
 

Article 

A Fast K-prototypes Algorithm Using Partial 
Distance Computation 
Byoungwook Kim 

Creative Informatics & Computing Institute, Korea University, Seoul 02841; 
byoungwook.kim@inc.korea.ac.kr; Tel.: +82-2-3290-1674 

Abstract: The k-means is one of the most popular and widely used clustering algorithm, however, 
it is limited to only numeric data. The k-prototypes algorithm is one of the famous algorithms for 
dealing with both numeric and categorical data. However, there have been no studies to accelerate 
k-prototypes algorithm. In this paper, we propose a new fast k-prototypes algorithm that gives the 
same answer as original k-prototypes. The proposed algorithm avoids distance computations using 
partial distance computation. Our k-prototypes algorithm finds minimum distance without 
distance computations of all attributes between an object and a cluster center, which allows it to 
reduce time complexity. A partial distance computation uses a fact that a value of the maximum 
difference between two categorical attributes is 1 during distance computations. If data objects have 
m categorical attributes, maximum difference of categorical attributes between an object and a 
cluster center is m. Our algorithm first computes distance with only numeric attributes. If a 
difference of the minimum distance and the second smallest with numeric attributes is higher than 
m, we can find minimum distance between an object and a cluster center without distance 
computations of categorical attributes. The experimental shows proposed k-prototypes algorithm 
improves computational performance than original k-prototypes algorithm in our dataset. 

Keywords: clustering algorithm; k-prototypes algorithm, partial distance computation 
 

1. Introduction 

K-means algorithm is one of the simplest clustering algorithm as unsupervised learning, so that 
is very widely used [1]. As it is a partitioning-based clustering methods in cluster analysis, a dataset 
are partitioned into several groups according to a similarity measure as a distance to average of a 
group. K-means algorithm minimizes the objective function known as squared error function 
iteratively by finding a new set of cluster centers. In each iteration, the value of the objective function 
become lowers. In k-means algorithm, the objective function is defined by the sum of square distances 
between an object and a cluster center. 

The purpose of using k-means is to find clusters which minimized the sum of square distances 
between each cluster center and all objects in each cluster. Even though the number of cluster is small, 
the problem of finding optimal solution of k-means algorithm is NP-hard [2,3]. For this reason, k-
means algorithm adapts heuristics and finds local minimum as approximate optimal solutions. The 
time complexity of k-means algorithm is O(i*k*n*d) where i iterations, k centers, and n points in d 
dimensions. 

K-means algorithm spends a lot of processing time for computing the distances between each of 
the k cluster centers and the n objects. So far, many researchers have developed on accelerating k-
means algorithm by avoiding unnecessary distance computations between an object and cluster 
centers. Because objects usually remain in the same clusters after a certain number of iterations, much 
of repetitive distance computation are unnecessary. So far, the number of researches on accelerating 
k-means algorithm to avoid unnecessary distance calculations have been carried out [4-7]. 

K-means algorithm is efficient for clustering large datasets, but it only works on numerical data. 
But the real-world data is a mixture of both numeric and categorical features, so k-means algorithm 
has a limitation of applying cluster analysis. To overcome this problem, several algorithms have been 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 April 2017                   doi:10.20944/preprints201704.0099.v1

©  2017 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Symmetry 2017, 9, , 58; doi:10.3390/sym9040058

http://dx.doi.org/10.20944/preprints201704.0099.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/sym9040058


 2 of 8 

developed to cluster large datasets that contain both numeric and categorical values, and a well-
known algorithm is k-prototypes algorithm by Huang [8]. The time complexity of k-prototypes 
algorithm is O(i*k*n*d) as the one of k-means. In case of large data sets, time cost of distance 
calculation between all data objects and the centers is high. To the best of our knowledge, however, 
there have been no studies that reduce time complexity of k-prototypes algorithm. 

In this paper, we propose a fast k-prototypes algorithm for mixed data (FKPT). The FKPT 
reduces distance calculation using partial distance computation. The contributions of this study are 
summarized as follows. 
1. Reduction: reducing computational cost without additional data structure and memory spaces. 
2. Simplicity: it is simple to implement, because it does not require complex data structure. 
3. Convergence: being able to apply to other fast k-means algorithms to compute distance between 

each of cluster center and an object for numeric attributes. 
4. Speed: it is faster than the conventional k-prototype. 

This study presents a new method of accelerating k-prototypes algorithm using partial distance 
computation by avoiding unnecessary distance computations between an object and cluster centers. 
As a result, we believe the algorithm proposed in this paper will become the algorithm of choice for 
fast k-prototypes clustering. 

The organization of the rest of this paper is as follows. In Section 2, various methods of 
accelerating k-means and traditional k-prototypes algorithm are described, for the proposed k-
prototypes are defined. A fast k-prototypes algorithm proposed in this paper is explained and its 
time complexity is analyzed in Section 3. In Section 4, experimental results on (five) real data sets 
demonstrate the scalability and effectiveness of the FKPT using partial distance computation by 
comparison with traditional k-prototypes algorithm. Section 5 concludes the paper. 

2. Related works  

In this section, we briefly describe various methods of accelerating k-means and traditional k-
prototypes algorithm. 

2.1. k-means 

The k-means is one of the most popular clustering algorithm due to its simplicity and scalability 
for large data sets. The k-means algorithm is to partition n data objects into k clusters while 
minimizing the Euclidean distance between each data object and the cluster center it belongs to [9]. 
The fundamental concept of k-means clustering is as follows. 
1. It chooses k cluster centers in some manner. The final result of the algorithm is sensitive to the 

initial selection of k initial centers, and many efficient initialization methods have been proposed 
to calculate better final k centers. 

2. The k-means repeats the process of assigning individual objects to their nearest centers and 
updating each of k centers as the average of a value of object’s vector assigned to the centers 
until no further changes occur on the k centers. 
K-means algorithm spend most of the time computing distance between an object and current 

cluster centers. However, much of these distance computations are unnecessary, because objects 
usually remain in the same clusters after a few iterations [6]. Thus, k-means is popular and easy to 
implement, but it is wasting processing time on redundant and unnecessary distance computations. 

The reason why the k-means are inefficient is because in each iteration all objects must identify 
the closest center. In one iteration, all nk distance computations is needed between the n objects and 
the k centers. After the end of one iteration, the centers are changed and the nk distance computations 
occur again in next iteration.  

2.2. k-prototypes 

K-prototypes algorithm integrates the k-means and k-modes algorithms to deal with the mixed 
data types [8]. The k-prototypes algorithm is more useful practically because data collected in the real 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 April 2017                   doi:10.20944/preprints201704.0099.v1

Peer-reviewed version available at Symmetry 2017, 9, , 58; doi:10.3390/sym9040058

http://dx.doi.org/10.20944/preprints201704.0099.v1
http://dx.doi.org/10.3390/sym9040058


 3 of 8 

world are mixed type objects. Assume a set n objects, ܺ = ሼ ଵܺ, ܺଶ,⋯ , ܺ௡ሽ. ௜ܺ = ሼ ௜ܺଵ, ௜ܺଶ,⋯ , ௜ܺ௠ሽ is 
consisted of ݉ attributes (݉௥  is numerical attributes, ݉௖  is categorical attributes, ݉ = ݉௥ +݉௖). 
The goal of clustering is to partition n objects into k disjoint clusters ܥ = ሼܥଵ, ⋯,ଶܥ ,  ௜ isܥ ௞ሽ, whereܥ
a i-th cluster center. The distance ݀൫ ௜ܺ, ௝ can be calculated as follows:  ݀൫ܥ ௝൯ between ௜ܺ andܥ ௜ܺ, ௝൯ܥ = ݀௥൫ ௜ܺ, ௝൯ܥ + ߛ ݀௖൫ ௜ܺ, ௝൯, (1)ܥ

where ݀௥൫ ௜ܺ, )௝൯ is the distance between numerical attributes, ݀௖ܥ ௜ܺ,  ) is the distance between	௝ܥ
categorical attributes and ߛ is a weight for categorical attributes. 

