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ABSTRACT. In the paper, the authors survey integral representations of the
Catalan numbers and the Catalan—Qi function, discuss equivalent relations
between these integral representations, supply alternative and new proofs of
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1. INTRODUCTION

The Catalan numbers C), for n > 0 form a sequence of natural numbers that
occur in various counting problems in combinatorial mathematics. The nth Catalan
number can be expressed in terms of the central binomial coefficients (*") by

1 720\ (2n)!
Cn_n—l—l(n)_n!(n—l-l)!' (L.1)

The Catalan numbers C,, were described in the 18th century by Leonhard Euler
and are named after the Belgian mathematician Eugéne Charles Catalan. In 1988,

it came to light that the Catalan numbers C), had been used in China by the
Mongolian mathematician Ming Antu by 1730. See [I8|[19, 20, 22| 23] 24, 25| 26, [64].

In recent years, the Catalan numbers C, has been analytically generalized and
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studied in [21] 27, 40, 41, 42| 43| [44] 45, 50, 52, 56, 57, 68, 61, 67, 69, [70] and the

closely related references therein. For more information on the Catalan numbers
C', please refer to the monographs [I0} 15 59, [63] and the closely related references
therein.

2. INTEGRAL REPRESENTATIONS OF THE CATALAN NUMBERS

In this section, we recall integral representations of the Catalan numbers C,, and
their reciprocals C%L and sketch their proofs as possible as we can.

2.1. Penson—Sixdeniers’ integral representations in 2001. In 2001, Penson
and Sixdeniers [33] established an integral representation by the Mellin transform.

Theorem 2.1 ([33, p. 2, Eq. (10)]). For n > 0, the Catalan numbers C,, can be
represented by an integral

1 Sy
= — — " . 2.1
C, 27r/0 \/ — dz (2.1)

Proof. We rewrite the proof in [33] as follows. The Mellin transform of a real- or
complex-valued function f(x) is defined [32, p. 29, Entry 1.14.32] by

(G5 = [T @ e

0
If f(x) is continuous on (0,00) and . (f;o + it) is integrable on (—oo,c0), then
the inverse Mellin transform [32] p. 29, Entry 1.14.35] reads that
1 o+i00
f@) =5 [ (i)

Therefore, it is sufficient to compute the inverse Mellin transform

45—1F _ 1 1 o+ioco 43—1F _ 1

f(x)zﬂfl (S 2);$ :7/ 8 (S 2) dS,

Val(s+1) 270 J o —ioo VrTl(s+1)

where the classical Euler gamma function I'(z) can be defined by

I‘(z):/oootz_le_tdt, R(z) > 0. (2.2)

From the property
1 +
%(xbf(axh)§ s) = ha‘(s“’)/he//f(f(glj Y b);s)

in [62], it follows immediately that

Loa(®Y).g) = g2 _ L.
%<ﬁf(4>,s)—4 ///(f(q: 2),3). (2.3)
Applying in (2.3) the formula

(-] = ;B(m ‘2) R(a),s > 0

in [9 p. 1102, Section 12.43, Entry 22] and [28, p. 151, Entry 2.2(1)] to h =1 and
= 2 yield
a = 3 yields

o)== (1- j)m, (2.4

+
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where

a—1
am1l YT, y>0;
W) {o, y <0,

the classical beta function B(z,w) can be defined by

B(z,w):/o tzl(1—t)w1dt=/ooo i _t:;)zwdtz 1;((2)1(5)) (2.5)

for R(z), R(w) > 0. Then the desired integral representation of C), is proved. O

Theorem 2.2 ([33, p. 3, Eq. (16)]). For n > 0, the sequence nlC,, can be repre-

sented by
(2n)! /°° 1 N 1 1
| = = — ~ - Z/4 _ n
nlCy, 1) 12 erf 5 + \/ﬁe 5|% dz, (2.6)

where erf(x) denotes the error function deﬁned by

erf(@) = 7= / (2.7)

Proof. We recite the proof in [33] as follows. This follows from applying the formula

/ 1[/ Wy ()dy]dx_%(h;S)%(f;S)

n [32, p. 29, Entries 1.14.39 and 1.14.40] to h(x) = e * and the function f(x)

i
in . O

By similar arguments, Penson and Sixdeniers [33] also derived

(n1)2C, = 722-2)1 /Ooo {e}; +Ei(—\/5)}x”dx

and an integral representation of the sequence B, C,,, where B,, is the Bell num-
bers [I1) 34, B9, [55] and Ei(y) is the exponential integral function which can be

defined by
oo —t
Ei(y):—/ ert.

—T

2.2. Dana-Picard’s integral representations in 2005. In 2005, using a recur-
rence relation and the telescopic process, Dana-Picard [7] obtained integral repre-
sentations for the Catalan numbers C), and their rec’lprocals = respectlvely

Theorem 2.3 ([7, Proposition 2.1 and Eq. (9)]). For n > 0, the Catalan numbers
C,, and their reciprocals Ci can be represented by

1 /2
= f/ r?"\/4 — 22 dx (2.8)
T Jo

and

1 (2n+3)(2n+2)(2n+1) S T
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INTEGRAL REPRESENTATIONS OF CATALAN NUMBERS 5

Proof. Now we sketch the proof in [7]. Let
I,(a) = / Va2 —22dz, n>0. (2.10)
0

Then Iy = %aQ and
on —1

I,(a)=a "

In,g(a).

Using the telescopic method yields

2n—+2
_ fa (2n)!
Lzn(a) = W(?) nl(n+1)!

i3 22n+l1 nl(n +1)!
(2n+3)(2n+2)(2n+1) (2n!)
Substituting (1.1]) into the above equations and making use of (2.10]) result in

1 9 2n+2 1 9 2n—+2 a
e=2(2) mw-1(2) [V (2.11)
™ 0

and

I2n+1 (a) = a2

T\a
and
1 1 2n+3)2n+2)2n+1)
O T g2n+s Int1 Iznti(a)
C, a*"t 22n+ (2.12)
I (2n+3)2n+2)2n+1) [* 51 '
= i3 s /0 x Va2 —a?dx.

Further setting a = 2 leads to (2.8) and (2.9) immediately. d

2.3. Dana-Picard’s integral representations in 2010 and 2011. In 2010, us-
ing separately three different substitutions, Dana-Picard [5] established the follow-
ing integral representations for the Catalan numbers C), and their reciprocals Ci

Theorem 2.4 ([5, Proposition 2.1)). Forn > 0, the Catalan numbers Cy, and their
reciprocals C%l can be represented by

22n+2

C, =

s

1
/ 2?1 — 22 dx (2.13)
0

and

1 @n+3)2n+2)@2n+1) /1x2n+1m de. (2.14)
0

Cn 22n+1

Proof. The sketch of the proof in [5] can be written as follows. For n > 0, let

1
An:/ z"V1—22dz.
0

s
’2

An = Sn - Sn+27

/2
S =/ sin” uwdu.
0

By the substitution x = sinw for u € [0 ]7 we can deduce

where
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Considering the well-known fact that

g __m (20!
% = 27T (pl)2
and using the expression (1.1]) derive
2p)!
T S ) L e (2.15)

T 92p+2 pl(p+1)! T 92p+2 P

and
22”(]9!)2 22r+1 1

Azptr = @ +3)2p+1)! 2p+3)2p+2)2p+1)Cp

Accordingly, we acquire

922p+2 22p+2 1
C, = Agp = / zP/1 — 22 dx
™ Y 0
and
I (2p+3)2p+2)(2p+ 1)A
Cy 92p+1 2p+1
_(2p+3)2p+2)(2p+1) 19:21’“ 22 da
922p+1 o !
The integral representations (2.13)) and (2.14)) are thus proved. d

Theorem 2.5 (|5, Proposition 3.1]). For n > 0, the Catalan numbers C,, can be

represented by
22n+2 [e’e} u2
C, = du. 2.16
. /0 (1 + u2)n+2 u (2.16)

The outline of the proof in [5]. Using the substitution u? = m% — 1 produces

o] u2
Agp = /0 mdu

Combining this with (2.15)) yields (2.16). O
The outline of the proof in [6]. It was stated in [14] that
/2 (&L
/ sinzdr = vr ( 22), t> -1 (2.17)
0 2 T(5?)

See also [36, p. 16, Eq. (2.18)]. Then it is not difficult to obtain

™(2p)! .
Ty U L "
= ——dzr = sin"udu = 2 2
" 0o V1—2a? 0 w n=2p+1.

2p+ 1)V
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On the other hand, using three irrational substitutions u* = % — 1, v = 1 — 22,

1—
and u = H—i to compute I,, produces

P, = /00(1 —|—u2)_(n+2)/2du
0

1
= / (1- u2)(n71)/2 du (2.18)
0

1 2\n
1 —
:2/‘444217du
o (1+wu?)ntl
respectively. By similar argument to the proof of Theorem and by the first
formula in (2.18)), the integral representation (2.16|) is verified once again. O

A new proof the formula (2.16). In [ p. 325], the fourth formula reads that

/m<ﬂldx_1 PN (1
o (p+qav)nt? vpn T\ ¢ vy

for 0 < £ <n+1andp,q#0. Setting p=¢ =1, p =3, and v = 2 and replacing
n by n+ 1 find

o0 2 1 2n+1 3 ™
T qe—-p(EL T o
/0 A ta2)m2 773 ( 2 ’2) 92 +2

where we used in the last step the observation

1 13
C, = =22"t'p - = 2.19
p "o (2.19)
in [38, Remark 6.2, Eq. (6.1)]. The formula (2.16) is thus proved. O

Theorem 2.6 ([5, Proposition 4.1]). For n > 0, the Catalan numbers C,, can be

represented by
92n+5 1,2 1 — ¢2)2n
C, = / v —u)™ g, (2.20)
0

T (14 u2)2nt3 =
The outline of the proof in [0]. Taking the substitution u = ﬁ_—i concludes
1.2 22
1—
Anzg/ (il P
o (14 u2)nt3
Combining this for even n with (2.15), we derive the integral presentation (2.20)
immediately. O

The outline of the proof in [6]. By same argument as in the proof of Theorem
and by the third formula in ([2.18]), the integral representation ([2.20)) is verified once
again. (I

2.4. Dana-Picard—Zeitoun—Qji’s integral representations in 2012 and 2016.
In 2012, Dana-Picard and Zeitoun [§] deduced an integral representation for the
Catalan numbers C,, which was corrected and developed by Qi [35] as the following
integral representations.
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Theorem 2.7 ([8, Corollary 3.2] and [35, Theorem 3.1]). Forn > 0 and a > 0,
the Catalan numbers C,, can be represented by

1 4n 1 “ o, Jatx
Cn_;n—i—la?"“/,ax a—mdx
122n+1 1 /a x2n d
rn+1a? J, Va2 — 22 v
122n+1 /2
= — +1/ sin?" zdz
mT™n 0

O _ l 22n+1 1 /a 1:2n+1 o+ dx
" om2n+1la2nt2 ), Va—zx
1 22n+2 1 a x2n+2

=i ), T dz (2.22)

1 22n+2 /2
=—3 1 / sin®" "2z da.
T 2N 0

Proof. We sketch the proof in [35]. Let a be a positive number. For n > 0, define

an/ Y i P (2.23)
_a a—z

(2.21)

and

Then
1 1 n+1 1 n+2
w=za"" 1+ (-)"B( 5, —— L+ (=)™ B( =, —— 2.24
g= gt (1 (3.5 ) + e o e (505 0)) e
and
1 —-1)" 1 1 —1)ntt 1
Jp=a"r () - i) |- (2.25)
n B(3%) n+l  B(3")
The Catalan numbers C), can be expressed in terms of the beta function B(z,y) by
1 47 1 1
A Bl=n+z). 2.2
Cn = 20 <2n+2> (2:26)

Taking n = 2p in (2.24) and utilizing (2.26)) lead to

1 2p+1 p+1
Jop = a2p+1B<2’ 2 ) - Cl2p+17r47p(1n

which is equivalent to

4n 1 1 47 1 @ a+zx
Ch=———""Jon=—"——5— 2y da.
n+1a2ntig”? 7rn—|—1a2”+1/_aaj a—z 7
The first formula (2.21]) thus follows.
By similar argument to the deduction of ([2.26)), we can discover
4rtl 1
Cp= , >0
"Ten+)@n+2)B(Eat1) T
Employing this identity and setting n = 2p + 1 in (2.25) figures out
opta 2T 1 _ o 2 2p+1)(2p+2)
2p+2B(5,p+1) 2p+2 Ap+1

Jopy1=a Cp
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which can be rearranged as

C :LEEJQ 1:112%)“/& L2 (AT g
Pa2r 2 op 41 Pt Ta?rt22p+1 J_, a—1x

The first formula in (2.22)) is thus proved.
The rest integral representations follow from mathematical techniques and chang-
ing variable of integration. O

2.5. Shi-Liu—Qi’s integral representation in 2015. In 2015, by virtue of an
integral representation of the gamma function I'(z), Shi, Liu, and Qi [61] established
an integral representation for the Catalan function

4*T 1/2

ATt

Val(z +2)
Theorem 2.8 ([61, Theorem 1]). For x > 0, the Catalan function C, can be
represented by

3247 (x +1/2)* </ 1 1 1\e W22
C, = — D4 o ———e7dt|. (2.27
x ﬁ($+2)x+3/2 exp |:/0 <€t—1 t+2> ; e :| ( )

Proof. This follows straightforwardly from applying the well-known formula

lnl"(z):ln(v27rzz_1/26_z)—i—/oo #—l—l-} e *tdt, R(z)>0
0 6t71 t 2 ’

in [65] (3.22)] to the logarithm of the Catalan function C,. O

2.6. Qi—Shi—Liu’s integral representations in 2015. In 2015, by virtue of the
Cauchy integral formula in the theory of complex functions, Qi and his two gradu-
ates, Shi and Liu, find an integral representation of the generating function ﬁ

for the Catalan numbers C,,. Consequently, they derived an integral representation
of the Catalan numbers C,,.

Theorem 2.9 (|54, Theorem 1.4]). The Catalan numbers C,, for n > 0 can be
represented by

1 [ Vi 2 [ t?
_1 N 2.2
Cn 7r/0 G 1jane 4 W/O CESYIEER (2.28)

Proof. The Catalan numbers C,, can be generated by

o

2 1— 14z
=) Cpa™

= 2.29
1++v1—4x 2 ( )

By virtue of the Cauchy integral formula in the theory of complex functions, we
discover

ST Oy
I+ viciz 2n)y (G+Ud(t-z+1/4)
for z € (—o00, 1]. Therefore, it follows that
1 d” 2

C,=—1
n! zli%dmnl—i—\/l—élx

11, dr [ Vit
—— lim dt
mnlz=oda™ Jo (t+1/4)(t —x+1/4)
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1 [ t
B I
T Jo (t+1/4)n+2
Further using the substitution v/ = s yields the second integral representation
in (2.28). The theorem is thus proved. O

2.7. Qi’s integral representations in 2017.

Theorem 2.10 ([38, Theorem 3.1 and Remark 6.6]). The Catalan numbers C, for
n > 0 can be represented by

) 2 x2n 22n+1 1 1—¢
C, = dor = \/——t"dt. 2.30
W(”‘f‘l)/o V4 —2? m /0 t (2:30)

Proof. Using the substitution # = asins for s € [0,%] and employing (2.17) for
t =n > 0 reveal

I,(a) =a™* m (2.31)

for a > 0 and n > 0. Differentiating with respect to a on both sides of (2.10)) gives

a xn

On the other hand, differentiating with respect to a on both sides of (2.31]) results

in
(g + )
I'(a) = Yo (n 4 2)ar1 B2 T 2). 2.33
A e e (233)
Combining ([2.32) with (2.33) and simplifying lead to
o n T2+ 1)
—dz=ra"—2 2 2.34
Jo v = .
for a > 0 and n > 0. The first representation in (2.30)) follows from combining
A"D(n + §)
Cp=—-—2L, >0 2.35
Jilln+2) "7 (2:35)

in [I5 p. 112, Eq. (5.5)] with (2.34).

The second integral representation in (2.30)) follows immediately from combin-
ing (2.5) and (2.19). The desired proof is complete. O

2.8. Qi—Akkurt—Yildirim’s integral representation. In [40, Theorem 1.1], an
integral representation

k21+2n(1—k) 2 x(2n+1)k¢—l
= d
7T(T'L + 1) 0 22k _ iCQk r

for £k > 0 and n € N was established.

(2.36)
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3. THE CATALAN—QI FUNCTION AND ITS INTEGRAL REPRESENTATIONS

In 2015, Qi and his coauthors generalized in [53], Remark 1] and its formally
published version [58, Eq. (9)] the Catalan numbers C,, as the so-called Catalan—Qi
function

Clab2) = 1?8 (Z) m R(a), R(b) >0, R()>0.  (3.1)

It is clear that

1
Cla,b;2)
When taking x = n € {0} UN, we call the quantities C(a,b;n) the Catalan—Qi
numbers. It is easy to see that

C(b,ya;2) = (3.2)

1 b\" (a)n
C’<2,2;n> =C, and C(a,bn)= <a> EZ;H (3.3)
for all n > 0, where
n—1
z(x+1)---(x+n-1), n>1
(@)= [[@+0= _
i 1, n=>0
is called the rising factorial or the Pochhammer symbol.
It is well known that the Wallis ratio is defined by
—nn ! r 1/2
W, = @n—1) = (2n) :Li(n—k / ), n e N.
(2n)!! 22n(ph2  /m T(n+1)
Hence, it is easy to see that
47’L
n = W,.
n+1

The Wallis ratio, or say, the ratio of two gamma functions, has been studied and

applied by many mathematicians, see [12, [36] 37, [46, [47], (48], [49] 5], for example,

and plenty of literature therein.
Now we are in a position to recall and to alternatively prove three integral
representations of the Catalan—Qi function C'(a, b; z) as follows.

Theorem 3.1 ([50, Eq. (10)]). For b > a >0 and x > 0, the Catalan—Qi function
C(a,b;z) has the integral representation

C(a,b;z) = _ <b> / (1- efu)b_a_lef(mﬂ’)“ du. (3.4)
0

B(a,b—a) \a
Proof. This follows from combination of the definition (3.1)) and the integral formula
I'(z+a) 1

S
b—a—1
— 1— ¢ ¥ —(z+a)ud b >
I(z+b) F(b—a)/o (1=e™) ‘ o bzazt

in [65] p. 67] for the ratio of two gamma functions I'(z + a) and I'(z + b). O

Theorem 3.2 ([50, Theorem 4]). For b > a > 0 and x > 0, the Catalan—Qi
function C(a,b;x) has integral representations

a b—1 1 b/a b b—a—1 )
bjx)= |- A — - —1 trra=lqe .
cwrn=(5) saral ) 5
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and

a\“ 1 < gbmasl
Cla, byx) = (b> Blab—a) /0 (i F ajb)i? dt. (3.6)

An alternative proof. Making use of the last formula in (2.5) and the definition (3.1J),
we can rewritten the Catalan—Qi function C(a, b; z) as

and Cla,byz) = (DW (3.7)

Applying (2.5) into the factor B(x + a,b —a) = B(b—a,z 4+ a) in leads to

b ’ 1 ! r4+a—1 b—a—1
b T 1 b/a a z+a—1 a b—a—1 a

() —— z 1- (= al 2

() wwimal o) -G ()
b—1 b/a b—a—1

_(a 1 / b s grta=1 g

b B(a,b—a) Jy a

and
b\* 1 % ghmarl
C(a,b;x) = (a) B(a,b—a)/o (1+t)m+bdt
(Y [ e
- \a/) Bla,b—a) ), (1+bs/a)ztt \a
a\” 1 /°° sb-a-l
= |- ds
b) B(a,b—a) )y (s+a/b)xtt
respectively. The proof of Theorem [3.2]is thus complete. O

4. DISCUSSING VARIOUS INTEGRAL REPRESENTATIONS

In this section, we will discuss various integral representations recalled and
proved above.

4.1. Discussing (2.1). Applying the substitution z = 4t in ([2.1)), rearranging, and
employing the first definition in (2.5)) yield

1 (Y Ja—a
= — 4¢)™ d(4
C %O,/ o (40" d)

22n+1 1
— / (1_t)1/2tn—1/2dt
0

™

22n+1 3 1
= Bl = = .
7 <2 ot 2)
On the other hand, letting a = %, b=2,and x =n > 0 in (3.7) and considering
the first relation in (3.3]) give

1 13 22n+1 3 1
rangtles) -G
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As a result, the integral representation (2.1]) is a special case of the integral rep-
resentation (3.5). This can also be verified simpler by taking a = %, b =2, and
x=mn>0in (3.5

4.2. Discussing (2.6). By (2.35) and I'(n + 1) = n!, we obtain

4T(n+3) 4T(n+3)

Van+1)! Jr(n+1)’

Combining this with (2.6)) and simplifying give

I‘(n—i-;) z\/%(n+1)/ooo[;erf<*/§> +%e‘”/4— ﬂ (Z)ndx
:2\/7r(n+1)/000[erf(\/i)+et—1}t”dt.

Hence, we guess that

n!C,, = n!

—t

r(ﬁ;) —2\/7?(x+1)/000[erf(\/f)+\e/ﬂl]tzdt’ x>7%

which is equivalent to
—t

[(z) = V7 (22 + 1)/0oo {erf(\/i) + \e/? ~ 1]t””‘1/2dt, x> 0.

Actually, this can be derived from

o0 —t 1 [e’e) 1—\
/ Ltm_l/thz—/ e_tt”‘_ldt:ﬂ7 x>0,
o Vmt VT Jo ™
by the definition (2.2)), and

o'} . 1 0o d .
/0 erf(vt) — 1]t 1/2dt:x+1/2/0 [exf (VE) = 1] 7t /2 q¢
:_;/w[erf(\/i)—1]/t”3+1/2dt:— 1 /OO gy
r+1/2 r+1/2 )y Vit
2 < o (z + 1) 1
L trdt = ——— T —
ﬁ(2x+1)/0 ¢ N TS

by integration by part and the definition (2.7). In a word, we proved the integral
representation (2.6|) alternatively.

4.3. Discussing Theorems [2.3]and By the substitution = 2¢, the integral

representations (2.8 and (2.9)) reduce to (2.13) and (2.14). This can also be showed
by letting a = 1 in (2.8)) and (2.9)). Consequently, the integral representations (2.8

and (2.9) are respectively equivalent to (2.13) and (2.14).
By the substitution z = /¢ in (|2.1E|) and by the first definition in (2.5]), we

obtain
22n+2 1 1
C, = / t"V1—t—=dt
0 2v/t
22n+1 1 22n+1 13
= / 2T =t dt = B(n+,>.
T 0 T 2°2

Accordingly, the integral representation (2.13)) is a special case of the integral rep-
resentation (3.5)) and is equivalent to ([2.1)).
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Similarly, by the substitution 2 = v/¢ in (2.14)) and by the first definition in (2.5,

we acquire
1
1 (2n+3)(2n+2)(2n+1) T de
Cn 22n+2 0 (4 1)
(2n +3)(2n +2)(2n + 1) 3 '
= 22n+2 B n + 17 = ].

This implies that the integral representations (2.9) and (2.14]) for reciprocals of
the Catalan numbers C,, can be alternatively verified by using (2.35) and (2.5) in
sequence as follows:

1 Valn+2) Vam+1)(n+3)(n+3)Tnr+1)0(3)

Cn 4T(n+1i) AnT(3)T(n+ )
_ (2n+3)(2n+2)(2n + 1)B<n+ 1, 3)

22n+2 2

_ (@2n+3)2n+2)(2n+1) /lt”\/ﬁdt
0

22n+2

2 n+2)2n+1) [!
:(n+3)(22n++1)( n+1) 2204 T 22 d
0

m+3)2n+2)2n+1) [
( )(24n+4)( ) 0 221 22 da

_ 2n+3)2n+2)2n+1) 1 a$2n+1 T2 da
0

22n+1 a2n+3
_ @2n+3)@2n+2)2n+1) 1 at”ﬁdt
- 92n+2 ant3/2 | a—

for a > 0 and n > 0.

4.4. Discussing (2.16)). Using the substitution u = v/t in (2.16) and considering
the second expression (2.5 produce

22n+2 [ee] u2 22n+2 ee} t 1
/ 5y AU = / T2 dt
™ Jo (IT+u?)? ™ Jo (I+8)"T22/t

22n+1 o] t1/2 22n+1 3 1
- dt="—B(2nt:) =0
T /0 1+ t)n+2 T (2 "+2>

Hence, the integral representation ([2.16)) is proved once again.

4.5. Discussing (2.20]). Letting t = ;—Zz in the integral of (2.20) gives

/1u2(1—u2)2"d _/11—t 1+t 3t2" 1 Lt
o (+u2)2 s T f T\ 2 a+0zV1-¢

1t 1!
:f/ t2"\/1 — 2 dt:—/ 2T = s ds
8 Jo 16 J,
1 3 1 1 =« s
——pB(2 N==" 0 ="_2¢,.
16 <2’”+2> 16 22271 = ganrs ¢

The integral representation (2.20)) is thus proved again.
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4.6. Discussing (2.27). Currently we do not find any application of the integral
representation (2.27) and do not derive any property of the Catalan numbers C,,

from the integral representation (2.27)).

4.7. Discussing (2.28)). By the substitution ¢ = 7 in the first integral of (2.28))
and comparing with the second integral in (2.5 gives

o0 Vi 1 u/4
/0 (t+1/4)n+2dt_1/0 (uja+ 14z 44

= 92n+l OOL _o2ntip(3 1y
=2 /0 (1+u)n+2du—2 B(2,n+2 =nC,.

Thus, the integral representations in ([2.28]) are proved alternatively.
When changing the variable of integration by ¢ = % in the last representation

in (2.28), we can recover the integral representation ([2.16]).
4.8. Discussing (2.30). The first integral in (2.30]) can be computed as

/02\/:;;:2 /\/%dmf _22n/

1
:22"—1/ t"‘1/2(1—t)_l/th:22”_1B(n+1,1)
o 2’2

Then from ([2.26) it follows that

\/1—152\/

T n+1
dx — 22n 1
/0 Va4 — 2 4n
which can be rewritten as (2.30)).

4.9. Discussing (2.36)). The first integral representation (2.30)) is a special case of
the one (2.36)). Actually, the paper [40] was motivated by the article [38].

Cy

4.10. Discussing (3.4]). By the substitution e™* = t in (3.4)) and by the first
integral in ([2.5)), we can see that the expressions (3.4) and (3.7)) are equivalent to

each other.
4.11. Discussing . Whena=3,b= 2 and x =n > 0, the integral
representations 1 5 and 1 6 reduce to (2.1)) and 2.28)) respectively.

Letting a = % b=2,and x =n >0 in (3.7 results in the expression

4.12. The beta function and reciprocals of the Catalan numbers. By (2.35)),
the identity I'(3) = /7, and the recurrence relation I'(z + 1) = 2T'(z), it is easy

to see that
1 yrT(n+2) _ (n+35)n+1)T(3)T(n+1)
Cn  4"T(n+ %) 4n L(n+32) (4.2)
_@n+Dn+1) 2;25:11 + I)B(;,n + 1>

which is different from the one in (4.1). Indeed, the Catalan numbers C,, and their

reciprocals Ci can also be represented in terms of the beta functions B(n + 0 —

%,m + %) and B(n +4,m+ %) for £, m € N respectively.
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5. APPLICATIONS OF INTEGRAL REPRESENTATIONS

Most of the above integral representations can be applied to discover properties
of the Catalan numbers C,,. Now we recall some known applications of several
integral representations of the Catalan numbers C,,.

5.1. The integral representation ([2.1]) was applied in the proof of [42, Theorem 5.1]
to discover the identity

L(G—1)/2] . e
—£-1 20—j5—1 . .
Z (—l)e(] ), )01—5—12],( i >, i>5>1.
=0

This identity generalizes

%(_1)’“ (n - k) P

k=0
obtained in [68], p. 2187, Theorem 2, Eq. (15b)].

5.2.  The representation (2.20) was applied in [3T), p. 10] to compute several infinite
series whose general terms involve binomial coefficients.

5.3. Recall from [30, pp. 372-373] and [66, p. 108, Definition 4] that a sequence
{Itn Yo<n<oo is said to be completely monotonic if its elements are non-negative and
its successive differences are alternatively non-negative, that is,

(_1)kAk,un >0
for n,k > 0, where

Ay = fj(—wm( -

m=0
Recall from [66] p. 163, Definition 14a] that a completely monotonic sequence
{an}rn>0 is minimal if it ceases to be completely monotonic when ag is decreased.
Let A = (A1, Ao, .., ) € R® and p = (w1, po, - -+, in) € R™. A sequence X is
said to be majorized by p (in symbols A < u) if

k k n n
Z)\[e]§Zu[e], k=1,2,...,n—1 and Z)\gzz,ug,
=1 =1 =1 (=1

where A\ > A = -++ = Ay and pp) > ppgp = -+ > ppy,) are respectively the
components of A and g in decreasing order. A sequence A is said to be strictly
majorized by p (in symbols A < u) if A is not a permutation of p. For example,

1 1 1 1 1 1
(n,7n>'<(n_1,,,n_170)'<<’n_27,n_2,0,0>‘<
— —— —— —

——

n n—1 n—2

<(E XL o)< (ito. o)< .0
373737 9 2727 AR | P B .

For more information on the theory of majorization and its applications, please
refer to monographs [13, 29] and the closely related references therein.

Applying the integral representation , we can obtain properties and in-
equalities of the Catalan numbers C,,. Some of them can be recited as follows.
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Theorem 5.1 ([54, Theorem 1.4]). The sequence {%}n>0 is completely monotonic
and minimal. B

Theorem 5.2 ([64, Theorem 1.4]). If m > 1 and ag,ai,...,an be non-negative
integers, then

Cao m71027?:0 ok 1 CaO"rak
(4110 > 42?:0 Ak 2 H 4aotak (51)
k=1
and
Ca;+a,
4ai+a; > 0’ (52)

where |e;|m denotes a determinant of order m with elements ey;.

Theorem 5.3 ([54, Theorem 1.5]). Let m € N and let n and ay, for 1 <k <m be
non-negative integers. Then the Catalan numbers C,, satisfy

i(_l)ai+ajcn+ai+aj |m Z 0 (53)
and
}Cn+ai+aj ‘m 2 0; (54)
where
Co=10Cy, £2>0. (5.5)

Theorem 5.4 ([54, Theorem 1.6)). Let m € N and let A and p be two m-tuples of
non-negative integers such that A X p. Then

ch+>\i < ch+#i ’ (5-6)
i=1 i=1
where Cy is defined by . Consequently,
(1) the infinite sequence {Cp}n>0 is logarithmically convez,
(2) the inequality
Ciop < ClnCp " (5.7)

is valid for £ >0 and n > k > 0.

Theorem 5.5 ([64, Theorem 1.7]). If¢ >0, n >k >m, k > n—k, andm > n—m,

then
Co4kCoin—r _ L+m)(l+n—m)!
> . (5.8)
CoamConom = U+ RN+ n—h)
Forn,m e N and £ >0, let
gn,m,é - C€+n+2m (CZ)Q - C@-‘rn-‘rmcﬁ-l—mcf - Cé-‘rncé-‘erC@ + Cf-l—n (C€+m)27
Hn,m,[ - C€+n+2m (62)2 - 2CZ+n+mCl+mCZ + Cl+n (Cl+m)27
In,m,é - C€+n+2m (CZ)Q - 2C€+ncf+2mC€ + C€+n(C€+m)25
where Cy is defined by (5.5)). Then
gn,m,l > 07 Hn,m,f > 07 (59)
Hom b § Gnomye whenmsn, (5.10)

and
Znme > Gnme >0 when n > m. (5.11)
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5.4. Recall from [30, Chapter XIII], [60, Chapter 1], and [66, Chapter IV] that an
infinitely differentiable function f is said to be completely monotonic on an interval
I if it satisfies 0 < (—=1)*f®)(2) < oo on I for all k& > 0. Tt is known [66] p. 161,
Theorem 12b] that a function f is completely monotonic on (0,00) if and only if
it is a Laplace transform f(t) = [~ e d u(s) of a positive measure y defined on
[0, 00) such that the above integral converges on (0, c0).

By virtue of the integral representation , we obtain asymptotic expansions

and complete monotonicity related to the Catalan—Qi function.

Theorem 5.6 ([50, Theorem 4.2]). For b > a > 0, we have

v N, lb—a—1 1
C(a’b’x)_B(a,b—a) (a) kZ:O( b* k! r+a+k’ (5:.12)

where
n—1
zz—1)---(x—n+1), n>1
<x>n=H<x—k>={1 "
k=0 ’ =
is the falling factorial. Consequently, the function
N

(_1)tb—aJ[<Z> Clabio) - gy ST (13)

a,b—a Pt r+a+k

for N € {0} UN and b > a > 0 is completely monotonic in x € [0,00), where |x]
denotes the floor function whose value is the largest integer less than or equal to x.

For more information and details on applications of the integral representa-

tions and , please refer to [27, 41l [42] [43] [44] [45] 50, 52 56, 57, [6]]

and the closely related references therein.

6. POWER SERIES WHOSE COEFFICIENTS INVOLVE CATALAN NUMBERS

In this section, we recall some results on sums of power series whose coefficients
involve the Catalan numbers C,, or the Catalan-Qi numbers C(a, b;n).

6.1. In 2012, Koshy and Gao [16] proved the following theorem.
Theorem 6.1 ([I6]). For |z| < 4, we have

o0
>y
n=0 Cn

2(4 — )32 4 62(4 — 2)/2 4 24,/z arcsin ¥

2 .
1+ e , 0<z<4;
— g)3/2 _ Y-oz+Vi-z
1_|ac|(4 z)%2 +64/|z|(4 — x) +24+/|z| In 5 d<g<o.
(4 — x)5/2 ' -
(6.1)

Proof. We reformulate the proof by Koshy and Gao in [I6] as follows. Denote

=3 (6:2)
n=0 "
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Then
oo n—1 o0
, nw n+1
€Tr) = = X .
f ( ) n=1 Cn n=0 Cn+1
Since "C—tz = ‘g::f, by the recurrence relation, this yields
in+2 S n+2
n= n=0 Cn+1 7
= n > 4n+1) = "
_ 7l - TL 2 ,
I R MR I R Mere
2
f'(z) +2f(z) = 4f'(2) = ~[f(2) = 1],
and
z(x —4)f () +2(x + 1) f(z) = 2. (6.3)
For z # 0, set g(x |4 = |3/2 Then g((x)) = *ﬁ' This implies that
[z(x —4)g(z)] = 2(x + 1)g(z). (6.4)

Multiplying by g(z), we obtain
w(x —4)f (x)g(x) + 2(z + 1) f(x)g(x) = 29(2).
Using 7 this can be rewritten as
[z(z — 4) f(2)g(2)) = 29().
Using again gives
{z(z - [f(2) - Ug(@)} = [z(z — 4) f(2)g(2)] — [2(z — 4)g(z)]'
=29(z) — 2(x + 1)g(x) = —2z9(x).
Consequently,

2z — 4)[f(x) — 1]g(x) = —2 / 2g(z) dz + o,

2 [zg(x)de — oy
x(4—z)g(z)

flz)=1+

where « is a constant.
For 0 < z < 4, we have

/xg(x)dx:/x<4;x>3/2dx:/(Zl;l:fgmdx
:2/(4—u2)3/2du (2 = ?)

= %u(ll — u2)3/2 + 3u(4 — u2)1/2 +12 arcsing + gy

= %\/;:(4 — )2 £ 3z (4 — )% + 12 arcsin @ + ao,
where as is also a constant. Therefore, we have
VI (4= 2)3/% 46T (4 — )Y/2 + 24 arcsin - 4 205 —
x(4 — :L’)(‘l_—’:)?’/2

x

fl@)y=1+
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2(4 — )32 4 62(4 — 2)V/2 4 24,/z arcsin Y= + a\f
(4 — x)5/2
where @ = 2a5 — ay. Since f(0) = 1 = f/(0), we have a = 0. Thus, the desired
result for 0 < = < 4 is proved.
For —4 < x < 0, by similar argument to the above, we acquire

1
/xg(x)dx:§\/|x|( —2)*? £ 3/|z](4 — z )+ 12In(V/|z| + /|4 —z]) + a3

and
2| (4 — 2)¥/2 + 6,/[2](4 — z) + 24/[a] In YERVA=E
flz)y=1- . .
(4— )/
From f(0) = 1 = f/(0), we can determine Cy = 2. The desired result is thus
proved. ([

6.2. In 2014, Beckwith and Harbor [4] proposed a problem: show that
X 9n 3 e 3n \/»
— =5+ d — =2248v3m.
nZ:OCn + 27r an HZZO c. + ™

In 2016, Abel [I] answered this problem by proving a general result below.
Theorem 6.2 ([I, d]). For 0 <z < 4, we have

z(z — 10) 24/x [z
Z . e + a— ) arctan i— (6.5)

Proof. We slightly modify the proof in [I] as follows. Using the beta integral

1 1n!
min:
t"(1l—-t)"dt= ——m———
/0 ( ) (m+n+1)!

gives

|
n=0 " n=1 (2 )
00 1
:1—|—Zn(n—|—l)xn/ "1 - )" dt
n=1 0
1

for || < 4. Further using

produces

0 1
" 1-—1t

E —:1+2:r/ —_——d¢.

o Ch o [1—axt(1—1)]3

Direct calculation of the integral yields the result (6.5). [
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6.3. The editorial comment in [I] listed the formulas

=1 4 (-1 14 24\/ +5
Z _ Z()

~C, 9\/3’ — C, 25 12 2
i -2 1 - 10 36 ln5+\/ﬁ
=0 Cn 3 3\/?7 = 49 4921 2

The editorial comment in [I] also pointed out that the result (6.1)) had existed
in [I6], that the sum

© — VT
Z a" 2\/4 x (8 + z) + 124/x arctan e 66)
n=0 Cn (4 - x)5

can be found on the website http://planetmath.org/, and that the problem by
Beckwith and Harbor [4] can be solved easily from

= 2" = n2"
Z(zn):§+1’ ZWZW+3’
n=1\n n=1\n

=, 3 47/3 = n3" 2073
w +3, T T3
2 LT

which are special cases of the general formula in [I7), p. 452, Theorem]| below.

+ 18

Theorem 6.3 ([I7, p. 452, Theorem]). For |z| < 1, we have

2z arcsin x Z 2m 2m
V1-22
Proof of (6.7). Making use of the familiar Gregory series

e}
1 m71t2m
tarctant = Z (2)71
m —

m=1

and setting t = ﬁ yields arctant = arcsin x and

(71)m71x2m

T . >
———arcsinz = Z @m— 1)1 -2

1—-=z .
- (_1)m ' ( > 2(j4m)
- (-1y :
mzzl 2m —1 jgo J
m —
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results in

(S ()5

2r 1
~d
<r> s
(2 ) 27" 1 0 d9
r
_ 227" 1
The sum is thus proved. ([l

From (6.7)), Lehmer [17] also derived
X (22)2m > (21)2™m z . 9
daresinay® = o GO 57 BTy [Tl
0

) G y

m=1

and gave a recursive formula for

2
m=1 ( 71:)
Lehmer [I7, p. 454] pointed out that there are no known sum for interesting series
of the form
(o ]
m:l
for k > 5.

6.4. In 2016, motivated by the above-mentioned problem posed by Beckwith and
Harbor [4], Amdeberhan and his four coauthors [3] also proposed a general problem:
find a closed-form formula for the series in (6.2]). They obtained the sum

z+8 24.\/z . z
ZC’ —2F1< 25 4) _ (i _+Z)2) + a _\Zf)5/2 arcsm%, |z| <4 (6.8)

by several methods, where 5 F} is the classical hypergeometric function which is a
special case of the generalized hypergeometric series

= (a1)p - (ap)n 2™
F, ib1, ..., b 2) = - 6.9
R R Py Y (€9)
defined for complex numbers a; € C and b; € C\ {0,—1,—2,...}, for positive
integers p,q € N, and in terms of the rising factorial

(x), = I:I(x_|_g):{51”(95+1)"'($+n—1), n%(l),
=0 ) n=0.

We observe that the formulas (6.5) and are the same one, that the sums (6.1))
and are the same one, and that, since

T T
arctan /| —— = arcsin £
4 —zx 2

for 0 < z < 4, the four sums (6.5)) to are essentially the same one.
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7. SUMS OF SOME NEW SERIES

By applying some of the above-mentioned integral representations of the Catalan
numbers C),, we now construct some new finite and infinite power series.

7.1. Sums of two finite and infinite series. Making use of the integral repre-
sentations (2.13) and (2.14), (2.16) and (2.20), (2.21) and (2.22), we can find the
following finite and infinite power series involving the Catalan numbers C,.

Theorem 7.1. For k > 0, we have the finite sums
k
c, 2 11 1 3
— =—|B|(=,= )| —-B|=,k+ =
> =2 |2(zz) - 2(30+3)

and

nzk% it 1)(2n242rn1)(2n+3) Cin - % [BG’ ;) - B(;”“ + 3)]

Consequently, we have the infinite series

= C, > 22n 1
_— = 2 d - = ]_. .].
,;22" v ,;(n+1>(2n+1)(2n+3) Ch (7.1)

Proof. Dividing the integral representations (2.13)) and (2.14) and summing up over
0<n<kgive
k 1/ k 1 2(k+1)
c, 1 o 1 [M1-u —

™
n=0 n=0

! 1
= l/ (1 — $2k+2) (1 _ $2)_1/2dx _ i/ (t‘1/2 o tk+1/2)(1 _ t)_1/2dt
0 2m Jo

e
(2 e B Y] L L) L
2w 2°2 2’2 2w 2°2 2

and
k k
22n+1 1 1 on
- = V1 —a22d
Z(2n+3 )2n+2)2n+1)C, / Zx v
n=0 0 n=0
1 1_ 2k+42 1 /1
= ° )\/l—xzdm:2/(1 Y (1 — )72 de
0 0
1 1 1 1 1
=—|B|=,1) —-B| = 2 -Bl-,1]=1
as k — oo.

Similarly, from (2.16) and ([2.20), it follows that
u? 1 [ 1 1
022n+2 / 2) 1+ uz)n+z Y 7T/0 [1+u2 (1+u2)k+2] u

oo /2 1 1 1 3 1
S — _dt==—-—B[=-k+>) ==
2 27r/0 (1 +t)k+2 2 or (2’ +2) 2

n=
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and
3G L[ Sy,
o 22n+5 _ﬂ- 0 (1+u2)3 o 1+’LL2
_ 2k+2
Lt w1 (15
= — T 3 o2 du
mJo (L+u?)? g (1)

_1/11—t AN s S I
oo L+t\ 2 1—82 (1+8)2V1-—t¢
1 1 _ 42k+2 1

1 [t1—skt?
S A S P O A
8t Jo V1-—t2 167r/0 V1—5s /s s
1 1
1 [/ (178)71/2571/2(157/ 5k+1/2(1$)1/2d5}
0 0

~ 167
1 11 1 3 1
=—|B(=>)-B(z,k+= =
1677[ (2’2) <2’k+2>]_>16
as k — 0o. The proof of Theorem [7.1]is complete. O

7.2. Sums of three finite series. Applying the last integral expressions in (|2.21])
and (2.22), we can obtain sums of three new finite series.

Theorem 7.2. For k > 0, we have
k

= B(3.k+1)

k
om+1 1

Z n2+n Cn:2[ 1 _1]’

— 2 B(1,k+2)

and i
22n 1 1
- - = B[ = 1) —1.
§(2n+1)(n+1)cn (k+1) (2”” )

When k — oo, these three series diverge.

Proof. Applying the last expressions in (2.21) and (2.22)) yields

k w/2 k w/2 s 2k+42
1 2 2 1-—
g %Cn:*/ g sinznxdx:f/ #dx
= 22n TJo = T Jo cos® x
2Vl (k+32) 2

and

4 [ 4[val(k+3) =
— t 1 T 2k+2 d _ = v -\rr2; ~
71'/0\ an .’L'( S111 Qf) x - F(k+2) D)

2
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as k — oo.
From (4.2)), it follows that

ﬂi_B 1 +1 —/1(1—t)_1/2tndt
Cnt+ Dn+1)C,  \27" A '

Summing up over n from 0 to k leads to

k 22n+1 1 1 1/2 k
= - _ 1—4)"~ n
7;)(2n+1)(n+1)0n /0( 2 n;t di
e - —1/21_tk+1d ! 1 _#)=3/2(1 _ 1) q
= [ (1-1) ] dt= (1-1) (1—t"*1)dt
0 0

1 1
= — k+1 — _1/2 / [ k _ —1/2
2/0(1 Y1 —t)~2] dt 2+2(k+1)/0t(1 t)~Y2dt

1
- 2[(k+ 1)B<2,kz+1> - 1} oo
as k — 0o. The proof of Theorem [7.2]is complete. O

7.3. Sums of three infinite power series. Now we use to derive sums of
three infinite power series involving the reciprocal of the Catalan numbers C,,.

Theorem 7.3. The reciprocals C%L of the Catalan numbers C,, satisfy

o0 o0
Z z _ Z ‘;n — + vz arcsin g, |z| < 4, (7.2)

i+ 10, = (M) 4z (4-2)32
— . Vz A |
Z‘;(%Jrl)Cn R S S T RN 2| <4,  (7.3)
and
- in —— < 4.
7;)(2714-1)(”4_1)0” e arcsin —-, |2]

Proof. Integrating on both sides of from 0 to t with [¢t| < 4 yields

e b4 ) b2z NG
—_— = ——dz— d —_— in—d
Z(n—i—l)Cn /0 (4—z)2 z /04_2 er/O (4_Z)5/2arcsm B z

n=0
6t
= f—t +21n(4—t) —41n2
aresin - 94\/Asin?s  Visin?s
+ —5/28 sin s cos s arcsin ——— d s
0 (4 — 4sin?s) 2
in VE
6t arcsin “5- sin2 s
=——+4+2In(4—-t)—4In2+ 12 d
4—1?Jr n( ) net /0 costs O °
in Yt
6t arcsin 3 '
:4—t+21n(47t)74ln2+4 s(tan’s) ds
- 0
6t t t
=1 +2In(4 —t) —41In2 + 4 arcsin % tan® arcsin %
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arcsin %
- 4/ tan® sd s
0
6t 4¢3/2 W/t
_ f_t + 211’1(4 — t) — 4ln2 + m&fCSIHT
arcsin %
—4/ (tanssecQS—tans)ds
0
6t 4¢3/2 Y
= 47_-6 —+ 2111(47 t) — 41112 + marcsuli
4t 1
— 4|ln2 — = In(4 —
82t [n p =)
At 4¢3/2 ,
=1 + a—0 arcsin 5
The equality (7.2) is thus proved.
The formula (6.8)) can be rewritten as

n2(22 48) 24z

22
C. ~ G—27 " a-2)pPr

o0
n=0
Integrating on both sides of the above equality gives

— _/t 2(2 4 8) L2
< (2n+1)C Sy [(4—22)2  (4—22)5/2

B 3t 11 24t N 3/arcsin(t/2) sinu
0

arcsing, |z] < 2.

z
arcsin ] dz
2

4—t2 4 2- costau Y
3t 1 2+t 8 _t aresin(t/2)
T 42 T4 2t (4—12)3/2 arest 0 cosPu
3t 1 ! 2+t 8 ) t 1 | 24t
= arcsin- — —— — —In ——
4—12 42—t (4—1t2)3/2 2 4-12 42—t
2t
i + A t2)3/2 arcsin
which can be rewritten as ([7.3).
Since (2n+1§(n+1) = 2n2+1 - n%rl, by (7.2) and (7.3]), we have
—2n+1)n+1)C,  Zl2n+1)C,  (n+1)C,
> 2™ > T 4 RYZ]
= — arcsin ~—.
7;) (2n+1)C, ; (n+1)C, 2(4—2) 2
The proof of Theorem is complete. (I

7.4. A new proof for the sum of a power series. Now we supply a new proof
for the following conclusion in [3, pp. 115-116, Section 6].
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Theorem 7.4 ([3, Section 6]). For x > 0, we have

nzoc—nﬁ—l—i-zlx—i- 3 ( +6)Vze erf( 5 ) (7.4)

Proof. In [58, Theorem 1.5], it was obtained that

Z Cla,byn)— =1 (a; b; Zx) (7.5)

Letting a = 2 and b = 3 in (7.5) gives

> z" 1 z
— 2
S g =n(257)
Since
oo 2k 2n+1

erf() T_x22n+1”

see [9 p. 889, 8.253] or [32, p. 162, 7.6.2], it is straightforward to verify that
1z 1 T VT
(2 =1+ -z+ Y o/ herf( X2,
1 ( 24> et 8(96—}—6)\/56 er<2>
The proof of Theorem [7.4] is thus complete. O

7.5. More sums of series involving Catalan or Catalan—Qi numbers. Ex-
cept [58, Theorem 1.5], some series such as

gFl(a 1; b; > E C(a,b;n)t", a,b>0; (7.6)
= /(a\" a
> (- n) = ——— 1>1; :
_1<b> C(a,b;n) a1 b>a+1>1; (7.7)
and
= 2" 1 b 4
nE:OC(a,b, n)m = 1F2 (a, 5,1)7 E(E >, a,b >0 (78)

were also established in the papers [27, Theorem 1] and [50, Theorem 10].
In [67], among other things, it was obtained that

= m+)EIC, T
;0 Fnr2ensnn 5o

and

i ”_ 24/~ | (M+¢H)+(42x

e 5 — ) +1, ze€(—4,0],

2
n=|

=
where ((z) denotes the Riemanian zeta function

=1
;k— > 1.
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8. AN ALTERNATIVE PROOF OF THE FORMULA

Substituting (1.1]) into the left-hand side of and making use of the identities
in (3.2) and (3.3) give

H6%) = 3 = 3 i = 3 et G
-2 ateno () - S (1) (07
- (s - 2 (e
- R e e

/ = Dot L= @D 1[N (2)m! 7
h’l = 1 = 7 1 —1| =~ 1
=3 (o tLZ_o(z)mt tLZ_O o, ™ ]
e @@t L 1\
tLZ 1), 1] t[m(“’z’t) 1}
and
0= 3 =2 e ()

1 1 1 1 ha(t)  ha(t)
S (S T R Y S B I

This implies that
1
[0/ (1)) = hh(t) = 2 Fy (1, 2; 2;t> —1.

Combining this with the right equality in leads to

24t +8) 244t VAt
2] +1= Al
[t°h'(t)]" + (4_4t)2+(4_4t)5/2arcs1n 5
t+ 2 3Vt
= + + vi arcsin V% .

21 —-t)2  2(1—1t)%/?
Integrating with respect to t over [0, z] for 0 < x < 1 yields

5, ] t+2 3Vt ,
xh(m)Jr:cf/O {2(1_25)2+2(1_t)5/2arcs1n\/i dt
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3z 1 ve 52 .
:m+§ln(1—x)+3/o marcsmsds

1 arcsin v/z 22
_ 3x —|—§ln(1—:c)+3/ (usm U COS U du
0

2(1 - x) 1 — sin® u)5/2
3z 1 aresin VT in? g
=——+-In(1- 3 d
2(1—x)+2 n(l-z)+ /0 costu O
1 arcsin /T
:2(13—fx>+§1n(1—x)+/0 u(tangu)/du
_ % + lln(l — ) + arcsin v/z tan® arcsin v/
S 2(1—x) 2
arcsin /T
—/ tan® udu
0
3z 1 z3/2 ,
= m + 5111(1 —T,) + maI‘CSIH\/E
arcsin /T
—/ (tanusecQU—tanu)du
0
3z 1 z3/? .
=517 + iln(l —x)+ marcsm\/i
1 1
-3 sec? arcsin /z — Incos arcsin vz + 3
20+1 1 23/? .
=512 + iln(l —x)+ mamsmﬂ
1 1
- Tp(1-
21—z) 2 n(1-2)
T JI3/2 .
-1 + A= 2)72 arcsin /.

Furthermore, similarly integrating gives

t1 T x3/? .
h(t):/o ﬁ[l—m+(1—x)3/2arcsm x—x}dm

t
1 1 .
:/0 [1_1: + 2172(1 — 2)3/2 arcsm\/E] dz

arcsin v/ .
2
:—1n(1—t)+/ T ds
0 (1 — sin? s) sin s

arcsin v/t s
=—ln(1—t)+2/ ds
0

cos? s
arcsin vt

—1In(1 — t) 4+ 2arcsin v/t tan arcsin vVt — 2 tansds
0

=—In(l—-¢t)+2 arcsin vt + 21n cos arcsin vt

t
1-1¢
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t
:2“1—t arcsin\/f.

The proof of the formula is complete.

9. REMARKS
Finally we list several remarks on closely related results.

Remark 9.1. It seems that there are close and similar ideas in [3| 4] and that the
paper [3] is almost an expanded version of [4]. Great minds think alike!

Remark 9.2. In [I7, p. 452, Theorem)], it was established that
Z 2x 2m 23: arcsinx

,  lr| < 1.
2 7 T
This can be rearranged as
= (2z)>™  2zarcsinz 2] < 1.

m:lm(m+1)cm B V1—1? ’
Remark 9.3. Letting a = % and b= 2 in (7.6) and comparing with (2.29) leads to

1 1—-v1—-4 1
oI ( 1;2;430) = 27x’ |z] < 1
T

This can also be deduced from the formula

1 tb 1(1_t)c b—1
2Fi(a,b;c;2) = B(b,c—b)/o e dt, R(e)>R(Ob) >0

in [2 p. 558, 15.3.1] and [9, 9.111].
Remark 9.4. Letting a = % and b= 2 in (7.7) gives

which can be rewritten as

Remark 9.5. Taking a=2and b= % in (|7.8]) results in

Z _1F2(2;;,;;TZ> —1—1—1—633[:5L (;)4—61/0(%)}7

where -
v+1 1 z 2n
L= (3) (3)
) LT e

denotes the modified Struve function, see [32, p. 228, 11.2.2].
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