Preprint
Article

Automatic Object-Oriented, Spectral-Spatial Feature Extraction Driven by Tobler’s First Law of Geography for Very High Resolution Aerial Imagery Classification

Altmetrics

Downloads

739

Views

1163

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

16 March 2017

Posted:

17 March 2017

You are already at the latest version

Alerts
Abstract
Aerial image classification has become popular and has attracted extensive research efforts in recent decades. The main challenge lies in its very high spatial resolution but relatively insufficient spectral information. To this end, spatial-spectral feature extraction is a popular strategy for classification. However, parameter determination for that feature extraction is usually time-consuming and depends excessively on experience. In this paper, an automatic spatial feature extraction approach based on image raster and segmental vector data cross-analysis is proposed for the classification of very high spatial resolution (VHSR) aerial imagery. First, multi-resolution segmentation is used to generate strongly homogeneous image objects and extract corresponding vectors. Then, to automatically explore the region of a ground target, two rules, which are derived from Tobler’s First Law of Geography (TFL) and a topological relationship of vector data, are integrated to constrain the extension of a region around a central object. Third, the shape and size of the extended region are described. A final classification map is achieved through a supervised classifier using shape, size, and spectral features. Experiments on three real aerial images of VHSR (0.1 to 0.32 m) are done to evaluate effectiveness and robustness of the proposed approach. Comparisons to state-of-the-art methods demonstrate the superiority of the proposed method in VHSR image classification.
Keywords: 
Subject: Environmental and Earth Sciences  -   Remote Sensing
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated