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1. Introduction

The Catalan numbers Cn for n ≥ 0 form a sequence of natural numbers that
occur in various counting problems in combinatorial mathematics. The nth Catalan
number can be expressed in terms of the central binomial coefficients

(
2n
n

)
by

Cn =
1

n+ 1

(
2n

n

)
=

(2n)!

n!(n+ 1)!
. (1.1)

The Catalan numbers Cn were described in the 18th century by Leonhard Euler
and are named after the Belgian mathematician Eugéne Charles Catalan. In 1988,
it came to light that the Catalan numbers Cn had been used in China by the
Mongolian mathematician Ming Antu by 1730. See [18, 19, 20, 22, 23, 24, 25, 26, 64].
In recent years, the Catalan numbers Cn has been analytically generalized and
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INTEGRAL REPRESENTATIONS OF CATALAN NUMBERS 3

studied in [21, 27, 40, 41, 42, 43, 44, 45, 50, 52, 56, 57, 58, 61, 67, 69, 70] and the
closely related references therein. For more information on the Catalan numbers
Cn, please refer to the monographs [10, 15, 59, 63] and the closely related references
therein.

2. Integral representations of the Catalan numbers

In this section, we recall integral representations of the Catalan numbers Cn and
their reciprocals 1

Cn
and sketch their proofs as possible as we can.

2.1. Penson–Sixdeniers’ integral representations in 2001. In 2001, Penson
and Sixdeniers [33] established an integral representation by the Mellin transform.

Theorem 2.1 ([33, p. 2, Eq. (10)]). For n ≥ 0, the Catalan numbers Cn can be
represented by an integral

Cn =
1

2π

∫ 4

0

√
4− x
x

xn dx. (2.1)

Proof. We rewrite the proof in [33] as follows. The Mellin transform of a real- or
complex-valued function f(x) is defined [32, p. 29, Entry 1.14.32] by

M (f ; s) =

∫ ∞
0

xs−1f(x) dx.

If f(x) is continuous on (0,∞) and M (f ;σ + it) is integrable on (−∞,∞), then
the inverse Mellin transform [32, p. 29, Entry 1.14.35] reads that

f(x) =
1

2πi

∫ σ+i∞

σ−i∞
x−sM (f ; s) d s.

Therefore, it is sufficient to compute the inverse Mellin transform

f(x) = M−1
[

4s−1Γ
(
s− 1

2

)
√
π Γ(s+ 1)

;x

]
=

1

2πi

∫ σ+i∞

σ−i∞
x−s

4s−1Γ
(
s− 1

2

)
√
π Γ(s+ 1)

d s,

where the classical Euler gamma function Γ(z) can be defined by

Γ(z) =

∫ ∞
0

tz−1e−t d t, <(z) > 0. (2.2)

From the property

M
(
xbf
(
axh

)
; s
)

=
1

h
a−(s+b)/hM

(
f

(
x+ b

h

)
; s

)
in [62], it follows immediately that

M

(
1√
x
f

(
x

4

)
; s

)
= 4s−1/2M

(
f

(
x− 1

2

)
; s

)
. (2.3)

Applying in (2.3) the formula

M
[(

1− xh
)α−1
+

; s
]

=
1

h
B

(
α,
s

h

)
, <(α), s > 0

in [9, p. 1102, Section 12.43, Entry 22] and [28, p. 151, Entry 2.2(1)] to h = 1 and
α = 3

2 yields

f(x) =
1

π
√
x

(
1− x

4

)1/2

+

, (2.4)
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where

(y)α−1+ =

{
yα−1, y > 0;

0, y < 0,

the classical beta function B(z, w) can be defined by

B(z, w) =

∫ 1

0

tz−1(1− t)w−1 d t =

∫ ∞
0

tz−1

(1 + t)z+w
d t =

Γ(z)Γ(w)

Γ(z + w)
(2.5)

for <(z),<(w) > 0. Then the desired integral representation of Cn is proved. �

Theorem 2.2 ([33, p. 3, Eq. (16)]). For n ≥ 0, the sequence n!Cn can be repre-
sented by

n!Cn =
(2n)!

(n+ 1)!
=

∫ ∞
0

[
1

2
erf

(√
x

2

)
+

1√
πx
e−x/4 − 1

2

]
xn dx, (2.6)

where erf(x) denotes the error function defined by

erf(x) =
2√
π

∫ x

0

e−t
2

d t. (2.7)

Proof. We recite the proof in [33] as follows. This follows from applying the formula∫ ∞
0

xs−1
[∫ ∞

0

h(y)f

(
x

y

)
d y

y

]
dx = M (h; s)M (f ; s)

in [32, p. 29, Entries 1.14.39 and 1.14.40] to h(x) = e−x and the function f(x)
in (2.4). �

By similar arguments, Penson and Sixdeniers [33] also derived

(n!)2Cn =
(2n)!

n+ 1
=

∫ ∞
0

[
e
√
x

√
x

+ Ei
(
−
√
x
)]
xn dx

and an integral representation of the sequence BnCn, where Bn is the Bell num-
bers [11, 34, 39, 55] and Ei(y) is the exponential integral function which can be
defined by

Ei(y) = −
∫ ∞
−x

e−t

t
d t.

2.2. Dana-Picard’s integral representations in 2005. In 2005, using a recur-
rence relation and the telescopic process, Dana-Picard [7] obtained integral repre-
sentations for the Catalan numbers Cn and their reciprocals 1

Cn
respectively.

Theorem 2.3 ([7, Proposition 2.1 and Eq. (9)]). For n ≥ 0, the Catalan numbers
Cn and their reciprocals 1

Cn
can be represented by

Cn =
1

π

∫ 2

0

x2n
√

4− x2 dx (2.8)

and

1

Cn
=

(2n+ 3)(2n+ 2)(2n+ 1)

24n+4

∫ 2

0

x2n+1
√

4− x2 dx. (2.9)
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Proof. Now we sketch the proof in [7]. Let

In(a) =

∫ a

0

xn
√
a2 − x2 dx, n ≥ 0. (2.10)

Then I0 = π
4 a

2 and

In(a) = a2
n− 1

n+ 2
In−2(a).

Using the telescopic method yields

I2n(a) = π

(
a

2

)2n+2
(2n)!

n!(n+ 1)!

and

I2n+1(a) = a2n+3 22n+1

(2n+ 3)(2n+ 2)(2n+ 1)

n!(n+ 1)!

(2n!)
.

Substituting (1.1) into the above equations and making use of (2.10) result in

Cn =
1

π

(
2

a

)2n+2

I2n(a) =
1

π

(
2

a

)2n+2 ∫ a

0

x2n
√
a2 − x2 dx (2.11)

and

1

Cn
=

1

a2n+3

(2n+ 3)(2n+ 2)(2n+ 1)

22n+1
I2n+1(a)

=
1

a2n+3

(2n+ 3)(2n+ 2)(2n+ 1)

22n+1

∫ a

0

x2n+1
√
a2 − x2 dx.

(2.12)

Further setting a = 2 leads to (2.8) and (2.9) immediately. �

2.3. Dana-Picard’s integral representations in 2010 and 2011. In 2010, us-
ing separately three different substitutions, Dana-Picard [5] established the follow-
ing integral representations for the Catalan numbers Cn and their reciprocals 1

Cn
.

Theorem 2.4 ([5, Proposition 2.1]). For n ≥ 0, the Catalan numbers Cn and their
reciprocals 1

Cn
can be represented by

Cn =
22n+2

π

∫ 1

0

x2n
√

1− x2 dx (2.13)

and
1

Cn
=

(2n+ 3)(2n+ 2)(2n+ 1)

22n+1

∫ 1

0

x2n+1
√

1− x2 dx. (2.14)

Proof. The sketch of the proof in [5] can be written as follows. For n ≥ 0, let

An =

∫ 1

0

xn
√

1− x2 dx.

By the substitution x = sinu for u ∈
[
0, π2

]
, we can deduce

An = Sn − Sn+2,

where

Sn =

∫ π/2

0

sinn udu.
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Considering the well-known fact that

S2p =
π

22p+1

(2p)!

(p!)2

and using the expression (1.1) derive

A2p =
π

22p+2

(2p)!

p!(p+ 1)!
=

π

22p+2
Cp (2.15)

and

A2p+1 =
22p(p!)2

(2p+ 3)(2p+ 1)!
=

22p+1

(2p+ 3)(2p+ 2)(2p+ 1)

1

Cp
.

Accordingly, we acquire

Cp =
22p+2

π
A2p =

22p+2

π

∫ 1

0

x2p
√

1− x2 dx

and

1

Cp
=

(2p+ 3)(2p+ 2)(2p+ 1)

22p+1
A2p+1

=
(2p+ 3)(2p+ 2)(2p+ 1)

22p+1

∫ 1

0

x2p+1
√

1− x2 dx.

The integral representations (2.13) and (2.14) are thus proved. �

Theorem 2.5 ([5, Proposition 3.1]). For n ≥ 0, the Catalan numbers Cn can be
represented by

Cn =
22n+2

π

∫ ∞
0

u2

(1 + u2)n+2
du. (2.16)

The outline of the proof in [5]. Using the substitution u2 = 1
x2 − 1 produces

A2p =

∫ ∞
0

u2

(1 + u2)p
du.

Combining this with (2.15) yields (2.16). �

The outline of the proof in [6]. It was stated in [14] that∫ π/2

0

sint xdx =

√
π

2

Γ
(
t+1
2

)
Γ
(
t+2
2

) , t > −1. (2.17)

See also [36, p. 16, Eq. (2.18)]. Then it is not difficult to obtain

Pn =

∫ 1

0

xn√
1− x2

dx =

∫ π/2

0

sinn udu =


π(2p)!

22p+1(p!)2
, n = 2p;

22p(p!)2

(2p+ 1)!
, n = 2p+ 1.
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On the other hand, using three irrational substitutions u2 = 1
x2 − 1, u2 = 1 − x2,

and u =
√

1−x
1+x to compute In produces

Pn =

∫ ∞
0

(
1 + u2

)−(n+2)/2
du

=

∫ 1

0

(
1− u2

)(n−1)/2
du

= 2

∫ 1

0

(1− u2)n

(1 + u2)n+1
du

(2.18)

respectively. By similar argument to the proof of Theorem 2.4 and by the first
formula in (2.18), the integral representation (2.16) is verified once again. �

A new proof the formula (2.16). In [9, p. 325], the fourth formula reads that∫ ∞
0

xµ−1

(p+ qxν)n+1
dx =

1

νpn+1

(
p

q

)µ/ν
B

(
1 + n− µ

ν
,
µ

ν

)
for 0 < µ

ν < n+ 1 and p, q 6= 0. Setting p = q = 1, µ = 3, and ν = 2 and replacing
n by n+ 1 find∫ ∞

0

x2

(1 + x2)n+2
dx =

1

2
B

(
2n+ 1

2
,

3

2

)
=

π

22n+2
Cn,

where we used in the last step the observation

Cn =
1

π
22n+1B

(
n+

1

2
,

3

2

)
(2.19)

in [38, Remark 6.2, Eq. (6.1)]. The formula (2.16) is thus proved. �

Theorem 2.6 ([5, Proposition 4.1]). For n ≥ 0, the Catalan numbers Cn can be
represented by

Cn =
22n+5

π

∫ 1

0

u2(1− u2)2n

(1 + u2)2n+3
du. (2.20)

The outline of the proof in [5]. Taking the substitution u =
√

1−x
1+x concludes

An = 8

∫ 1

0

u2(1− u2)2

(1 + u2)n+3
du.

Combining this for even n with (2.15), we derive the integral presentation (2.20)
immediately. �

The outline of the proof in [6]. By same argument as in the proof of Theorem 2.4
and by the third formula in (2.18), the integral representation (2.20) is verified once
again. �

2.4. Dana-Picard–Zeitoun–Qi’s integral representations in 2012 and 2016.
In 2012, Dana-Picard and Zeitoun [8] deduced an integral representation for the
Catalan numbers Cn, which was corrected and developed by Qi [35] as the following
integral representations.
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Theorem 2.7 ([8, Corollary 3.2] and [35, Theorem 3.1]). For n ≥ 0 and a > 0,
the Catalan numbers Cn can be represented by

Cn =
1

π

4n

n+ 1

1

a2n+1

∫ a

−a
x2n
√
a+ x

a− x
dx

=
1

π

22n+1

n+ 1

1

a2n

∫ a

0

x2n√
a2 − x2

dx

=
1

π

22n+1

n+ 1

∫ π/2

0

sin2n xdx

(2.21)

and

Cn =
1

π

22n+1

2n+ 1

1

a2n+2

∫ a

−a
x2n+1

√
a+ x

a− x
dx

=
1

π

22n+2

2n+ 1

1

a2n+2

∫ a

0

x2n+2

√
a2 − x2

dx

=
1

π

22n+2

2n+ 1

∫ π/2

0

sin2n+2 xdx.

(2.22)

Proof. We sketch the proof in [35]. Let a be a positive number. For n ≥ 0, define

Jn =

∫ a

−a
xn
√
a+ x

a− x
dx. (2.23)

Then

Jn =
1

2
an+1

(
[1 + (−1)n]B

(
1

2
,
n+ 1

2

)
+
[
1 + (−1)n+1

]
B

(
1

2
,
n+ 2

2

))
(2.24)

and

Jn = an+1π

[
1 + (−1)n

n

1

B
(
1
2 ,

n
2

) +
1 + (−1)n+1

n+ 1

1

B
(
1
2 ,

n+1
2

)]. (2.25)

The Catalan numbers Cn can be expressed in terms of the beta function B(x, y) by

Cn =
1

π

4n

n+ 1
B

(
1

2
, n+

1

2

)
. (2.26)

Taking n = 2p in (2.24) and utilizing (2.26) lead to

J2p = a2p+1B

(
1

2
,

2p+ 1

2

)
= a2p+1π

p+ 1

4p
Cn

which is equivalent to

Cn =
4n

n+ 1

1

a2n+1π
J2n =

1

π

4n

n+ 1

1

a2n+1

∫ a

−a
x2n
√
a+ x

a− x
dx.

The first formula (2.21) thus follows.
By similar argument to the deduction of (2.26), we can discover

Cn =
4n+1

(2n+ 1)(2n+ 2)

1

B
(
1
2 , n+ 1

) , n ≥ 0.

Employing this identity and setting n = 2p+ 1 in (2.25) figures out

J2p+1 = a2p+2 2π

2p+ 2

1

B
(
1
2 , p+ 1

) = a2p+2 2π

2p+ 2

(2p+ 1)(2p+ 2)

4p+1
Cp
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which can be rearranged as

Cp =
1

a2p+2

1

π

22p+1

2p+ 1
J2p+1 =

1

π

1

a2p+2

22p+1

2p+ 1

∫ a

−a
x2p+1

√
a+ x

a− x
dx.

The first formula in (2.22) is thus proved.
The rest integral representations follow from mathematical techniques and chang-

ing variable of integration. �

2.5. Shi–Liu–Qi’s integral representation in 2015. In 2015, by virtue of an
integral representation of the gamma function Γ(x), Shi, Liu, and Qi [61] established
an integral representation for the Catalan function

Cx =
4xΓ(x+ 1/2)√
π Γ(x+ 2)

, x > 0.

Theorem 2.8 ([61, Theorem 1]). For x ≥ 0, the Catalan function Cx can be
represented by

Cx =
e3/24x(x+ 1/2)x√
π (x+ 2)x+3/2

exp

[∫ ∞
0

(
1

et − 1
− 1

t
+

1

2

)
e−t/2 − e−2t

t
e−xt d t

]
. (2.27)

Proof. This follows straightforwardly from applying the well-known formula

ln Γ(z) = ln
(√

2π zz−1/2e−z
)

+

∫ ∞
0

(
1

et − 1
− 1

t
+

1

2

)
e−zt d t, <(z) > 0

in [65, (3.22)] to the logarithm of the Catalan function Cx. �

2.6. Qi–Shi–Liu’s integral representations in 2015. In 2015, by virtue of the
Cauchy integral formula in the theory of complex functions, Qi and his two gradu-
ates, Shi and Liu, find an integral representation of the generating function 1

1+
√
1−4x

for the Catalan numbers Cn. Consequently, they derived an integral representation
of the Catalan numbers Cn.

Theorem 2.9 ([54, Theorem 1.4]). The Catalan numbers Cn for n ≥ 0 can be
represented by

Cn =
1

π

∫ ∞
0

√
t

(t+ 1/4)n+2
d t =

2

π

∫ ∞
0

t2

(t2 + 1/4)n+2
d t. (2.28)

Proof. The Catalan numbers Cn can be generated by

2

1 +
√

1− 4x
=

1−
√

1− 4x

2x
=

∞∑
n=0

Cnx
n. (2.29)

By virtue of the Cauchy integral formula in the theory of complex functions, we
discover

1

1 +
√

1− 4x
=

1

2π

∫ ∞
0

√
t

(t+ 1/4)(t− x+ 1/4)
d t

for x ∈
(
−∞, 14

]
. Therefore, it follows that

Cn =
1

n!
lim
x→0

dn

dxn
2

1 +
√

1− 4x

=
1

π

1

n!
lim
x→0

dn

dxn

∫ ∞
0

√
t

(t+ 1/4)(t− x+ 1/4)
d t
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=
1

π

∫ ∞
0

√
t

(t+ 1/4)n+2
d t.

Further using the substitution
√
t = s yields the second integral representation

in (2.28). The theorem is thus proved. �

2.7. Qi’s integral representations in 2017.

Theorem 2.10 ([38, Theorem 3.1 and Remark 6.6]). The Catalan numbers Cn for
n ≥ 0 can be represented by

Cn =
2

π(n+ 1)

∫ 2

0

x2n√
4− x2

dx =
22n+1

π

∫ 1

0

√
1− t
t

tn d t. (2.30)

Proof. Using the substitution x = a sin s for s ∈
[
0, π2

]
and employing (2.17) for

t = n ≥ 0 reveal

In(a) = an+2

√
π Γ
(
n
2 + 1

2

)
4Γ
(
n
2 + 2

) (2.31)

for a > 0 and n ≥ 0. Differentiating with respect to a on both sides of (2.10) gives

I ′n(a) = a

∫ a

0

xn√
a2 − x2

dx. (2.32)

On the other hand, differentiating with respect to a on both sides of (2.31) results
in

I ′n(a) =

√
π

4
(n+ 2)an+1 Γ

(
n
2 + 1

2

)
Γ
(
n
2 + 2

) . (2.33)

Combining (2.32) with (2.33) and simplifying lead to∫ a

0

xn√
a2 − x2

dx =
√
π an

Γ
(
n
2 + 1

2

)
nΓ
(
n
2

) (2.34)

for a > 0 and n ≥ 0. The first representation in (2.30) follows from combining

Cn =
4nΓ

(
n+ 1

2

)
√
π Γ(n+ 2)

, n ≥ 0 (2.35)

in [15, p. 112, Eq. (5.5)] with (2.34).
The second integral representation in (2.30) follows immediately from combin-

ing (2.5) and (2.19). The desired proof is complete. �

2.8. Qi–Akkurt–Yildirim’s integral representation. In [40, Theorem 1.1], an
integral representation

Cn =
k21+2n(1−k)

π(n+ 1)

∫ 2

0

x(2n+1)k−1
√

22k − x2k
dx (2.36)

for k > 0 and n ∈ N was established.
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3. The Catalan–Qi function and its integral representations

In 2015, Qi and his coauthors generalized in [53, Remark 1] and its formally
published version [58, Eq. (9)] the Catalan numbers Cn as the so-called Catalan–Qi
function

C(a, b; z) =
Γ(b)

Γ(a)

(
b

a

)z
Γ(z + a)

Γ(z + b)
, <(a),<(b) > 0, <(z) ≥ 0. (3.1)

It is clear that

C(b, a; z) =
1

C(a, b; z)
. (3.2)

When taking x = n ∈ {0} ∪ N, we call the quantities C(a, b;n) the Catalan–Qi
numbers. It is easy to see that

C

(
1

2
, 2;n

)
= Cn and C(a, b;n) =

(
b

a

)n
(a)n
(b)n

(3.3)

for all n ≥ 0, where

(x)n =

n−1∏
`=0

(x+ `) =

{
x(x+ 1) · · · (x+ n− 1), n ≥ 1

1, n = 0

is called the rising factorial or the Pochhammer symbol.
It is well known that the Wallis ratio is defined by

Wn =
(2n− 1)!!

(2n)!!
=

(2n)!

22n(n!)2
=

1√
π

Γ
(
n+ 1/2

)
Γ(n+ 1)

, n ∈ N.

Hence, it is easy to see that

Cn =
4n

n+ 1
Wn.

The Wallis ratio, or say, the ratio of two gamma functions, has been studied and
applied by many mathematicians, see [12, 36, 37, 46, 47, 48, 49, 51], for example,
and plenty of literature therein.

Now we are in a position to recall and to alternatively prove three integral
representations of the Catalan–Qi function C(a, b;x) as follows.

Theorem 3.1 ([50, Eq. (10)]). For b > a > 0 and x ≥ 0, the Catalan–Qi function
C(a, b;x) has the integral representation

C(a, b;x) =
1

B(a, b− a)

(
b

a

)x ∫ ∞
0

(
1− e−u

)b−a−1
e−(x+a)u du. (3.4)

Proof. This follows from combination of the definition (3.1) and the integral formula

Γ(z + a)

Γ(z + b)
=

1

Γ(b− a)

∫ ∞
0

(
1− e−u

)b−a−1
e−(z+a)u du, b > a ≥ 0

in [65, p. 67] for the ratio of two gamma functions Γ(z + a) and Γ(z + b). �

Theorem 3.2 ([50, Theorem 4]). For b > a > 0 and x ≥ 0, the Catalan–Qi
function C(a, b;x) has integral representations

C(a, b;x) =

(
a

b

)b−1
1

B(a, b− a)

∫ b/a

0

(
b

a
− t
)b−a−1

tx+a−1 d t (3.5)
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and

C(a, b;x) =

(
a

b

)a
1

B(a, b− a)

∫ ∞
0

tb−a−1

(t+ a/b)x+b
d t. (3.6)

An alternative proof. Making use of the last formula in (2.5) and the definition (3.1),
we can rewritten the Catalan–Qi function C(a, b;x) as

C(a, b;x) =

(
b

a

)x
B(b, x+ a)

B(a, x+ b)

and

C(a, b;x) =

(
b

a

)x
B(x+ a, b− a)

B(a, b− a)
. (3.7)

Applying (2.5) into the factor B(x+ a, b− a) = B(b− a, x+ a) in (3.7) leads to

C(a, b;x) =

(
b

a

)x
1

B(a, b− a)

∫ 1

0

tx+a−1(1− t)b−a−1 d t

=

(
b

a

)x
1

B(a, b− a)

∫ b/a

0

(
a

b
s

)x+a−1[
1−

(
a

b
s

)]b−a−1
d

(
a

b
s

)
=

(
a

b

)b−1
1

B(a, b− a)

∫ b/a

0

(
b

a
− s
)b−a−1

sx+a−1 d s

and

C(a, b;x) =

(
b

a

)x
1

B(a, b− a)

∫ ∞
0

tb−a−1

(1 + t)x+b
d t

=

(
b

a

)x
1

B(a, b− a)

∫ ∞
0

(bs/a)b−a−1

(1 + bs/a)x+b
d

(
b

a
s

)
=

(
a

b

)a
1

B(a, b− a)

∫ ∞
0

sb−a−1

(s+ a/b)x+b
d s

respectively. The proof of Theorem 3.2 is thus complete. �

4. Discussing various integral representations

In this section, we will discuss various integral representations recalled and
proved above.

4.1. Discussing (2.1). Applying the substitution x = 4t in (2.1), rearranging, and
employing the first definition in (2.5) yield

Cn =
1

2π

∫ 1

0

√
4− 4t

4t
(4t)n d(4t)

=
22n+1

π

∫ 1

0

(1− t)1/2tn−1/2 d t

=
22n+1

π
B

(
3

2
, n+

1

2

)
.

On the other hand, letting a = 1
2 , b = 2, and x = n ≥ 0 in (3.7) and considering

the first relation in (3.3) give

Cn = 4n
1

B
(
1
2 ,

3
2

)B(n+
1

2
,

3

2

)
=

22n+1

π
B

(
3

2
, n+

1

2

)
.
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As a result, the integral representation (2.1) is a special case of the integral rep-
resentation (3.5). This can also be verified simpler by taking a = 1

2 , b = 2, and
x = n ≥ 0 in (3.5).

4.2. Discussing (2.6). By (2.35) and Γ(n+ 1) = n!, we obtain

n!Cn = n!
4nΓ

(
n+ 1

2

)
√
π (n+ 1)!

=
4nΓ

(
n+ 1

2

)
√
π (n+ 1)

.

Combining this with (2.6) and simplifying give

Γ

(
n+

1

2

)
=
√
π (n+ 1)

∫ ∞
0

[
1

2
erf

(√
x

2

)
+

1√
πx
e−x/4 − 1

2

](
x

4

)n
dx

= 2
√
π (n+ 1)

∫ ∞
0

[
erf
(√
t
)

+
e−t√
πt
− 1

]
tn d t.

Hence, we guess that

Γ

(
x+

1

2

)
= 2
√
π (x+ 1)

∫ ∞
0

[
erf
(√
t
)

+
e−t√
πt
− 1

]
tx d t, x > −1

2

which is equivalent to

Γ(x) =
√
π (2x+ 1)

∫ ∞
0

[
erf
(√
t
)

+
e−t√
πt
− 1

]
tx−1/2 d t, x > 0.

Actually, this can be derived from∫ ∞
0

e−t√
πt
tx−1/2 d t =

1√
π

∫ ∞
0

e−ttx−1 d t =
Γ(x)√
π
, x > 0,

by the definition (2.2), and∫ ∞
0

[
erf
(√
t
)
− 1
]
tx−1/2 d t =

1

x+ 1/2

∫ ∞
0

[
erf
(√
t
)
− 1
] d

d t
tx+1/2 d t

= − 1

x+ 1/2

∫ ∞
0

[
erf
(√
t
)
− 1
]′
tx+1/2 d t = − 1

x+ 1/2

∫ ∞
0

e−t
√
π
√
t
tx+1/2 d t

= − 2√
π (2x+ 1)

∫ ∞
0

e−ttx d t = − 2Γ(x+ 1)√
π (2x+ 1)

, x > −1

2
,

by integration by part and the definition (2.7). In a word, we proved the integral
representation (2.6) alternatively.

