Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Differential Degradation and Detoxification of an Aromatic Pollutant by Two Different Peroxidases

Version 1 : Received: 4 March 2017 / Approved: 6 March 2017 / Online: 6 March 2017 (07:45:32 CET)

A peer-reviewed article of this Preprint also exists.

Alneyadi, A.H.; Shah, I.; AbuQamar, S.F.; Ashraf, S.S. Differential Degradation and Detoxification of an Aromatic Pollutant by Two Different Peroxidases. Biomolecules 2017, 7, 31. Alneyadi, A.H.; Shah, I.; AbuQamar, S.F.; Ashraf, S.S. Differential Degradation and Detoxification of an Aromatic Pollutant by Two Different Peroxidases. Biomolecules 2017, 7, 31.

Abstract

Enzymatic degradation of organic pollutants is a new and promising remediation approach. Peroxidases are one of the most commonly used classes of enzymes to degrade organic pollutants. However, it is generally assumed that all peroxidases behave similarly and produce similar degradation products. In this study, we conducted detailed studies of the degradation of a model aromatic pollutant, Sulforhodamine B dye (SRB dye), using two peroxidases—soybean peroxidase (SBP) and chloroperoxidase (CPO). Our results show that these two related enzymes had different optimum conditions (pH, temperature, H2O2 concentration...etc.) for efficiently degrading SRB dye. High-performance liquid chromatography and LC-mass spectrometry analyses confirmed that both SBP and CPO transformed the SRB dye into low molecular weight intermediates. While most of the intermediates produced by the two enzymes were the same, the CPO treatment produced at least one different intermediate. Furthermore, toxicological evaluation using lettuce (Lactuca sativa) seeds demonstrated that the SBP-based treatment was able to eliminate the phytotoxicity of SRB dye, but the CPO-based treatment did not. Our results show, for the first time, that while both of these related enzymes can be used to efficiently degrade organic pollutants, they have different optimum reaction conditions and may not be equally efficient in detoxification of organic pollutants.

Keywords

organic pollutants; enzymatic remediation; sulforhodamine B; soybean peroxidase; chloroperoxidase

Subject

Chemistry and Materials Science, Applied Chemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.