The interaction between the grid network and the offshore wind power plant (WPP) network can lead to the amplification of certain harmonics and potentially resonant conditions. Offshore WPP should limit the increment of harmonic voltage distortion at the point of connection to the grid network as well as within their internal network. The harmonic distortion should be limited within the planning level limits using harmonic compensation, which is usually achieved by using static filters. In this paper an active damping compensation strategy with a STATCOM using emulation of resistance at the harmonic frequencies of concern is analysed. Such a compensation is effective for the local bus, though the performance is not guaranteed at the remote bus. This paper investigates the challenges associated with remote harmonic compensation in the offshore WPP, which is connected to the onshore grid through long high-voltage cables and transformers. First, the harmonic distortion and the compensating effects of the filter are theoretically assessed. Afterwards, they are demonstrated using harmonic propagation studies and time domain simulations in PSCAD.