4.3. Discussing Theorems 2.3 and 2.4. By the substitution x = 2t, the integral
representations (2.8) and (2.9) reduce to (2.13) and (2.14). This can also be showed
by letting a = 1 in (2.8) and (2.9). Consequently, the integral representations (2.8)
and (2.9) are respectively equivalent to (2.13) and (2.14).

By the substitution x =
√
t in (2.13) and by the first definition in (2.5), we

obtain

Cn =
22n+2

π

∫ 1

0

tn
√

1− t 1

2
√
t

d t

=
22n+1

π

∫ 1

0

tn−1/2
√

1− t d t =
22n+1

π
B

(
n+

1

2
,

3

2

)
.

Accordingly, the integral representation (2.13) is a special case of the integral rep-
resentation (3.5) and is equivalent to (2.1).
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Similarly, by the substitution x =
√
t in (2.14) and by the first definition in (2.5),

we acquire

1

Cn
=

(2n+ 3)(2n+ 2)(2n+ 1)

22n+2

∫ 1

0

tn
√

1− t d t

=
(2n+ 3)(2n+ 2)(2n+ 1)

22n+2
B

(
n+ 1,

3

2

)
.

(4.1)

This implies that the integral representations (2.9) and (2.14) for reciprocals of
the Catalan numbers Cn can be alternatively verified by using (2.35) and (2.5) in
sequence as follows:

1

Cn
=

√
π Γ(n+ 2)

4nΓ
(
n+ 1

2

) =

√
π (n+ 1)

(
n+ 1

2

)(
n+ 3

2

)
Γ(n+ 1)Γ

(
3
2

)
4nΓ

(
3
2

)
Γ
(
n+ 5

2

)
=

(2n+ 3)(2n+ 2)(2n+ 1)

22n+2
B

(
n+ 1,

3

2

)
=

(2n+ 3)(2n+ 2)(2n+ 1)

22n+2

∫ 1

0

tn
√

1− t d t

=
(2n+ 3)(2n+ 2)(2n+ 1)

22n+1

∫ 1

0

x2n+1
√

1− x2 dx

=
(2n+ 3)(2n+ 2)(2n+ 1)

24n+4

∫ 2

0

x2n+1
√

4− x2 dx

=
(2n+ 3)(2n+ 2)(2n+ 1)

22n+1

1

a2n+3

∫ a

0

x2n+1
√
a2 − x2 dx

=
(2n+ 3)(2n+ 2)(2n+ 1)

22n+2

1

an+3/2

∫ a

0

tn
√
a− t d t

for a > 0 and n ≥ 0.

4.4. Discussing (2.16). Using the substitution u =
√
t in (2.16) and considering

the second expression (2.5) produce

22n+2

π

∫ ∞
0

u2

(1 + u2)n+2
du =

22n+2

π

∫ ∞
0

t

(1 + t)n+2

1

2
√
t

d t

=
22n+1

π

∫ ∞
0

t1/2

(1 + t)n+2
d t =

22n+1

π
B

(
3

2
, n+

1

2

)
= Cn.

Hence, the integral representation (2.16) is proved once again.

4.5. Discussing (2.20). Letting t = 1−u2

1+u2 in the integral of (2.20) gives∫ 1

0

u2(1− u2)2n

(1 + u2)2n+3
du =

∫ 1

0

1− t
1 + t

(
1 + t

2

)3

t2n
1

(1 + t)2

√
1 + t

1− t
d t

=
1

8

∫ 1

0

t2n
√

1− t2 d t =
1

16

∫ 1

0

sn−1/2
√

1− s d s

=
1

16
B

(
3

2
, n+

1

2

)
=

1

16

π

22n+1
Cn =

π

22n+5
Cn.

The integral representation (2.20) is thus proved again.
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4.6. Discussing (2.27). Currently we do not find any application of the integral
representation (2.27) and do not derive any property of the Catalan numbers Cn
from the integral representation (2.27).

4.7. Discussing (2.28). By the substitution t = u
4 in the first integral of (2.28)

and comparing with the second integral in (2.5) gives∫ ∞
0

√
t

(t+ 1/4)n+2
d t =

1

4

∫ ∞
0

√
u/4

(u/4 + 1/4)n+2
du

= 22n+1

∫ ∞
0

√
u

(1 + u)n+2
du = 22n+1B

(
3

2
, n+

1

2

)
= πCn.

Thus, the integral representations in (2.28) are proved alternatively.
When changing the variable of integration by t = u

2 in the last representation
in (2.28), we can recover the integral representation (2.16).

4.8. Discussing (2.30). The first integral in (2.30) can be computed as∫ 2

0

x2n√
4− x2

dx =

∫ 2

0

(
2
√
t
)2n√

4−
(
2
√
t
)2 d

(
2
√
t
)

= 22n
∫ 1

0

tn√
1− t

1

2
√
t

d t

= 22n−1
∫ 1

0

tn−1/2(1− t)−1/2 d t = 22n−1B

(
n+

1

2
,

1

2

)
.

Then from (2.26) it follows that∫ 2

0

x2n√
4− x2

dx = 22n−1π
n+ 1

4n
Cn

which can be rewritten as (2.30).

4.9. Discussing (2.36). The first integral representation (2.30) is a special case of
the one (2.36). Actually, the paper [40] was motivated by the article [38].

4.10. Discussing (3.4). By the substitution e−u = t in (3.4) and by the first
integral in (2.5), we can see that the expressions (3.4) and (3.7) are equivalent to
each other.

4.11. Discussing (3.5) and (3.6). When a = 1
2 , b = 2, and x = n ≥ 0, the integral

representations (3.5) and (3.6) reduce to (2.1) and (2.28) respectively.
Letting a = 1

2 , b = 2, and x = n ≥ 0 in (3.7) results in the expression (2.19).

4.12. The beta function and reciprocals of the Catalan numbers. By (2.35),
the identity Γ

(
1
2

)
=
√
π , and the recurrence relation Γ(x + 1) = xΓ(x), it is easy

to see that

1

Cn
=

√
π Γ(n+ 2)

4nΓ
(
n+ 1

2

) =

(
n+ 1

2

)
(n+ 1)

4n
Γ
(
1
2

)
Γ(n+ 1)

Γ
(
n+ 3

2

)
=

(2n+ 1)(n+ 1)

22n+1
B

(
1

2
, n+ 1

) (4.2)

which is different from the one in (4.1). Indeed, the Catalan numbers Cn and their
reciprocals 1

Cn
can also be represented in terms of the beta functions B

(
n + ` −

1
2 ,m+ 1

2

)
and B

(
n+ `,m+ 1

2

)
for `,m ∈ N respectively.
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5. Applications of integral representations

Most of the above integral representations can be applied to discover properties
of the Catalan numbers Cn. Now we recall some known applications of several
integral representations of the Catalan numbers Cn.

5.1. The integral representation (2.1) was applied in the proof of [42, Theorem 5.1]
to discover the identity

b(j−1)/2c∑
`=0

(−1)`
(
j − `− 1

`

)
Ci−`−1 =

j

i

(
2i− j − 1

i− 1

)
, i ≥ j ≥ 1.

This identity generalizes

bn/2c∑
k=0

(−1)k
(
n− k
k

)
Cn−k = 1

obtained in [68, p. 2187, Theorem 2, Eq. (15b)].

5.2. The representation (2.20) was applied in [31, p. 10] to compute several infinite
series whose general terms involve binomial coefficients.

5.3. Recall from [30, pp. 372–373] and [66, p. 108, Definition 4] that a sequence
{µn}0≤n≤∞ is said to be completely monotonic if its elements are non-negative and
its successive differences are alternatively non-negative, that is,

(−1)k∆kµn ≥ 0

for n, k ≥ 0, where

∆kµn =

k∑
m=0

(−1)m
(
k

m

)
µn+k−m.

Recall from [66, p. 163, Definition 14a] that a completely monotonic sequence
{an}n≥0 is minimal if it ceases to be completely monotonic when a0 is decreased.

Let λ = (λ1, λ2, . . . , λn) ∈ Rn and µ = (µ1, µ2, . . . , µn) ∈ Rn. A sequence λ is
said to be majorized by µ (in symbols λ � µ) if

k∑
`=1

λ[`] ≤
k∑
`=1

µ[`], k = 1, 2, . . . , n− 1 and

n∑
`=1

λ` =

n∑
`=1

µ`,

where λ[1] ≥ λ[2] ≥ · · · ≥ λ[n] and µ[1] ≥ µ[2] ≥ · · · ≥ µ[n] are respectively the
components of λ and µ in decreasing order. A sequence λ is said to be strictly
majorized by µ (in symbols λ ≺ µ) if λ is not a permutation of µ. For example,(

1

n
, . . . ,

1

n︸ ︷︷ ︸
n

)
≺
(

1

n− 1
, . . . ,

1

n− 1︸ ︷︷ ︸
n−1

, 0

)
≺
(

1

n− 2
, . . . ,

1

n− 2︸ ︷︷ ︸
n−2

, 0, 0

)
≺ · · ·

≺
(

1

3
,

1

3
,

1

3
, 0, . . . , 0

)
≺
(

1

2
,

1

2
, 0, . . . , 0

)
≺ (1, 0, . . . , 0).

For more information on the theory of majorization and its applications, please
refer to monographs [13, 29] and the closely related references therein.

Applying the integral representation (2.28), we can obtain properties and in-
equalities of the Catalan numbers Cn. Some of them can be recited as follows.
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Theorem 5.1 ([54, Theorem 1.4]). The sequence
{
Cn

4n

}
n≥0 is completely monotonic

and minimal.

Theorem 5.2 ([54, Theorem 1.4]). If m ≥ 1 and a0, a1, . . . , am be non-negative
integers, then (

Ca0
4a0

)m−1C∑m
k=0

ak

4
∑m

k=0 ak
≥

m∏
k=1

Ca0+ak
4a0+ak

(5.1)

and ∣∣∣∣Cai+aj4ai+aj

∣∣∣∣
m

≥ 0, (5.2)

where |ekj |m denotes a determinant of order m with elements ekj.

Theorem 5.3 ([54, Theorem 1.5]). Let m ∈ N and let n and ak for 1 ≤ k ≤ m be
non-negative integers. Then the Catalan numbers Cn satisfy∣∣(−1)ai+ajCn+ai+aj

∣∣
m
≥ 0 (5.3)

and ∣∣Cn+ai+aj ∣∣m ≥ 0, (5.4)

where

C` = `!C`, ` ≥ 0. (5.5)

Theorem 5.4 ([54, Theorem 1.6]). Let m ∈ N and let λ and µ be two m-tuples of
non-negative integers such that λ � µ. Then∣∣∣∣∣

m∏
i=1

Cn+λi

∣∣∣∣∣ ≤
∣∣∣∣∣
m∏
i=1

Cn+µi

∣∣∣∣∣, (5.6)

where C` is defined by (5.5). Consequently,

(1) the infinite sequence {Cn}n≥0 is logarithmically convex,
(2) the inequality

Cn`+k ≤ Ck`+nCn−k` (5.7)

is valid for ` ≥ 0 and n > k > 0.

Theorem 5.5 ([54, Theorem 1.7]). If ` ≥ 0, n ≥ k ≥ m, k ≥ n−k, and m ≥ n−m,
then

C`+kC`+n−k
C`+mC`+n−m

≥ (`+m)!(`+ n−m)!

(`+ k)!(`+ n− k)!
. (5.8)

For n,m ∈ N and ` ≥ 0, let

Gn,m,` = C`+n+2m(C`)2 − C`+n+mC`+mC` − C`+nC`+2mC` + C`+n(C`+m)2,

Hn,m,` = C`+n+2m(C`)2 − 2C`+n+mC`+mC` + C`+n(C`+m)2,

In,m,` = C`+n+2m(C`)2 − 2C`+nC`+2mC` + C`+n(C`+m)2,

where C` is defined by (5.5). Then

Gn,m,` ≥ 0, Hn,m,` ≥ 0, (5.9)

Hn,m,` Q Gn,m,` when m ≶ n, (5.10)

and

In,m,` ≥ Gn,m,` ≥ 0 when n ≥ m. (5.11)
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5.4. Recall from [30, Chapter XIII], [60, Chapter 1], and [66, Chapter IV] that an
infinitely differentiable function f is said to be completely monotonic on an interval
I if it satisfies 0 ≤ (−1)kf (k)(x) < ∞ on I for all k ≥ 0. It is known [66, p. 161,
Theorem 12b] that a function f is completely monotonic on (0,∞) if and only if
it is a Laplace transform f(t) =

∫∞
0
e−ts dµ(s) of a positive measure µ defined on

[0,∞) such that the above integral converges on (0,∞).
By virtue of the integral representation (3.5), we obtain asymptotic expansions

and complete monotonicity related to the Catalan–Qi function.

Theorem 5.6 ([50, Theorem 4.2]). For b > a > 0, we have

C(a, b;x) =
1

B(a, b− a)

(
b

a

)x ∞∑
k=0

(−1)k
〈b− a− 1〉k

k!

1

x+ a+ k
, (5.12)

where

〈x〉n =

n−1∏
k=0

(x− k) =

{
x(x− 1) · · · (x− n+ 1), n ≥ 1

1, n = 0

is the falling factorial. Consequently, the function

(−1)bb−ac

[(
a

b

)x
C(a, b;x)− 1

B(a, b− a)

N∑
k=0

(−1)k
〈b− a− 1〉k

k!

1

x+ a+ k

]
(5.13)

for N ∈ {0} ∪ N and b > a > 0 is completely monotonic in x ∈ [0,∞), where bxc
denotes the floor function whose value is the largest integer less than or equal to x.

For more information and details on applications of the integral representa-
tions (2.28) and (3.5), please refer to [27, 41, 42, 43, 44, 45, 50, 52, 56, 57, 58]
and the closely related references therein.

6. Power series whose coefficients involve Catalan numbers

In this section, we recall some results on sums of power series whose coefficients
involve the Catalan numbers Cn or the Catalan–Qi numbers C(a, b;n).

6.1. In 2012, Koshy and Gao [16] proved the following theorem.

Theorem 6.1 ([16]). For |x| < 4, we have

∞∑
n=0

xn

Cn
=

1 +
x(4− x)3/2 + 6x(4− x)1/2 + 24

√
x arcsin

√
x
2

(4− x)5/2
, 0 ≤ x < 4;

1−
|x|(4− x)3/2 + 6

√
|x|(4− x) + 24

√
|x| ln

√
−x+

√
4−x

2

(4− x)5/2
, −4 < x ≤ 0.

(6.1)

Proof. We reformulate the proof by Koshy and Gao in [16] as follows. Denote

f(x) =

∞∑
n=0

xn

Cn
. (6.2)
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Then

f ′(x) =

∞∑
n=1

nxn−1

Cn
=

∞∑
n=0

n+ 1

Cn+1
xn.

Since n+2
Cn

= 4n+2
Cn+1

, by the recurrence relation, this yields

∞∑
n=0

n+ 2

Cn
xn =

∞∑
n=0

4n+ 2

Cn+1
xn,

∞∑
n=0

n

Cn
xn + 2

∞∑
n=0

xn

Cn
=

∞∑
n=0

4(n+ 1)

Cn+1
xn − 2

∞∑
n=0

xn

Cn+1
,

xf ′(x) + 2f(x) = 4f ′(x)− 2

x
[f(x)− 1],

and
x(x− 4)f ′(x) + 2(x+ 1)f(x) = 2. (6.3)

For x 6= 0, set g(x) =
∣∣ 4−x
x

∣∣3/2. Then g′(x)
g(x) = − 6

x(4−x) . This implies that

[x(x− 4)g(x)]′ = 2(x+ 1)g(x). (6.4)

Multiplying (6.3) by g(x), we obtain

x(x− 4)f ′(x)g(x) + 2(x+ 1)f(x)g(x) = 2g(x).

Using (6.4), this can be rewritten as

[x(x− 4)f(x)g(x)]′ = 2g(x).

Using (6.4) again gives

{x(x− 4)[f(x)− 1]g(x)}′ = [x(x− 4)f(x)g(x)]′ − [x(x− 4)g(x)]′

= 2g(x)− 2(x+ 1)g(x) = −2xg(x).

Consequently,

x(x− 4)[f(x)− 1]g(x) = −2

∫
xg(x) dx+ α1,

f(x) = 1 +
2
∫
xg(x) dx− α1

x(4− x)g(x)
,

where α1 is a constant.
For 0 < x < 4, we have∫

xg(x) dx =

∫
x

(
4− x
x

)3/2

dx =

∫
(4− x)3/2

x1/2
dx

= 2

∫ (
4− u2

)3/2
du

(
x = u2

)
=

1

2
u
(
4− u2

)3/2
+ 3u

(
4− u2

)1/2
+ 12 arcsin

u

2
+ α2

=
1

2

√
x (4− x)3/2 + 3

√
x (4− x)1/2 + 12 arcsin

√
x

2
+ α2,

where α2 is also a constant. Therefore, we have

f(x) = 1 +

√
x (4− x)3/2 + 6

√
x (4− x)1/2 + 24 arcsin

√
x
2 + 2α2 − α1

x(4− x)
(
4−x
x

)3/2
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= 1 +
x(4− x)3/2 + 6x(4− x)1/2 + 24

√
x arcsin

√
x
2 + α

√
x

(4− x)5/2
,

where α = 2α2 − α1. Since f(0) = 1 = f ′(0), we have α = 0. Thus, the desired
result for 0 < x < 4 is proved.

For −4 < x < 0, by similar argument to the above, we acquire∫
xg(x) dx =

1

2

√
|x| (4− x)3/2 + 3

√
|x|(4− x) + 12 ln

(√
|x| +

√
|4− x|

)
+ α3

and

f(x) = 1−
|x|(4− x)3/2 + 6

√
|x|(4− x) + 24

√
|x| ln

√
−x+

√
4−x

α4

(4− x)5/2
.

From f(0) = 1 = f ′(0), we can determine C4 = 2. The desired result is thus
proved. �

6.2. In 2014, Beckwith and Harbor [4] proposed a problem: show that

∞∑
n=0

2n

Cn
= 5 +

3

2
π and

∞∑
n=0

3n

Cn
= 22 + 8

√
3π.

In 2016, Abel [1] answered this problem by proving a general result below.

Theorem 6.2 ([1, 4]). For 0 ≤ x < 4, we have

∞∑
n=0

xn

Cn
= 1− x(x− 10)

(4− x)2
+

24
√
x

(4− x)5/2
arctan

√
x

4− x
. (6.5)

Proof. We slightly modify the proof in [1] as follows. Using the beta integral∫ 1

0

tm(1− t)n d t =
m!n!

(m+ n+ 1)!

gives

∞∑
n=0

xn

Cn
= 1 +

∞∑
n=1

n(n+ 1)
(n− 1)!n!

(2n)!
xn

= 1 +

∞∑
n=1

n(n+ 1)xn
∫ 1

0

tn−1(1− t)n d t

= 1 +

∫ 1

0

∞∑
n=1

n(n+ 1)xntn−1(1− t)n d t

for |x| < 4. Further using

∞∑
n=1

n(n+ 1)zn =
2z

(1− z)3

produces
∞∑
n=0

xn

Cn
= 1 + 2x

∫ 1

0

1− t
[1− xt(1− t)]3

d t.

Direct calculation of the integral yields the result (6.5). �
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6.3. The editorial comment in [1] listed the formulas

∞∑
n=0

1

Cn
= 2 +

4π

9
√

3
,

∞∑
n=0

(−1)n

Cn
=

14

25
− 24

√
5

125
ln

1 +
√

5

2
,

∞∑
n=0

(−2)n

Cn
=

1

3
− 1

3
√

3
ln
(
2 +
√

3
)
,

∞∑
n=0

(−3)n

Cn
=

10

49
− 36

49
√

21
ln

5 +
√

21

2
.

The editorial comment in [1] also pointed out that the result (6.1) had existed
in [16], that the sum

∞∑
n=0

xn

Cn
= 2

√
4− x (8 + x) + 12

√
x arctan

√
x√

4−x√
(4− x)5

(6.6)

can be found on the website http://planetmath.org/, and that the problem by
Beckwith and Harbor [4] can be solved easily from

∞∑
n=1

2n(
2n
n

) =
π

2
+ 1,

∞∑
n=1

n2n(
2n
n

) = π + 3,

∞∑
n=1

3n(
2n
n

) =
4π
√

3

3
+ 3,

∞∑
n=1

n3n(
2n
n

) =
20π
√

3

3
+ 18

which are special cases of the general formula in [17, p. 452, Theorem] below.

Theorem 6.3 ([17, p. 452, Theorem]). For |x| < 1, we have

2x arcsinx√
1− x2

=

∞∑
m=1

(2x)2m

m
(
2m
m

) . (6.7)

Proof of (6.7). Making use of the familiar Gregory series

t arctan t =

∞∑
m=1

(−1)m−1t2m

2m− 1

and setting t = x√
1−x2

yields arctan t = arcsinx and

x√
1− x2

arcsinx =

∞∑
m=1

(−1)m−1x2m

(2m− 1)(1− x2)m

=

∞∑
m=1

(−1)m−1

2m− 1

∞∑
j=0

(−1)j
(
−m
j

)
x2(j+m)

=

∞∑
m=1

(−1)m−1

2m− 1

∞∑
j=0

(
m+ j − 1

j

)
x2(j+m)

=

∞∑
r=1

x2r
r∑

m=1

(−1)m−1(r − 1)!

(m− 1)!(r −m)!(2m− 1)
.

Using Wallis’ integral∫ π/2

0

(sin θ)2r−1 d θ =
2 · 4 · 6 · · · (2r − 2)

1 · 3 · 5 · · · (2r − 1)
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results in

r

(
2r

r

) r−1∑
ν=0

(−1)ν
(
r − 1

ν

)
1

2ν + 1
= r

(
2r

r

)∫ 1

0

r−1∑
ν=0

(−1)ν
(
r − 1

ν

)
y2ν d y

= r

(
2r

r

)∫ 1

0

(1− y2)r−1 d y

= r

(
2r

r

)∫ π/2

0

sin2r−1 θ d θ

= 22r−1.

The sum (6.7) is thus proved. �

From (6.7), Lehmer [17] also derived

2(arcsinx)2 =

∞∑
m=1

(2x)2m

m2
(
2m
m

) , ∞∑
m=1

(2x)2m

m3
(
2m
m

) = 4

∫ x

0

(arcsin y)2

y
d y

and gave a recursive formula for
∞∑
m=1

mk−2(2x)2m(
2m
m

) .

Lehmer [17, p. 454] pointed out that there are no known sum for interesting series
of the form

∞∑
m=1

1

mk
(
2m
m

)
for k ≥ 5.

6.4. In 2016, motivated by the above-mentioned problem posed by Beckwith and
Harbor [4], Amdeberhan and his four coauthors [3] also proposed a general problem:
find a closed-form formula for the series in (6.2). They obtained the sum

∞∑
n=0

zn

Cn
= 2F1

(
1, 2;

1

2
;
z

4

)
=

2(z + 8)

(4− z)2
+

24
√
z

(4− z)5/2
arcsin

√
z

2
, |z| < 4 (6.8)

by several methods, where 2F1 is the classical hypergeometric function which is a
special case of the generalized hypergeometric series

pFq(a1, . . . , ap; b1, . . . , bq; z) =

∞∑
n=0

(a1)n . . . (ap)n
(b1)n . . . (bq)n

zn

n!
(6.9)

defined for complex numbers ai ∈ C and bi ∈ C \ {0,−1,−2, . . . }, for positive
integers p, q ∈ N, and in terms of the rising factorial

(x)n =

n−1∏
`=0

(x+ `) =

{
x(x+ 1) · · · (x+ n− 1), n ≥ 1;

1, n = 0.

We observe that the formulas (6.5) and (6.6) are the same one, that the sums (6.1)
and (6.8) are the same one, and that, since

arctan

√
x

4− x
= arcsin

√
x

2

for 0 ≤ x < 4, the four sums (6.5) to (6.8) are essentially the same one.
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7. Sums of some new series

By applying some of the above-mentioned integral representations of the Catalan
numbers Cn, we now construct some new finite and infinite power series.

7.1. Sums of two finite and infinite series. Making use of the integral repre-
sentations (2.13) and (2.14), (2.16) and (2.20), (2.21) and (2.22), we can find the
following finite and infinite power series involving the Catalan numbers Cn.

Theorem 7.1. For k ≥ 0, we have the finite sums

k∑
n=0

Cn
22n

=
2

π

[
B

(
1

2
,

1

2

)
−B

(
1

2
, k +

3

2

)]
and

k∑
n=0

22n

(n+ 1)(2n+ 1)(2n+ 3)

1

Cn
=

1

2π

[
B

(
1

2
,

1

2

)
−B

(
1

2
, k +

3

2

)]
.

Consequently, we have the infinite series

∞∑
n=0

Cn
22n

= 2 and

∞∑
n=0

22n

(n+ 1)(2n+ 1)(2n+ 3)

1

Cn
= 1. (7.1)

Proof. Dividing the integral representations (2.13) and (2.14) and summing up over
0 ≤ n ≤ k give

k∑
n=0

Cn
22n+2

=
1

π

∫ 1

0

(
k∑

n=0

x2n

)√
1− x2 dx =

1

π

∫ 1

0

1− x2(k+1)

1− x2
√

1− x2 dx

=
1

π

∫ 1

0

(
1− x2k+2

)(
1− x2

)−1/2
dx =

1

2π

∫ 1

0

(
t−1/2 − tk+1/2

)
(1− t)−1/2 d t

=
1

2π

[
B

(
1

2
,

1

2

)
−B

(
k +

3

2
,

1

2

)]
→ 1

2π
B

(
1

2
,

1

2

)
=

1

2

and

k∑
n=0

22n+1

(2n+ 3)(2n+ 2)(2n+ 1)

1

Cn
=

∫ 1

0

(
k∑

n=0

x2n+1

)√
1− x2 dx

=

∫ 1

0

x
(
1− x2k+2

)
1− x2

√
1− x2 dx =

1

2

∫ 1

0

(
1− tk+1

)
(1− t)−1/2 d t

=
1

2

[
B

(
1

2
, 1

)
−B

(
1

2
, k + 2

)]
→ 1

2
B

(
1

2
, 1

)
= 1

as k →∞.
Similarly, from (2.16) and (2.20), it follows that

k∑
n=0

Cn
22n+2

=
1

π

∫ ∞
0

k∑
n=0

u2

(1 + u2)n+2
du =

1

π

∫ ∞
0

[
1

1 + u2
− 1

(1 + u2)k+2

]
du

=
1

2
− 1

2π

∫ ∞
0

t−1/2

(1 + t)k+2
d t =

1

2
− 1

2π
B

(
1

2
, k +

3

2

)
→ 1

2
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and
k∑

n=0

Cn
22n+5

=
1

π

∫ 1

0

u2

(1 + u2)3

k∑
n=0

(
1− u2

1 + u2

)2n

du

=
1

π

∫ 1

0

u2

(1 + u2)3
1−

(
1−u2

1+u2

)2k+2

1−
(
1−u2

1+u2

)2 du

=
1

π

∫ 1

0

1− t
1 + t

(
1 + t

2

)3
1− t2k+2

1− t2
1

(1 + t)2

√
1 + t

1− t
d t

=
1

8π

∫ 1

0

1− t2k+2

√
1− t2

d t =
1

16π

∫ 1

0

1− sk+1

√
1− s

1√
s

d s

=
1

16π

[∫ 1

0

(1− s)−1/2s−1/2 d s−
∫ 1

0

sk+1/2(1− s)−1/2 d s

]
=

1

16π

[
B

(
1

2
,

1

2

)
−B

(
1

2
, k +

3

2

)]
→ 1

16

as k →∞. The proof of Theorem 7.1 is complete. �

7.2. Sums of three finite series. Applying the last integral expressions in (2.21)
and (2.22), we can obtain sums of three new finite series.

Theorem 7.2. For k ≥ 0, we have

k∑
n=0

n+ 1

22n
Cn =

2

B
(
1
2 , k + 1

) ,
k∑

n=0

2n+ 1

22n
Cn = 2

[
1

B
(
1
2 , k + 2

) − 1

]
,

and
k∑

n=0

22n

(2n+ 1)(n+ 1)

1

Cn
= (k + 1)B

(
1

2
, k + 1

)
− 1.

When k →∞, these three series diverge.

Proof. Applying the last expressions in (2.21) and (2.22) yields

k∑
n=0

n+ 1

22n
Cn =

2

π

∫ π/2

0

k∑
n=0

sin2n xdx =
2

π

∫ π/2

0

1− sin2k+2 x

cos2 x
dx

=
2

π

√
π Γ
(
k + 3

2

)
Γ(k + 1)

=
2

B
(
1
2 , k + 1

) →∞
and

k∑
n=0

2n+ 1

22n
Cn =

4

π

∫ π/2

0

k∑
n=0

sin2n+2 xdx

=
4

π

∫ π/2

0

tan2 x
(
1− sin2k+2 x

)
dx =

4

π

[√
π Γ
(
k + 5

2

)
Γ(k + 2)

− π

2

]
= 4

[
Γ
(
k + 5

2

)
√
π Γ(k + 2)

− 1

2

]
= 2

[
1

B
(
1
2 , k + 2

) − 1

]
→∞
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as k →∞.
From (4.2), it follows that

22n+1

(2n+ 1)(n+ 1)

1

Cn
= B

(
1

2
, n+ 1

)
=

∫ 1

0

(1− t)−1/2tn d t.

Summing up over n from 0 to k leads to

k∑
n=0

22n+1

(2n+ 1)(n+ 1)

1

Cn
=

∫ 1

0

(1− t)−1/2
k∑

n=0

tn d t

=

∫ 1

0

(1− t)−1/2 1− tk+1

1− t
d t =

∫ 1

0

(1− t)−3/2
(
1− tk+1

)
d t

= 2

∫ 1

0

(
1− tk+1

)[
(1− t)−1/2

]′
d t = −2 + 2(k + 1)

∫ 1

0

tk(1− t)−1/2 d t

= 2

[
(k + 1)B

(
1

2
, k + 1

)
− 1

]
→∞

as k →∞. The proof of Theorem 7.2 is complete. �

7.3. Sums of three infinite power series. Now we use (6.8) to derive sums of
three infinite power series involving the reciprocal of the Catalan numbers Cn.

Theorem 7.3. The reciprocals 1
Cn

of the Catalan numbers Cn satisfy

∞∑
n=0

zn

(n+ 1)Cn
=

∞∑
n=0

zn(
2n
n

) =
4

4− z
+

4
√
z

(4− z)3/2
arcsin

√
z

2
, |z| < 4, (7.2)

∞∑
n=0

zn

(2n+ 1)Cn
=

2

4− z
+

8√
z (4− z)3/2

arcsin

√
z

2
, |z| < 4, (7.3)

and
∞∑
n=0

zn

(2n+ 1)(n+ 1)Cn
=

4√
z(4− z)

arcsin

√
z

2
, |z| < 4.

Proof. Integrating on both sides of (6.8) from 0 to t with |t| < 4 yields

∞∑
n=0

tn+1

(n+ 1)Cn
=

∫ t

0

24

(4− z)2
d z −

∫ t

0

2

4− z
d z +

∫ t

0

24
√
z

(4− z)5/2
arcsin

√
z

2
d z

=
6t

4− t
+ 2 ln(4− t)− 4 ln 2

+

∫ arcsin
√

t
2

0

24
√

4 sin2 s(
4− 4 sin2 s

)5/2 8 sin s cos s arcsin

√
4 sin2 s

2
d s

=
6t

4− t
+ 2 ln(4− t)− 4 ln 2 + 12

∫ arcsin
√

t
2

0

sin2 s

cos4 s
sd s

=
6t

4− t
+ 2 ln(4− t)− 4 ln 2 + 4

∫ arcsin
√

t
2

0

s
(
tan3 s

)′
d s

=
6t

4− t
+ 2 ln(4− t)− 4 ln 2 + 4 arcsin

√
t

2
tan3 arcsin

√
t

2
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− 4

∫ arcsin
√

t
2

0

tan3 sd s

=
6t

4− t
+ 2 ln(4− t)− 4 ln 2 +

4t3/2

(4− t)3/2
arcsin

√
t

2

− 4

∫ arcsin
√

t
2

0

(
tan s sec2 s− tan s

)
d s

=
6t

4− t
+ 2 ln(4− t)− 4 ln 2 +

4t3/2

(4− t)3/2
arcsin

√
t

2

− 4t

8− 2t
+ 4

[
ln 2− 1

2
ln(4− t)

]
=

4t

4− t
+

4t3/2

(4− t)3/2
arcsin

√
t

2
.

The equality (7.2) is thus proved.
The formula (6.8) can be rewritten as

∞∑
n=0

z2n

Cn
=

2(z2 + 8)

(4− z2)2
+

24z

(4− z2)5/2
arcsin

z

2
, |z| < 2.

Integrating on both sides of the above equality gives

∞∑
n=0

t2n+1

(2n+ 1)Cn
=

∫ t

0

[
2(z2 + 8)

(4− z2)2
+

24z

(4− z2)5/2
arcsin

z

2

]
d z

=
3t

4− t2
+

1

4
ln

2 + t

2− t
+ 3

∫ arcsin(t/2)

0

sinu

cos4 u
udu

=
3t

4− t2
+

1

4
ln

2 + t

2− t
+

8

(4− t2)3/2
arcsin

t

2
−
∫ arcsin(t/2)

0

1

cos3 u
du

=
3t

4− t2
+

1

4
ln

2 + t

2− t
+

8

(4− t2)3/2
arcsin

t

2
− t

4− t2
− 1

4
ln

2 + t

2− t

=
2t

4− t2
+

8

(4− t2)3/2
arcsin

t

2

which can be rewritten as (7.3).
Since 1

(2n+1)(n+1) = 2
2n+1 −

1
n+1 , by (7.2) and (7.3), we have

∞∑
n=0

xn

(2n+ 1)(n+ 1)Cn
=

∞∑
n=0

[
2xn

(2n+ 1)Cn
− xn

(n+ 1)Cn

]

=

∞∑
n=0

2xn

(2n+ 1)Cn
−
∞∑
n=0

xn

(n+ 1)Cn
=

4√
z(4− z)

arcsin

√
z

2
.

The proof of Theorem 7.3 is complete. �

7.4. A new proof for the sum of a power series. Now we supply a new proof
for the following conclusion in [3, pp. 115–116, Section 6].
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Theorem 7.4 ([3, Section 6]). For x ≥ 0, we have

∞∑
n=0

1

Cn

xn

n!
= 1 +

1

4
x+

√
π

8
(x+ 6)

√
x ex/4 erf

(√
x

2

)
. (7.4)

Proof. In [58, Theorem 1.5], it was obtained that

∞∑
n=0

C(a, b;n)
xn

n!
= 1F1

(
a; b;

b

a
x

)
. (7.5)

Letting a = 2 and b = 1
2 in (7.5) gives

∞∑
n=0

1

Cn

xn

n!
= 1F1

(
2;

1

2
;
x

4

)
.

Since

erf(x) =
2√
π
e−x

2
∞∑
n=0

2kz2n+1

(2n+ 1)!!

see [9, p. 889, 8.253] or [32, p. 162, 7.6.2], it is straightforward to verify that

1F1

(
2;

1

2
;
x

4

)
= 1 +

1

4
x+

√
π

8
(x+ 6)

√
x ex/4 erf

(√
x

2

)
.

The proof of Theorem 7.4 is thus complete. �

7.5. More sums of series involving Catalan or Catalan–Qi numbers. Ex-
cept [58, Theorem 1.5], some series such as

2F1

(
a, 1; b;

bt

a

)
=

∞∑
n=0

C(a, b;n)tn, a, b > 0; (7.6)

∞∑
n=1

(
a

b

)n
C(a, b;n) =

a

b− a− 1
, b > a+ 1 > 1; (7.7)

and
∞∑
n=0

C(a, b;n)
x2n

(2n)!
= 1F2

(
a;

1

2
, b;

b

4a
x2
)
, a, b > 0 (7.8)

were also established in the papers [27, Theorem 1] and [50, Theorem 10].
In [67], among other things, it was obtained that

∞∑
n=0

(n+ 1)(2n)!!Cn
4n(2n+ 1)2(2n+ 1)!!

=
7

8
ζ(3)

and
∞∑
n=0

xn

Cn
=

24
√
−x

(4− x)5/2
ln

(√
−x +

√
4− x

2

)
+

2x

(4− x)2
+ 1, x ∈ (−4, 0],

where ζ(z) denotes the Riemanian zeta function

ζ(s) =

∞∑
k=1

1

ks
, <(s) > 1.
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8. An alternative proof of the formula (6.7)

Substituting (1.1) into the left-hand side of (6.7) and making use of the identities
in (3.2) and (3.3) give

h
(
x2
)

=

∞∑
m=1

(2x)2m

m
(
2m
m

) =

∞∑
m=1

(2x)2m

m(m+ 1)Cm
=

∞∑
m=1

(2x)2m

m(m+ 1)C
(
1
2 , 2;m

)
=

∞∑
m=1

(2x)2m

m(m+ 1)
C

(
2,

1

2
, ;m

)
=

∞∑
m=1

(2x)2m

m(m+ 1)

(
1

4

)m
(2)m(
1
2

)
m

=

∞∑
m=1

(2)m(
1
2

)
m

x2m

m(m+ 1)
=

∞∑
m=1

(2)m(
1
2

)
m

(
x2
)m

m(m+ 1)

=

∞∑
m=1

(2)m(
1
2

)
m

(
x2
)m
m

− 1

x2

∞∑
m=1

(2)m(
1
2

)
m

(
x2
)m+1

m+ 1
, h1

(
x2
)
− 1

x2
h2
(
x2
)
.

Differentiation and utilization of (6.9) reveal

h′1(t) =

∞∑
m=1

(2)m(
1
2

)
m

tm−1 =
1

t

[ ∞∑
m=0

(2)m(
1
2

)
m

tm − 1

]
=

1

t

[ ∞∑
m=0

(2)mm!(
1
2

)
m

tm

m!
− 1

]

=
1

t

[ ∞∑
m=0

(2)m(1)m(
1
2

)
m

tm

m!
− 1

]
=

1

t

[
2F1

(
1, 2;

1

2
; t

)
− 1

]
and

h′2(t) =

∞∑
m=1

(2)m(
1
2

)
m

tm =

∞∑
m=1

(2)m(1)m(
1
2

)
m

tm

m!
= 2F1

(
1, 2;

1

2
; t

)
− 1.

Accordingly, we obtain

h′(t) =

[
h1(t)− 1

t
h2(t)

]′
= h′1(t)− th′2(t)− h2(t)

t2

=
1

t

[
2F1

(
1, 2;

1

2
; t

)
− 1

]
− h′2(t)

t
+
h2(t)

t2

=
1

t

[
2F1

(
1, 2;

1

2
; t

)
− 1

]
− 1

t

[
2F1

(
1, 2;

1

2
; t

)
− 1

]
+
h2(t)

t2
=
h2(t)

t2
.

This implies that [
t2h′(t)

]′
= h′2(t) = 2F1

(
1, 2;

1

2
; t

)
− 1.

Combining this with the right equality in (6.8) leads to[
t2h′(t)

]′
+ 1 =

2(4t+ 8)

(4− 4t)2
+

24
√

4t

(4− 4t)5/2
arcsin

√
4t

2

=
t+ 2

2(1− t)2
+

3
√
t

2(1− t)5/2
arcsin

√
t .

Integrating with respect to t over [0, x] for 0 < x < 1 yields

x2h′(x) + x =

∫ x

0

[
t+ 2

2(1− t)2
+

3
√
t

2(1− t)5/2
arcsin

√
t

]
d t
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=
3x

2(1− x)
+

1

2
ln(1− x) + 3

∫ √x
0

s2

(1− s2)5/2
arcsin sd s

=
3x

2(1− x)
+

1

2
ln(1− x) + 3

∫ arcsin
√
x

0

u sin2 u cosu

(1− sin2 u)5/2
du

=
3x

2(1− x)
+

1

2
ln(1− x) + 3

∫ arcsin
√
x

0

u sin2 u

cos4 u
du

=
3x

2(1− x)
+

1

2
ln(1− x) +

∫ arcsin
√
x

0

u
(
tan3 u

)′
du

=
3x

2(1− x)
+

1

2
ln(1− x) + arcsin

√
x tan3 arcsin

√
x

−
∫ arcsin

√
x

0

tan3 udu

=
3x

2(1− x)
+

1

2
ln(1− x) +

x3/2

(1− x)3/2
arcsin

√
x

−
∫ arcsin

√
x

0

(
tanu sec2 u− tanu

)
du

=
3x

2(1− x)
+

1

2
ln(1− x) +

x3/2

(1− x)3/2
arcsin

√
x

− 1

2
sec2 arcsin

√
x − ln cos arcsin

√
x +

1

2

=
2x+ 1

2(1− x)
+

1

2
ln(1− x) +

x3/2

(1− x)3/2
arcsin

√
x

− 1

2(1− x)
− 1

2
ln
(
1− x

)
=

x

1− x
+

x3/2

(1− x)3/2
arcsin

√
x .

Furthermore, similarly integrating gives

h(t) =

∫ t

0

1

x2

[
x

1− x
+

x3/2

(1− x)3/2
arcsin

√
x − x

]
dx

=

∫ t

0

[
1

1− x
+

1

x1/2(1− x)3/2
arcsin

√
x

]
dx

= − ln(1− t) +

∫ arcsin
√
t

0

2s sin s cos s(
1− sin2 s

)3/2
sin s

d s

= − ln(1− t) + 2

∫ arcsin
√
t

0

s

cos2 s
d s

= − ln(1− t) + 2 arcsin
√
t tan arcsin

√
t − 2

∫ arcsin
√
t

0

tan sd s

= − ln(1− t) + 2

√
t

1− t
arcsin

√
t + 2 ln cos arcsin

√
t
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= 2

√
t

1− t
arcsin

√
t .

The proof of the formula (6.7) is complete.

9. Remarks

Finally we list several remarks on closely related results.

Remark 9.1. It seems that there are close and similar ideas in [3, 4] and that the
paper [3] is almost an expanded version of [4]. Great minds think alike!

Remark 9.2. In [17, p. 452, Theorem], it was established that
∞∑
m=1

(2x)2m

m
(
2m
m

) =
2x arcsinx√

1− x2
, |x| < 1.

This can be rearranged as
∞∑
m=1

(2x)2m

m(m+ 1)Cm
=

2x arcsinx√
1− x2

, |x| < 1.

Remark 9.3. Letting a = 1
2 and b = 2 in (7.6) and comparing with (2.29) leads to

2F1

(
1

2
, 1; 2; 4x

)
=

1−
√

1− 4x

2x
, |x| ≤ 1

4
.

This can also be deduced from the formula

2F1(a, b; c; z) =
1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a
d t, <(c) > <(b) > 0

in [2, p. 558, 15.3.1] and [9, 9.111].

Remark 9.4. Letting a = 1
2 and b = 2 in (7.7) gives

∞∑
n=1

Cn
4n

= 1

which can be rewritten as
∞∑
n=0

(2n+ 1)!!

(2n+ 4)!!
=

1

2
.

Remark 9.5. Taking a = 2 and b = 1
2 in (7.8) results in

∞∑
n=0

1

Cn

x2n

(2n)!
= 1F2

(
2;

1

2
,

1

2
;
x2

16

)
= 1 +

π

16
x
[
xLLL−1

(x
2

)
+ 6LLL0

(x
2

)]
,

where

LLLν =
(z

2

)ν+1 ∞∑
n=0

1

Γ
(
n+ 3

2

)
Γ
(
n+ ν + 3

2

)(z
2

)2n
denotes the modified Struve function, see [32, p. 228, 11.2.2].
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