Preprint
Article

Applying Quantum Optimization Algorithms for Linear Programming

This version is not peer-reviewed.

Submitted:

12 May 2017

Posted:

16 May 2017

You are already at the latest version

Abstract
Quantum computers are machines that are designed to use quantum mechanics in order to improve upon classical computers by running quantum algorithms. One of the main applications of quantum computing is solving optimization problems. For addressing optimization problems we can use linear programming. Linear programming is a method to obtain the best possible outcome in a special case of mathematical programming. Application areas of this problem consist of resource allocation, production scheduling, parameter estimation, etc. In our study, we looked at the duality of resource allocation problems. First, we chose a real world optimization problem and looked at its solution with linear programming. Then, we restudied this problem with a quantum algorithm in order to understand whether if there is a speedup of the solution. The improvement in computation is analysed and some interesting results are reported.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

5474

Views

2597

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated