A peer-reviewed article of this preprint also exists.
Abstract
Nanopowders are continuously under investigation as they open new perspectives in numerous fields. There are two main challenges to stimulate their development: sufficient low-cost high throughput synthesis methods leading to a production with well-defined and reproducible properties, and for ceramics, conservation of their nanostructure after sintering. In this context, this paper presents the synthesis of a pure nanosized powder of ZnO (dv50 ~ 60 nm, easily redispersable) by using a continuous Segmented Flow Tubular Reactor (SFTR), which has previously shown its versatility and its robustness, ensuring a high powder quality and reproducibility over time. A higher scale of production can be achieved based on a “scale-out” concept by replicating the tubular reactors. The sinterability of ZnO nanopowders synthesized by the SFTR was studied, by natural sintering at 900 °C and 1100 °C, and Spark Plasma Sintering (SPS) at 900 °C. The performances of the synthesized nanopowder were compared to a commercial ZnO nanopowder of high quality. The samples obtained from the synthesized nanopowder could not be densified at low temperature by traditional sintering, whereas SPS led to a fully dense material after only 5 minutes at 900 °C, while limiting the grain growth and thus leading to a nanostructured material.
Keywords:
Subject:
Chemistry and Materials Science - Nanotechnology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.