݀௥൫ ௜ܺ, ௝൯ܥ =෍หݔ௜௟ − ௝ܿ௟หଶ௣
௟ୀଵ  (2)

݀௖൫ ௜ܺ, ௝൯ܥ = ෍ ,௜௟ݔ൫ߜ ௝ܿ௟൯௠
௟ୀ௣ାଵ  (3)

,௜௟ݔ൫ߜ ௝ܿ௟൯ = ൜0, when ௜௟ݔ = ௝ܿ௟1, when ௜௟ݔ ≠ ௝ܿ௟ (4)

In Equation (2), ݀௥൫ ௜ܺ,  ௝൯ is the squared Euclidean distance measure between cluster centersܥ
and an object on the numeric attributes. ݀௖൫ ௜ܺ,  ௝൯ is the simple matching dissimilarity measure onܥ
the categorical attributes, where ߜ൫ݔ௜௟, ௝ܿ௟൯=0 for ݔ௜௟ = ௝ܿ௟  and ߜ൫ݔ௜௟, ௝ܿ௟൯=1 for ݔ௜௟ ≠ ௝ܿ௟ ௜௟ݔ .  and ௝ܿ௟ , 1 ≤ ݈ ≤ ݌ , are values of numeric attributes, whereas ݔ௜௟  and ௝ܿ௟ ݌ , + 1 ≤ ݈ ≤ ݉  are values of 
categorical attributes for object i and the cluster center j. ݌ is the numbers of numeric attributes and ݉ −  .is the numbers of categorical attributes ݌

3. K-prototypes using Partial Distance Computation 

The existing k-prototypes algorithm allocates objects to the cluster with the smallest distance by 
calculating the distance between each cluster center and a new object to be allocated to the cluster. 
Distance is calculated by comparing all attributes of an object with all attributes of each cluster center 
using Brute-Force method. Figure 1 illustrates how k-prototypes algorithm organizes clusters with a 
target object. In this figure, an object consists of two numerical attributes and two categorical 
attributes. The entire dataset is divided into three clusters, ܥ = ሼܥଵ, ,ଶܥ  ଷሽ. The center of each clusterܥ
is ܥଵ = (3,3, ,ܥ (ܦ ଶܥ , = (6,6, ,ܣ (ܤ  and ܥଷ = (9,4, ,ܣ (ܤ The traditional k-prototypes algorithm 
calculates distance with each cluster center to find the cluster to which ௜ܺ = (5, 3, A, B) is assigned. 
The distance about numeric attribute of ௜ܺ  and ܥଵ, ,ଶܥ ଷܥ  is  (3 − 5)ଶ + (3 − 3)ଶ = 4, (6 − 5)ଶ +(6 − 3)ଶ = 10 , (9 − 5)ଶ + (4 − 3)ଶ = 17  respectively. The distance about categorical attribute of ௜ܺ와ܥଵ, ,ଶܥ 	ଷ is 1ܥ + 1 = 2	 ∵ C ≠ A,ܦ ≠ B, 0	 + 0 = 0	 ∵ A = A, B = B,	respectively. The total distance 
of ௜ܺ and ܥଵ, ܥଶ,, and ܥଷ is 6, 10, and 17, respectively, and the cluster closest to ௜ܺ 	is ௜ܺ. Thus, the 
traditional k-prototypes algorithm computes the distance as a brute force method that compares both 
numerical and categorical properties. 

The purpose of distance computation is to find a cluster center closest to an object. However, 
there is an unnecessary distance calculation in the traditional k-prototypes algorithm. According to 
Equation (4), the maximum value that can be obtained is one when comparing one categorical 
attribute. In Fig. 1, an object has two categorical properties, so the maximum value that can be 
extracted from the distance comparing the categorical property is 2. In Figure 1, when using 
numerical attribute, the closest cluster with object is ܥଵ and a distance of 4, the second closest cluster 
is ܥଶ, a distance of 4. Since the difference between these two values is greater than 2, comparing the 
numerical property, nevertheless the measured minimum distance, 4 added to the categorical 
property comparison maximum value 2, it does not exceed 10. In such a case, the cluster center closest 
to an object can be determined by calculating the numerical attribute value without calculating the 
category curl attribute in the distance calculation. Of course, the minimum distance cannot be 
obtained by comparing numerical properties for all cases only. In Fig. 1, at ௝ܺ = (0,0,0,0), Distance 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 April 2017                   doi:10.20944/preprints201704.0099.v1

Peer-reviewed version available at Symmetry 2017, 9, , 58; doi:10.3390/sym9040058

http://dx.doi.org/10.20944/preprints201704.0099.v1
http://dx.doi.org/10.3390/sym9040058


 4 of 8 

about numeric attribute of ௝ܺ  and ܥଵ, ,ଶܥ ଷܥ  is (3 − ଶ(ݔ + (3 − ଶ(ݔ = x , (6 − ଶ(ݔ + (6 − ଶ(ݔ = x , (9 − ଶ(ݔ + (4 − ଶ(ݔ = x respectively. 

Figure 1. A process of assigning an object Xi to a cluster of which the center is most closest to the 
objects. 

This paper studies a method to find the closest center to an object without comparison for all 
attributes in a distance computation. We prove that the closest center to an object can be found 
without comparison for all attributes. For a proof, we define a Computable Max Difference Value as 
follows. 

Definition 1. Computable Max Difference Value. The computable max difference value means the 
max difference value can be calculated in distance measure between an object and cluster centers for 
one attribute.  

According to the Equation (4), the distance for a single categorical attribute between cluster 
centers and an object is either 0 or 1. Therefore, a computable max difference value for a categorical 
attribute becomes 1 by Definition 1 without taking the value of the attribute into account. If an object 
in dataset consists of m categorical attributes, then a computable max difference value between a 
cluster and object is m. A computable max difference value of a numeric attribute is a difference of a 
max value and a min value of the attribute. Thus, to know a computable max difference value of a 
numeric attribute, we have to scan full datasets so that a max and min value are obtained. 

The proposed k-prototypes algorithm finds minimum distance without distance computations 
of all attributes between an object and a cluster center using computable max difference value of the 
object. The k-prototypes algorithm updates a cluster center after an object is assigned to the cluster 
of the closest center by distance measure. By Equation 1, the distance ݀൫ ௜ܺ,  ௝൯ between an objectܥ
and a cluster center is computed by adding the distance of numeric attributes and the distance of 
categorical attributes. If a difference of the first and the second minimum distance on numeric 
attributes is higher than m, we can find minimum distance between an object and a cluster center 
only using distance computation of numeric attributes without distance computations of categorical 
attributes. 

Lemma 1. For a set of objects with m categorical attribute, if ݀௥( ௜ܺ, (௕ܥ − ݀௥( ௜ܺ, (௔ܥ > ݉  then ݀( ௜ܺ, (௕ܥ 	> ݀( ௜ܺ,  .(௔ܥ
Proof. ݀௥( ௜ܺ, (௕ܥ − ݀௥( ௜ܺ, (௔ܥ > ݉ 
 ݀௥( ௜ܺ, (௕ܥ > ݉ + −݀௥( ௜ܺ,   .(௔ܥ
By Equation (2) ݀( ௜ܺ, (௔ܥ = ݀௥( ௜ܺ, (௔ܥ + ݀௖( ௜ܺ, )݀  (௔ܥ ௜ܺ, (௕ܥ = ݀௥( ௜ܺ, (௕ܥ + ݀௖( ௜ܺ, )݀  (௕ܥ ௜ܺ, (௕ܥ − ݀௖( ௜ܺ, (௕ܥ > ݉ + ݀( ௜ܺ, (௔ܥ − ݀௖( ௜ܺ,  .(௔ܥ
By definition (1), categorical distance between an object and a cluster center with m categorical 

attributes can be 0 ≤ ݀௖( ௜ܺ, (௔ܥ ≤ ݉  and 0 ≤ ݀௖( ௜ܺ, (௕ܥ ≤ ݉ . ݀( ௜ܺ, (௕ܥ 	≥ ݀( ௜ܺ, (௕ܥ − ݀௖( ௜ܺ, (௕ܥ >݉ + ݀( ௜ܺ, (௔ܥ − ݀௖( ௜ܺ, (௔ܥ ≥ ݀( ௜ܺ, ∴ .(௔ܥ ݀( ௜ܺ, (௕ܥ 	> ݀( ௜ܺ,  (௔ܥ
We introduce a way to determine the minimum distance between an object and each of cluster 

center with only computation of numeric attribute by an example. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 April 2017                   doi:10.20944/preprints201704.0099.v1

Peer-reviewed version available at Symmetry 2017, 9, , 58; doi:10.3390/sym9040058

http://dx.doi.org/10.20944/preprints201704.0099.v1
http://dx.doi.org/10.3390/sym9040058


 5 of 8 

Example 1. We assume that k=3. The each current cluster center are ܥଵ = ,ܣ) ,ܣ ,ܣ 5) ଶܥ , ,ܤ)= ,ܤ ,ܤ 7), and ܥଷ = ,ܤ) ,ܤ ,ܤ 8). As shown by Fig. 1, we have to compute the distance between ௜ܺ ,ܤ)= ,ܤ ,ܤ 4) and each of cluster centers (ܥଵ, ܥଶ, and ܥଷ) for assigning ௜ܺ to the cluster of the closest 
center. Firstly, we compute the distance of numeric attributes, ݀௥൫ ௜ܺ,  ଵ only with numeric attributes. In this example, objects consisted of 3 categoricalܥ ௝൯ is 1, 9, and 16, respectively. ௜ܺ is the closest toܥ
attributes, and the min value of possible distance is 0, the max value is 3. The difference of numeric 
distance between ݀௥( ௜ܺ, 	(ଵܥ and ݀௥( ௜ܺ, (ଶܥ  is 8. Thus, the fact that ௜ܺ  is the closest to ܥଵ  is 
unchanged even if ݀௖( ௜ܺ,  .ଵ) is calculated by 3 as computable max difference valueܥ

 
Figure 2. Finding the closest cluster center without computing categorical attributes. 

3.2. Proposed algorithm 

In this section, we describe our proposed algorithm.  
Algorithm 1: proposed k-prototype 
Input: n: the number of objects, k: the number of cluster, p: the number of numeric attribute, q: 

the number of categorical attribute 
Output: k cluster 

01: INITIALIZE // Randomly choosing k object, and assigning it to ܥ௝. 
02: While not converged do 
03:   for i = 1 to n do 
04:      dist_n[] = DIST-COMPUTE-NUM( ௜ܺ , C, k, p)  // distance computation only numeric attributes 
05:      first_min = DIST-COMPUTE.first_min       // first minimum value among ݀௥൫ ௜ܺ,  ௝൯ܥ
06:      second_min = DIST-COMPUTE.second_min   // second minimum value among ݀௥൫ ௜ܺ,  ௝൯ܥ
07:    if ( second_min – first_min < m) then 
08:        dist[] = dist_n[] + DIST-COMPUTE-CATE( ௜ܺ , C, k) 
09:    else  
10:        dist[] = dist_n[]  
11:      num = argmin௭  [ݖ]ݐݏ݅݀
12:      ௜ܺ is assigned to ܥ௡௨௠ 
13:      UPDATE-CENTER(ܥ௡௨௠) 

The proposed k-prototypes algorithm in this paper is similar to traditional k-prototypes. The 
difference between proposed k-prototypes and traditional k-prototypes is that the distance between 
an object and cluster centers on the numeric attributes, ݀௥൫ ௜ܺ,   .௝൯, is calculated firstlyܥ

In Line 4, firstly, you calculate the distance for a numerical attribute. You obtain the closest 
distance and the second closest distance value while calculating the distance. Using these two values 
and the number of the categorical attributes, m, the discriminant is performed. If the result of the 
discriminant is true, the distance to the categorical property is calculated, and then the result of the 
final distance is derived by adding the distance of the numerical property. If the result of the 
discriminant is false, the final distance is measured by the numerical attribute result only. Including ௜ܺ in the cluster measured at the smallest distance, and you update the value of the corresponding 
cluster center. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 April 2017                   doi:10.20944/preprints201704.0099.v1

Peer-reviewed version available at Symmetry 2017, 9, , 58; doi:10.3390/sym9040058

http://dx.doi.org/10.20944/preprints201704.0099.v1
http://dx.doi.org/10.3390/sym9040058


 6 of 8 

Definition 1 is a function that determines whether to compare the categorical attribute with the 
algorithm that implements it. Returns the true value if the difference between the second smallest 
distance and the first smallest distance is less than to m in the distance measured only by numerical 
property comparison between an object and cluster center. If a true value is returned, Algorithm 1 
calls a function that compares the distance of the categorical attribute to calculate the final distance. 
If a false value is returned, the distance measured by only the numerical property comparison is set 
as the final results value without comparing the categorical property. The larger the difference 
between the two distances, the greater the number of categorical attributes that need not be 
compared. 

 
Algorithm 2: DIST-COMPUTE- NUM() 
Input: ௜ܺ: an object vector, C: a set of cluster center vectors, k: the number of clusters, p: the 

number of numeric attribute 
Output: dist_n[], first_min, second_min 
 

01: for i = 1 to k do 
02:   for j = 1 to p do  
03:      dist_n[j] = (ܺ[݆]  ௜[݆])ଶܥ	−
04: first_min = dist_n[0] 
05: second_min = dist_n[0] 
06: for i = 0 to k-1 do 
07:   if( dist_n[i] < first_min ) then 
08:      second_min = first_min 
09:      first_min = dist_n[i] 
10:   else if( dist_n[i] < second_min) then 
11:      second_min = dist_n[i] 
12: Return dist_n[] 

 
In Algorithm 2, DIST-COMPUTE-NUM() calculates a distance between an object and cluster 

centers for numerical attributes and returns all distances for each cluster. In this algorithm, first_min 
and second_min is calculated to determine whether calculation of categorical data in a distance 
computation. 

 
Algorithm 3: DIST-COMPUTE- CATE() 
Input: ௜ܺ: an object vector, C: cluster center vectors, k: the number of clusters, p: the number of 

numeric attribute 
Output: dist_c[] 
 

01: for i = 1 to k do 
02:    for j = p +1 to m do  
03:       if( ܺ[݆] =  ௜[݆] ) thenܥ	
04:          dist_c[i] += 0 
05:       else  
06: dist_c[i] += 1 
07: Return dist_c[] 

 
In Algorithm 3, a distance between an object and cluster centers is calculated for categorical 

attributes of each cluster.  
 
Algorithm 4: UPDATE-CENTER() 
Input: ܥ௜: an i-th cluster center vectors 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 April 2017                   doi:10.20944/preprints201704.0099.v1

Peer-reviewed version available at Symmetry 2017, 9, , 58; doi:10.3390/sym9040058

http://dx.doi.org/10.20944/preprints201704.0099.v1
http://dx.doi.org/10.3390/sym9040058


 7 of 8 

 
01: foreach o ∈  ௜ doܥ
02: for j = 1 to p do  
03:   sum[j] += o[j] 
04: for j = 1 to p do  
05:   C[j] = sum[j] / |ܥ௜| 
06: for j = p +1 to m do  
07:   C[j] = argmax COUNT(o[j]) 

 
In Algorithm 4, the center vector of a cluster is assigned to new center vector. The center vectors 

consisted of two part which are numeric and categorical attributes. The numeric part of center vector 
is calculated by an average value of each numeric attributes and the categorical part of center vector 
is calculated by the value of the highest frequency in each categorical attribute. 

3.3. Time complexity 

The time complexity of traditional k-prototypes is ܱ(ܫ ∗ ݇ ∗ ݊ ∗ ݉), where I is the number of 
iterations, k is the number of clusters, n is the number of data objects and m is the number of 
attributes. The best-case complexity of the proposed k-prototypes has a lower bound of ܫ)ߗ ∗ ݇ ∗ ݊ where p is the number of numeric attributes and p ,(݌∗ < m. The best-case is that the difference of the 
first and the second minimum distance between an object and cluster centers for all object in given 
dataset on numeric attributes is less than m. The worst-case complexity has an upper bound of ܱ(ܫ ∗݇ ∗ ݊ ∗ ݉). The worst-case is that the difference of the first and the second minimum distance between 
an object and cluster centers for all object in given dataset on numeric attributes is higher than m. 

4. Experimental results 

All experiments are conducted on an Intel(R) Pentium(R) 3558U 1.70 GHz, 4GB RAM. All 
programs are written in Java. We generate several independent, uniform distribution mix typed 
datasets. A distribution of numerical attributes is from 0 to 100, and one of categorical attributes is 
from alphabet A to Z. 

4.1. Effect of cardinality 

We set |X| (number of objects)={500000, 800000, 1000000}, numerical attributes=2, categorical 
attributes=16 and k=3. Figure 3 shows the CPU time versus cardinality in different datasets. In the 
figure, there are two lines. In general, the CPU time increases linearly when the cardinality increases 
linearly. The experimental shows proposed k-prototypes algorithm improves computational 
performance than original k-prototypes algorithm in our dataset. 

500k 800k 1000k
4.4

4.5

4.6

4.7

4.8

4.9

5.0

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6.0

T
im

e 
(s

ec
on

d)

cardinalrity

 FKPT
 TKPT

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 April 2017                   doi:10.20944/preprints201704.0099.v1

Peer-reviewed version available at Symmetry 2017, 9, , 58; doi:10.3390/sym9040058

http://dx.doi.org/10.20944/preprints201704.0099.v1
http://dx.doi.org/10.3390/sym9040058


 8 of 8 

Figure 3. Effect of cardinality. FKPT (fast k-prototypes) is the result of our propose k-prototype 
algorithm and TKPT (traditional k-prototypes) is the result of original k-prototypes algorithm. 

5. Conclusion 

In this paper, we have proposed a fast k-prototypes algorithm for clustering mixed data sets. 
Experimental results show that our algorithm is fast than original algorithm. Previous fast k-means 
algorithm focused on reducing candidate objects for computing distance to cluster centers. Our k-
prototypes algorithm reduces unnecessary distance computation using partial distance computation 
without distance computations of all attributes between an object and a cluster center, which allows 
it to reduce time complexity. The experimental shows proposed k-prototypes algorithm improves 
computational performance than original k-prototypes algorithm in our dataset. 

However, our k-prototypes algorithm does not guarantee that computational performance will 
be improved in all cases. If the difference of the first and the second minimum distance between an 
object and cluster centers for all object in given dataset on numeric attributes is less than m, then the 
performance of our k-prototypes is same to the original k-prototype. Our k-prototypes algorithm is 
influenced by variance of the numeric data values. The larger variance of the numeric data values, 
the higher probability that the difference of the first and the second minimum distance between an 
object and cluster centers is large. 

The k-prototypes algorithm proposed in this paper simply reduces the computational cost 
without using additional data structures and memories. Our algorithm is faster than original k-
prototypes algorithm. The goal of the existing k-means acceleration algorithm is to reduce the 
number of dimensions to be compared when calculating the distance between center and object, in 
order to reduce the number of objects compared with the center of the cluster. K-Means, which deals 
only with numeric data, is the most widely used algorithm among clustering algorithms. Various 
acceleration algorithms have been developed to improve the speed of processing large data. 
However, real-world data is mostly a mixture of numeric data and categorical data. In this paper, we 
propose a method to speed up the k-prototypes algorithm for clustering mixed data. The method 
proposed in this paper is a method of reducing the number of objects compared with the center of 
existing clusters, and is not exclusive, and the existing methods and the methods proposed in this 
paper can be integrated with each other. 

Author Contributions: Byoungwook Kim: Research for the related works, doing the experiments, writing the 
paper, acquisition of data, analysis of data, interpretation of the related works, and design of the complete model.  

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. MacQueen, J. B. Some methods for classification and analysis of multivariate observations, in Proc. 5th 
Symp. Mathematical Statistics and Probability, Berkeley, CA, 1967, pp. 281-297. 

2. Aloise, D.; Deshpande, A.; Hansen, P.; Popat, P. (2009). NP-hardness of Euclidean sum-of-squares 
clustering. Machine Learning, 75: 245–249. doi:10.1007/s10994-009-5103-0. 

3. Dasgupta, S. and Freund, Y. (July 2009). Random Projection Trees for Vector Quantization. IEEE 
Transactions on Information Theory, 55: 3229–3242. arXiv:0805.1390. doi:10.1109/TIT.2009.2021326. 

4. Drake, J., Hamerly, G. (2012) Accelerated k-means with adaptive distance bounds. In: 5th NIPS workshop 
on optimization for machine learning 

5. Elkan, C. Using the triangle inequality to accelerate k-means. In Tom Fawcett and Nina Mishra, editors, 
ICML, pages 147–153. AAAI Press, 2003. 

6. Hamerly, G. 2010. Making k-means even faster. Proc. SDM. pp. 130-140. 
7. Pelleg, D. and Moore, A. W. 1999. Accelerating exact k-means algorithms with geometric reasoning. In 

KDD, pages 277–281. 
8. Huang, Z. 1997. Clustering large data sets with mixed numeric and categorical values. Proceedings of the First 

Pacific Asia Knowledge Discovery and Data Mining Conference, Singapore: World Scientific, pp. 21–34. 
9. MacQueen, J. B. Some methods for classification and analysis of multivariate observations, in Proc. 5th 

Symp. Mathematical Statistics and Probability, Berkeley, CA, 1967, pp. 281-297. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 April 2017                   doi:10.20944/preprints201704.0099.v1

Peer-reviewed version available at Symmetry 2017, 9, , 58; doi:10.3390/sym9040058

http://dx.doi.org/10.20944/preprints201704.0099.v1
http://dx.doi.org/10.3390/sym9040058

