Preprint
Review

Review of Antibacterial Activity of Titanium-based Implants Surfaces Fabricated by Micro-arc Oxidation

Altmetrics

Downloads

2386

Views

1053

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

14 March 2017

Posted:

14 March 2017

You are already at the latest version

Alerts
Abstract
Ti and its alloys are the most commonly used materials for biomedical applications. However, bacterial infection after implant placement is still one of the significant rising complications. Therefore, the application of the antimicrobial agents into implant surfaces to prevent implant-associated infection has attracted lots of attention. Scientific papers have shown that inorganic antibacterial metal element (e.g. Ag, Cu, Zn) can be introduced to implant surfaces with the addition of metal nanoparticles or metallic compounds into electrolyte via micro-arc oxidation (MAO) technology. In this review, the effects of the composition and concentration of electrolyte and process parameters (e.g. voltage, current density, oxidation time) on morphological characteristics (e.g. surface morphology, bonding strength), antibacterial ability and biocompatibility of MAO antimicrobial coating were discussed in detail. Anti-infection and osseo-integration can be simultaneously accomplished with the selection of the proper antibacterial elements and operating parameters. Besides, MAO assisted by magnetron sputtering (MS) to endow Ti-based implant materials with superior antibacterial ability and biocompatibility was also discussed. Finally, the development trend of MAO technology in the future was forecasted.
Keywords: 
Subject: Chemistry and Materials Science  -   Biomaterials
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated