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Abstract: Quantum computers are machines that are designed to use quantum mechanics in order to
improve upon classical computers by running quantum algorithms. One of the main applications of
quantum computing is solving optimization problems. For addressing optimization problems we can
use linear programming. Linear programming is a method to obtain the best possible outcome in a
special case of mathematical programming. Application areas of this problem consist of resource
allocation, production scheduling, parameter estimation, etc. In our study, we looked at the duality
of resource allocation problems. First, we chose a real world optimization problem and looked at its
solution with linear programming. Then, we restudied this problem with a quantum algorithm in
order to understand whether if there is a speedup of the solution. The improvement in computation
is analysed and some interesting results are reported.
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1. Introduction

Quantum computers are designed to use quantum mechanics to improve speed by running
quantum algorithms over classical computers. Entanglement is the theoretical aspect providing the
speedup comparing to classical counterparts. Many recent researches have been done in entanglement
and its related disciplines like entanglement measures and majorization, etc. [12-20]. One of the main
applications of quantum computing is solving optimization problems. Other Application areas of this
problem can be listed as resource allocation, production scheduling and parameter estimation, etc.

In our study, we looked at the optimization of resource allocation problems. First, we chose a real
world optimization problem and looked at its solution with linear programming. Then, we restudied
this problem with a quantum algorithm in order to understand whether if there is a speedup of the
solution. The improvement in computation is analyzed and some interesting results are reported.

2. Materials and Methods

Linear optimization (also called linear programming) is a method used to obtain the best result
(such as maximum gain or lowest cost) in a mathematical model represented by linear relationships
[21-23]. Linear programming is a special case of mathematical programming.

In other words, linear programming is a technique used to optimize a linear objective function,
subject to linear equality and linear inequality constraints. The feasible region is a convex polytope,
defined as the intersection of the finite half spaces, each defined by a linear inequality. The objective
function is a real-valued linear function defined on this polyhedron. A linear programming algorithm
finds the smallest (or largest) value on the polyhedron if such a point exists [21-23].

Linear programs are canonical problems that can be expressed as follows:

© 2017 by the author(s). Distributed under a Creative Commons CC BY license.


http://dx.doi.org/10.20944/preprints201703.0238.v3
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 May 2017 d0i:10.20944/preprints201703.0238.v3

maximize cl x
subject to Ax<b
and x>0

where x represents the vector of variables (to be determined), ¢ and b are vectors of (known)
coefficients, A is a (known) matrix of coefficients, and (.)T is the matrix transpose. The expression to be
maximized or minimized is called an objective function (in this case ¢™x). Ax < b and x 2 0 inequalities
are constraints that specify a convex polytope on which the objective function is optimized. In this
context, two vectors are comparable when they have the same dimensions. If each leading input is less
than or equal to the corresponding input of the second, we can say that the first vector is less than or
equal to the second vector [21-23].

Linear programming can be applied to various fields of study. It is widely used in business and
economics, and is also used for some engineering problems. Industries using linear programming
models include transportation, energy, telecommunications and manufacturing. It has proven useful
in modeling various types of problems in planning, routing, scheduling, assignment and design.

A fundamental task in mathematics, engineering and many areas of science is solving systems of
linear equations. This problem is defined as follows: We are given an N x N matrix A, and a vector b €
RN, and are asked to output x such that Ax =b. This problem can be solved in time polynomial in N by
linear algebra methods such as Gaussian elimination. These works are reviewed by Montanaro [11].

The quantum algorithm of Harrow, Hassidim and Lloyd [1] (HHL) for solving systems of linear
equations sidesteps this issue by “solving” the equations in a peculiarly quantum sense: Given the

N .
ability to create the quantum state ‘b> = Zi:l bi‘l> and access to A, the algorithm outputs a state

N .
approximately proportional to ‘X> = Zizlx . ‘ l> . This is an N-dimensional quantum state which can

1

be stored in O(logN) qubits.

This algorithm gives a solution of linear equations of type Ax = B [1], where A is a s-sparse
matrix. This algorithm has time complexity:

O(log(N)i?s?/e) (1)
where « is the proportion of the greatest eigenvalue to the smallest eigenvalue in the matrix and &
is the phase estimation error bound constant [1, 3].

If non-zero element count d in rows and « are small, this is an exponential improvement on
standard classical algorithms. Indeed, one can even show that achieving a similar runtime classically
would imply that classical computers could efficiently simulate any polynomial-time quantum
computation [1].

Of course, rather than giving as output the entirety of x, the algorithm produces an N-
dimensional quantum state |x> ; to output the solution x itself would then involve making many

measurements to completely characterise the state, requiring time of order N in general. However, we
may not be interested in the entirety of the solution, but rather in some global property of it. Such

properties can be determined by performing measurements on |x > . For example, the HHL algorithm

allows one to efficiently determine whether two sets of linear equations have the same solution [3], as
well as many other simple global properties [4].


http://dx.doi.org/10.20944/preprints201703.0238.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 May 2017

The HHL algorithm is likely to find applications in settings where the matrix A and the vector b
are generated algorithmically, rather than being written down explicitly. One such setting is the finite
element method (FEM) in engineering. Recent work by Clader, Jacobs and Sprouse has shown that the
HHL algorithm, when combined with a preconditioner, can be used to solve an electromagnetic
scattering problem via the FEM [4]. The same algorithm, or closely related ideas, can also be applied to
problems beyond linear equations themselves. These include solving large systems of differential
equations [5, 6], data fitting [7] and various tasks in machine learning [8]. It should be stressed that in
all these cases the quantum algorithm “solves” these problems in the same sense as the HHL
algorithm solves them: it starts with a quantum state and produces a quantum state as output.
Whether this is a reasonable definition of “solution” depends on the application, and again may
depend on whether the input is produced algorithmically or is provided explicitly as arbitrary data

[9].

The simplex method is a method for solving problems in linear programming. This method,
invented by George Dantzig in 1947, tests adjacent vertices of the feasible set (which is a polytope) in
sequence so that at each new vertex the objective function improves or is unchanged [10]. The simplex
method is very efficient in practice, generally taking 2m to 3m iterations at most (where m is the
number of equality constraints), and converging in expected polynomial time for certain distributions
of random inputs.

3. Results

We generated an example problem setup. The figure shows a linear equation system for this
problem: the demands of products Y in cities X. We assume that the company should have the
maximum profit in Y4 product. The numbers in the right column represents the quantity of supply for
each product. We would like to optimize the stock values in order to maximize the profit.

X1 X2 X3 X4 Total
Y1 " 100 105 0 0 | 2100)
Y: 0 120 110 0 264
Y3 0 0 115 0 460
Y4 0 0 130 140 0
\ J . J
matrix A vector B
Max : 130X3 + 140Xy
subjectto: 100X:+ 105X2 <2100
120X2 + 110X3 < 264
115X3 <460

Figure 1. Example problem setup’s linear system
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Tableau #1

X3 X4 S1 S2 S3 P

0 0 1 0 0 0 2100
110 0 0 1 0 0 264
0 115 0 0 1 0 460
-130 -140 0 0 0 1 0
Tableau #2

X3 X4 S1 S2 S3 P

0 0 1 0 0 0 2100
110 0 0 1 0 0 264
0 1 0 0 0.00869565 0 4
-130 0 0 0 1.21739 1 560
Tableau #3

X3 X4 S1 Sz S3 P

0 0 1 0 0 0 2100
1 0 0 0.00909091 O 0 2.4

0 1 0 0 0.00869565 0 4

0 0 0 1.18182 1.21739 1 872

Optimal Solution: P=872; X3=2.4, X4 =4
Figure 2. Solution by simplex

For defining the quantum speedup Ronnow et. al. proposed a classical to quantum scaling ratio
[24]:

S(N) = C(N)/Q(N) )
where C(N) is the time used by a classical device to solve a problem of size N and Q(N) is the

time used on a quantum device.

Worst-case time complexity of Simplex is O( 1) where n is the number of variables and m is the
inequality constraints [2]. Average time complexity of Simplex is O((n+m)*n). For our example
problem setup in the definition of C(N) we use the previously mentioned average time complexity,
therefore, C(N) = N2+4N.

When we would like to calculate time complexity of HHL algorithm in equation (1) for our

example setup: we have N=4 and k =1.4 and s =2. Q(N) =7.84(log(IN)). Here we assumed ¢ is 1.
pl p: weh d d Q) (log(N)) d

We can obtain a quantum speedup, which is 5(4) = ~6.77945. We can conclude that for all values
of € >~0.1475.

4. Discussion

We showed that for the linear equation systems of type Ax = B where A is a s-sparse matrix. If the
elements of A are close to each other (x is small) and A is 2-sparse. We can obtain a significant
quantum speedup. Even if our results are preliminary, we think that it may be possible to find suitable
problem classes conforming the HHL algorithm usage cases. We showed that for real world
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optimization problems it is possible to use this algorithm and it has given us a speedup ratio in order
to see that the quantum methods may be practically in use.
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