δ3c(ε3)

)∫ 1

0
(ψ − φx)

2dx

−
(
δ2D

2
− δ1c(ε1)

)∫ 1

0
(3wx − ψx)

2dx−
(
δ3D

2
− δ1c(ε1)

)∫ 1

0
w2
xdx

−
(
2γ

3
δ3 − δ5c(ε6)

)∫ 1

0
w2dx− (τ − δ4c(ε5))

∫ 1

0
θ2xdx

+ (δ2c(ε2) + δ4k + δ4c(ε4))

∫ 1

0
θ2dx+ δ5c(ε7)

∫ 1

0
w2
ttdx. (5.8)

Then, we select δ4 small enough so that

τ − δ4c(ε5) > 0.
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Next, we choose δ2 small enough so that

δ4Iρ
2

− δ2Iρ > 0.

Furthermore, we select δ3 and δ5 small enough so that

4β − δ3Iρ − δ3c (ε3)− δ5c (ε6) > 0, δ3D − δ1c(ε1) > 0,
δ5G

2
− δ3c(ε3) > 0.

Finally, we select δ3 even smaller (if needed) and δ1 small enough so that

δ2D

2
− δ1c(ε1) > 0, δ3D − δ1c(ε1) > 0,

δ5G

2
− δ1G− δ2c(ε2)− δ3c(ε3) > 0.

Thus, we deduce that there exist positive constants C4, C5 and C6 such that (5.8) becomes

L′
2(t) ≤− C4E(t)− (τ − δ4c(ε5))

∫ 1

0
θ2xdx+ C5

∫ 1

0
θ2dx+ C6

∫ 1

0
w2
ttdx

≤− C4E(t) + C5

∫ 1

0
θ2xdx+ C6

∫ 1

0
w2
ttdx. (5.9)

By (3.3) and (5.2), we get

L′
2(t) ≤− C4E(t)− C7E

′(t)− C8E ′(t), (5.10)

for some positive constant C7 and C8. It is obvious that

L2(t) = L2(t) + C7E(t) + C8E(t) ∼ L2(t). (5.11)

Next, recalling (5.10), we obtain

L ′
2(t) = L′

2(t) + C7E
′(t) + C8E ′(t) ≤ −C4E(t). (5.12)

From the above, we deduce that there exist positive constant c such that (5.12) becomes

L′
2(t) ≤− cE(t). (5.13)

A simple integration of (5.13) over (0, t), recalling that E is non-increasing, yields

tE(t) ≤
∫ t

0
E(s)ds ≤ 1

c
(L2(0)− L2(t)) ≤

L2(0)

c
. (5.14)

Finally, for a positive constant c2, we have

E(t) ≤ c2
t
, ∀ t > 0,

which completes the proof. �
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[5] J. E. Muñoz Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems—global

existence and exponential stability, J. Math. Anal. Appl. 276 (2002), no. 1, 248–278.

[6] D. S. Almeida Júnior, M. L. Santos and J. E. Muñoz Rivera, Stability to 1-D thermoelastic
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