Preprint
Article

In-depth Analysis of the Structure and Properties of Two-variety Natural Luffa Sponge Fibers

Altmetrics

Downloads

1612

Views

1024

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

05 March 2017

Posted:

06 March 2017

You are already at the latest version

Alerts
Abstract
The advancement in science and technology has led to luffa sponge (LS) being widely used as a natural material in industrial application as its polyporous structure and light texture. In order to enhance the utility of LS fibers as the reinforcement of lightweight composite materials, this study investigate its water absorption, mechanical properties, anatomical characteristic and thermal performance. Hence, moisture regain, tensile properties of LS fiber bundles were measured in accordance with standards and the structural characteristics were investigated via microscopic observation. Scanning electron microscopy (SEM) was used to observe the surface morphology and fracture surface of fiber bundles. Test results shows that the special structure where the phloem tissues degenerate to cavities had a significant influence on the mechanical properties of LS fiber bundles. Additionally, the transverse sectional area occupied by fibers in a fiber bundle (SF), wall thickness and ratio of wall to lumen of fiber cell, and crystallinity of cellulose had an impact on the mechanical properties of LS fiber bundles. Furthermore, the fiber bundles density of LS varies range of 385.46-468.70 kg/m3, much less than that of jute (1360.40 kg/m3) and Arenga engleri (950.20 kg/m3) while LS fiber bundles has superior specific modulus.
Keywords: 
Subject: Chemistry and Materials Science  -   Biomaterials
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated