Preprint
Article

Analysis and Predictability of the Hydrological Response of Mountain Catchments to Heavy Rain on Snow Events: A Case Study in the Spanish Pyrenees

Altmetrics

Downloads

1136

Views

1452

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

20 February 2017

Posted:

22 February 2017

You are already at the latest version

Alerts
Abstract
From June 18 to 19, 2013, the Ésera river in the Pyrenees, Northern Spain, caused widespread damage due to flooding as a result of torrential rains and sustained snowmelt. We estimate the contribution of snow melt to total discharge applying a snow energy balance to the catchment. Precipitation is derived from sparse local measurements and the WRF-ARW model over three nested domains, down to a grid cell size of 2 km. Temperature profiles, precipitation and precipitation gradient are well simulated, although with a possible displacement regarding the observations. Snowpack melting was correctly reproduced and verified in three instrumented sites, and according to satellite images. We found that the hydrological simulations agree well with measured discharge. Snowmelt represented 33% of total runoff during the main flood event and 23% at peak flow. The snow energy balance model indicates that most of the energy for snow melt during the day of maximum precipitation came from turbulent fluxes. This approach forecast correctly peak flow and discharge during normal conditions at least 24h in advance and could give an early warning of the extreme event 2.5 days before.
Keywords: 
Subject: Environmental and Earth Sciences  -   Environmental Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated