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Abstract: The k-means is one of the most popular and widely used clustering algorithm, however,
it is limited to only numeric data. The k-prototypes algorithm is one of the famous algorithms for
dealing with both numeric and categorical data. However, there have been no studies to accelerate
k-prototypes algorithm. In this paper, we propose a new fast k-prototypes algorithm that gives the
same answer as original k-prototypes. The proposed algorithm avoids distance computations using
partial distance computation. Our k-prototypes algorithm finds minimum distance without
distance computations of all attributes between an object and a cluster center, which allows it to
reduce time complexity. A partial distance computation uses a fact that a value of the maximum
difference between two categorical attributes is 1 during distance computations. If data objects have
m categorical attributes, maximum difference of categorical attributes between an object and a
cluster center is m. Our algorithm first computes distance with only numeric attributes. If a
difference of the minimum distance and the second smallest with numeric attributes is higher than
m, we can find minimum distance between an object and a cluster center without distance
computations of categorical attributes. The experimental shows proposed k-prototypes algorithm
improves computational performance than original k-prototypes algorithm in our dataset.
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1. Introduction

K-means algorithm is one of the simplest clustering algorithm as unsupervised learning, so that
is very widely used [1]. As it is a partitioning-based clustering methods in cluster analysis, a dataset
are partitioned into several groups according to a similarity measure as a distance to average of a
group. K-means algorithm minimizes the objective function known as squared error function
iteratively by finding a new set of cluster centers. In each iteration, the value of the objective function
become lowers. In k-means algorithm, the objective function is defined by the sum of square distances
between an object and a cluster center.

The purpose of using k-means is to find clusters which minimized the sum of square distances
between each cluster center and all objects in each cluster. Even though the number of cluster is small,
the problem of finding optimal solution of k-means algorithm is NP-hard [2,3]. For this reason, k-
means algorithm adapts heuristics and finds local minimum as approximate optimal solutions. The
time complexity of k-means algorithm is O(i*k*n*d) where i iterations, k centers, and n points in d
dimensions.

K-means algorithm spends a lot of processing time for computing the distances between each of
the k cluster centers and the n objects. So far, many researchers have developed on accelerating k-
means algorithm by avoiding unnecessary distance computations between an object and cluster
centers. Because objects usually remain in the same clusters after a certain number of iterations, much
of repetitive distance computation are unnecessary. So far, the number of researches on accelerating
k-means algorithm to avoid unnecessary distance calculations have been carried out [4-7].

K-means algorithm is efficient for clustering large datasets, but it only works on numerical data.
But the real-world data is a mixture of both numeric and categorical features, so k-means algorithm
has a limitation of applying cluster analysis. To overcome this problem, several algorithms have been
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developed to cluster large datasets that contain both numeric and categorical values, and a well-
known algorithm is k-prototypes algorithm by Huang [8]. The time complexity of k-prototypes
algorithm is O(i*k*n*d) as the one of k-means. In case of large data sets, time cost of distance
calculation between all data objects and the centers is high. To the best of our knowledge, however,
there have been no studies that reduce time complexity of k-prototypes algorithm.

In this paper, we propose a fast k-prototypes algorithm for mixed data (FKPT). The FKPT
reduces distance calculation using partial distance computation. The contributions of this study are
summarized as follows.

1. Reduction: reducing computational cost without additional data structure and memory spaces.

2. Simplicity: it is simple to implement, because it does not require complex data structure.

3. Convergence: being able to apply to other fast k-means algorithms to compute distance between
each of cluster center and an object for numeric attributes.

4.  Speed: it is faster than the conventional k-prototype.

This study presents a new method of accelerating k-prototypes algorithm using partial distance
computation by avoiding unnecessary distance computations between an object and cluster centers.
As a result, we believe the algorithm proposed in this paper will become the algorithm of choice for
fast k-prototypes clustering.

The organization of the rest of this paper is as follows. In Section 2, various methods of
accelerating k-means and traditional k-prototypes algorithm are described, for the proposed k-
prototypes are defined. A fast k-prototypes algorithm proposed in this paper is explained and its
time complexity is analyzed in Section 3. In Section 4, experimental results on (five) real data sets
demonstrate the scalability and effectiveness of the FKPT using partial distance computation by
comparison with traditional k-prototypes algorithm. Section 5 concludes the paper.

2. Related works

In this section, we briefly describe various methods of accelerating k-means and traditional k-
prototypes algorithm.

2.1. k-means

The k-means is one of the most popular clustering algorithm due to its simplicity and scalability
for large data sets. The k-means algorithm is to partition n data objects into k clusters while
minimizing the Euclidean distance between each data object and the cluster center it belongs to [9].
The fundamental concept of k-means clustering is as follows.

1. It chooses k cluster centers in some manner. The final result of the algorithm is sensitive to the
initial selection of k initial centers, and many efficient initialization methods have been proposed
to calculate better final k centers.

2. The k-means repeats the process of assigning individual objects to their nearest centers and
updating each of k centers as the average of a value of object’s vector assigned to the centers
until no further changes occur on the k centers.

K-means algorithm spend most of the time computing distance between an object and current
cluster centers. However, much of these distance computations are unnecessary, because objects
usually remain in the same clusters after a few iterations [6]. Thus, k-means is popular and easy to
implement, but it is wasting processing time on redundant and unnecessary distance computations.

The reason why the k-means are inefficient is because in each iteration all objects must identify
the closest center. In one iteration, all nk distance computations is needed between the n objects and
the k centers. After the end of one iteration, the centers are changed and the nk distance computations
occur again in next iteration.

2.2. k-prototypes

K-prototypes algorithm integrates the k-means and k-modes algorithms to deal with the mixed
data types [8]. The k-prototypes algorithm is more useful practically because data collected in the real
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world are mixed type objects. Assume a set n objects, X = {X;,X,,--, X} X; = {Xi1, Xi2, -+, Xy} 15
consisted of m attributes (m, is numerical attributes, m, is categorical attributes, m = m, + m,).
The goal of clustering is to partition n objects into k disjoint clusters C = {Cy, C,, -, C}, where C; is
a i-th cluster center. The distance d(X;,C;) between X; and C; can be calculated as follows:

d(X;, G;) = d.(X., G;) + v d.(X., C)), D

where dT(Xi,C]-) is the distance between numerical attributes, d.(X;, ;) is the distance between
categorical attributes and y is a weight for categorical attributes.

14

4, (%, G) = ) |xu - @
=1
m

d(X ) = ) 6Cxucy) ©)
l=p+1
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5(951‘1» le) - {1, when x; # ¢; ¥

In Equation (2), d,(X;,C;) is the squared Euclidean distance measure between cluster centers
and an object on the numeric attributes. d.(X;,C;) is the simple matching dissimilarity measure on
the categorical attributes, where 6(xu,cﬂ)=0 for x; = c;; and S(xil, cﬂ)=1 for x;; # ¢j. xy and ¢,
1<1<p, are values of numeric attributes, whereas x; and c¢;;, p+1<1<m are values of
categorical attributes for object i and the cluster center j. p is the numbers of numeric attributes and
m — p is the numbers of categorical attributes.

3. K-prototypes using Partial Distance Computation

The existing k-prototypes algorithm allocates objects to the cluster with the smallest distance by
calculating the distance between each cluster center and a new object to be allocated to the cluster.
Distance is calculated by comparing all attributes of an object with all attributes of each cluster center
using Brute-Force method. Figure 1 illustrates how k-prototypes algorithm organizes clusters with a
target object. In this figure, an object consists of two numerical attributes and two categorical
attributes. The entire dataset is divided into three clusters, C = {C;, C, C3}. The center of each cluster
is ¢;=(@33,C,D), C,=(66,4B) and C; =(94,4,B) The traditional k-prototypes algorithm
calculates distance with each cluster center to find the cluster to which X; = (5, 3, A, B) is assigned.
The distance about numeric attribute of X; and C;, C,, C3 is (3—5)2+(3-3)2=4, (6 -5+
(6—3)2=10, (9—-5)*+ (4 —3)* =17 respectively. The distance about categorical attribute of
X;9C;,CpC3is1 +1=2 +C+AD#B,0+0=0~A=AB=B8, respectively. The total distance
of X; and Cj, C,, and (3 is 6, 10, and 17, respectively, and the cluster closest to X; is X;. Thus, the
traditional k-prototypes algorithm computes the distance as a brute force method that compares both
numerical and categorical properties.

The purpose of distance computation is to find a cluster center closest to an object. However,
there is an unnecessary distance calculation in the traditional k-prototypes algorithm. According to
Equation (4), the maximum value that can be obtained is one when comparing one categorical
attribute. In Fig. 1, an object has two categorical properties, so the maximum value that can be
extracted from the distance comparing the categorical property is 2. In Figure 1, when using
numerical attribute, the closest cluster with objectis C; and a distance of 4, the second closest cluster
is C,, a distance of 4. Since the difference between these two values is greater than 2, comparing the
numerical property, nevertheless the measured minimum distance, 4 added to the categorical
property comparison maximum value 2, it does not exceed 10. In such a case, the cluster center closest
to an object can be determined by calculating the numerical attribute value without calculating the
category curl attribute in the distance calculation. Of course, the minimum distance cannot be
obtained by comparing numerical properties for all cases only. In Fig. 1, at X; = (0,0,0,0), Distance
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about numeric attribute of X; and C;, C,, C3 is B—x)2+ (3 —-x)?=x, (6—x)*+ (6 —x)* =%,
(9 —x)? + (4 — x)* = x respectively.
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Figure 1. A process of assigning an object Xi to a cluster of which the center is most closest to the
objects.

This paper studies a method to find the closest center to an object without comparison for all
attributes in a distance computation. We prove that the closest center to an object can be found
without comparison for all attributes. For a proof, we define a Computable Max Difference Value as
follows.

Definition 1. Computable Max Difference Value. The computable max difference value means the
max difference value can be calculated in distance measure between an object and cluster centers for
one attribute.

According to the Equation (4), the distance for a single categorical attribute between cluster
centers and an object is either 0 or 1. Therefore, a computable max difference value for a categorical
attribute becomes 1 by Definition 1 without taking the value of the attribute into account. If an object
in dataset consists of m categorical attributes, then a computable max difference value between a
cluster and object is m. A computable max difference value of a numeric attribute is a difference of a
max value and a min value of the attribute. Thus, to know a computable max difference value of a
numeric attribute, we have to scan full datasets so that a max and min value are obtained.

The proposed k-prototypes algorithm finds minimum distance without distance computations
of all attributes between an object and a cluster center using computable max difference value of the
object. The k-prototypes algorithm updates a cluster center after an object is assigned to the cluster
of the closest center by distance measure. By Equation 1, the distance d(X;,C;) between an object
and a cluster center is computed by adding the distance of numeric attributes and the distance of
categorical attributes. If a difference of the first and the second minimum distance on numeric
attributes is higher than m, we can find minimum distance between an object and a cluster center
only using distance computation of numeric attributes without distance computations of categorical
attributes.

Lemma 1. For a set of objects with m categorical attribute, if d.(X;, Cp) — d,(X;,Cy) > m then
d(X;, Cp) > d(X;,Cp).

Proof. d,.(X;,Cp) — d,(X;,Cy) >m

dr(Xi' Cb) >m+ _dr(Xi! Ca)-

By Equation (2) d(X;,C,) = d,(X;, C,) + d.(X;, Cp)

d(Xy, Cp) = dr(X;, Cp) + dc(X;, Cp)

d(Xy, Cp) — dc(X;, Cp) > m + d(X;, Cp) — dc(X;, Co).

By definition (1), categorical distance between an object and a cluster center with m categorical
attributes can be 0<d.(X;C;) <m and 0<d.(X;,Cp) <m. d(X;,C,) =d(X;,Cp) —d.(X;,Cp) >
m+ d(Xi' Ca) - dc(Xil Ca) 2 d(Xi' Ca)' d(Xi' Cb) > d(Xi' Ca)

We introduce a way to determine the minimum distance between an object and each of cluster
center with only computation of numeric attribute by an example.
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Example 1. We assume that k=3. The each current cluster center are C; = (4,4,4,5), C, =
(B,B,B,7),and C; = (B,B, B, 8). As shown by Fig. 1, we have to compute the distance between X; =
(B,B,B,4) and each of cluster centers (C;, C,, and C3) for assigning X; to the cluster of the closest
center. Firstly, we compute the distance of numeric attributes, d, (X 0 C]) is 1,9, and 16, respectively.
X; is the closest to C; only with numeric attributes. In this example, objects consisted of 3 categorical
attributes, and the min value of possible distance is 0, the max value is 3. The difference of numeric
distance between d,.(X;,C,) and d,.(X;, C,) is 8. Thus, the fact that X; is the closest to C; is
unchanged even if d.(X;, C;) is calculated by 3 as computable max difference value.

,M., l dp(X,C) =1 d.(X;,C)=3 a¢ )
X, C) =4
c|lalala]s o
Categorical l dp(XyCy) =9 d.(X,C;) =0
o[ BEE] e
Categorical l d.(X,C;) = 16 d.(X,C3) =0 _
o[ EEEE e

B[BIB|4]x

Computable Max dif ference value: 3

Figure 2. Finding the closest cluster center without computing categorical attributes.

3.2. Proposed algorithm

In this section, we describe our proposed algorithm.

Algorithm 1: proposed k-prototype
Input: n: the number of objects, k: the number of cluster, p: the number of numeric attribute, g:
the number of categorical attribute
Output: k cluster
01: INITIALIZE // Randomly choosing k object, and assigning it to C;.
02: While not converged do
03: fori=1tondo

04: dist_n[] = DIST-COMPUTE-NUM(X;, C, k, p) // distance computation only numeric attributes
05: first_min = DIST-COMPUTE first_min // first minimum value among d,.(X;, C;)

06: second_min = DIST-COMPUTE.second_min  // second minimum value among d,(X;, C])
07:  if ( second_min — first_min < m) then

08: dist[] = dist_n[] + DIST-COMPUTE-CATE(X;, C, k)

09:  else

10: dist[] = dist_n[]

11: num = argmin dist[z]

12: X; is assigned to Cpym

13: UPDATE-CENTER(Cyy1n)

The proposed k-prototypes algorithm in this paper is similar to traditional k-prototypes. The
difference between proposed k-prototypes and traditional k-prototypes is that the distance between
an object and cluster centers on the numeric attributes, d,(X;, C;), is calculated firstly.

In Line 4, firstly, you calculate the distance for a numerical attribute. You obtain the closest
distance and the second closest distance value while calculating the distance. Using these two values
and the number of the categorical attributes, m, the discriminant is performed. If the result of the
discriminant is true, the distance to the categorical property is calculated, and then the result of the
final distance is derived by adding the distance of the numerical property. If the result of the
discriminant is false, the final distance is measured by the numerical attribute result only. Including

X; in the cluster measured at the smallest distance, and you update the value of the corresponding
cluster center.

d0i:10.20944/preprints201704.0099.v1
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Definition 1 is a function that determines whether to compare the categorical attribute with the
algorithm that implements it. Returns the true value if the difference between the second smallest
distance and the first smallest distance is less than to m in the distance measured only by numerical
property comparison between an object and cluster center. If a true value is returned, Algorithm 1
calls a function that compares the distance of the categorical attribute to calculate the final distance.
If a false value is returned, the distance measured by only the numerical property comparison is set
as the final results value without comparing the categorical property. The larger the difference
between the two distances, the greater the number of categorical attributes that need not be
compared.

Algorithm 2: DIST-COMPUTE- NUM()

Input: X;: an object vector, C: a set of cluster center vectors, k: the number of clusters, p: the
number of numeric attribute

Output: dist_n[], first_ min, second_min

01: fori=1tok do

02: forj=1topdo

03:  dist_n[jl = (X[j] - GiD?
04: first_min = dist_n[0]

05: second_min = dist_n[0]

06: fori=0to k-1 do

07:  if( dist_n[i] < first_min ) then

08: second_min = first_min

09: first_min = dist_n[i]

10:  else if( dist_n[i] < second_min) then
11: second_min = dist_n[i]

12: Return dist_n([]

In Algorithm 2, DIST-COMPUTE-NUM() calculates a distance between an object and cluster
centers for numerical attributes and returns all distances for each cluster. In this algorithm, first_min
and second_min is calculated to determine whether calculation of categorical data in a distance
computation.

Algorithm 3: DIST-COMPUTE- CATE()

Input: X;: an object vector, C: cluster center vectors, k: the number of clusters, p: the number of
numeric attribute

Output: dist_c[]

01: fori=1tok do
02:  forj=p+1tomdo

03: if( X[j]1 = G[j] ) then
04: dist_c[i] +=0
05: else

06: dist_c[i] +=1
07: Return dist_]]

In Algorithm 3, a distance between an object and cluster centers is calculated for categorical
attributes of each cluster.

Algorithm 4: UPDATE-CENTER()
Input: C;: an i-th cluster center vectors
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01: foreach o € C; do

02: forj=1top do

03:  sumlj] +=o[j]

04: forj=1top do

05:  C[j] =sum][j]/ |G|

06: for j=p +1 to m do

07:  CJj] = argmax COUNT(o[j])

In Algorithm 4, the center vector of a cluster is assigned to new center vector. The center vectors
consisted of two part which are numeric and categorical attributes. The numeric part of center vector
is calculated by an average value of each numeric attributes and the categorical part of center vector
is calculated by the value of the highest frequency in each categorical attribute.

3.3. Time complexity

The time complexity of traditional k-prototypes is O(I * k * n * m), where I is the number of
iterations, k is the number of clusters, n is the number of data objects and m is the number of
attributes. The best-case complexity of the proposed k-prototypes has a lower bound of Q(I * k * n *
p), where p is the number of numeric attributes and p < m. The best-case is that the difference of the
first and the second minimum distance between an object and cluster centers for all object in given
dataset on numeric attributes is less than m. The worst-case complexity has an upper bound of O(I *
k *n x m). The worst-case is that the difference of the first and the second minimum distance between
an object and cluster centers for all object in given dataset on numeric attributes is higher than m.

4. Experimental results

All experiments are conducted on an Intel(R) Pentium(R) 3558U 1.70 GHz, 4GB RAM. All
programs are written in Java. We generate several independent, uniform distribution mix typed
datasets. A distribution of numerical attributes is from 0 to 100, and one of categorical attributes is
from alphabet A to Z.

4.1. Effect of cardinality

We set |X| (number of objects)={500000, 800000, 1000000}, numerical attributes=2, categorical
attributes=16 and k=3. Figure 3 shows the CPU time versus cardinality in different datasets. In the
figure, there are two lines. In general, the CPU time increases linearly when the cardinality increases
linearly. The experimental shows proposed k-prototypes algorithm improves computational
performance than original k-prototypes algorithm in our dataset.
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Figure 3. Effect of cardinality. FKPT (fast k-prototypes) is the result of our propose k-prototype
algorithm and TKPT (traditional k-prototypes) is the result of original k-prototypes algorithm.

5. Conclusion

In this paper, we have proposed a fast k-prototypes algorithm for clustering mixed data sets.
Experimental results show that our algorithm is fast than original algorithm. Previous fast k-means
algorithm focused on reducing candidate objects for computing distance to cluster centers. Our k-
prototypes algorithm reduces unnecessary distance computation using partial distance computation
without distance computations of all attributes between an object and a cluster center, which allows
it to reduce time complexity. The experimental shows proposed k-prototypes algorithm improves
computational performance than original k-prototypes algorithm in our dataset.

However, our k-prototypes algorithm does not guarantee that computational performance will
be improved in all cases. If the difference of the first and the second minimum distance between an
object and cluster centers for all object in given dataset on numeric attributes is less than m, then the
performance of our k-prototypes is same to the original k-prototype. Our k-prototypes algorithm is
influenced by variance of the numeric data values. The larger variance of the numeric data values,
the higher probability that the difference of the first and the second minimum distance between an
object and cluster centers is large.

The k-prototypes algorithm proposed in this paper simply reduces the computational cost
without using additional data structures and memories. Our algorithm is faster than original k-
prototypes algorithm. The goal of the existing k-means acceleration algorithm is to reduce the
number of dimensions to be compared when calculating the distance between center and object, in
order to reduce the number of objects compared with the center of the cluster. K-Means, which deals
only with numeric data, is the most widely used algorithm among clustering algorithms. Various
acceleration algorithms have been developed to improve the speed of processing large data.
However, real-world data is mostly a mixture of numeric data and categorical data. In this paper, we
propose a method to speed up the k-prototypes algorithm for clustering mixed data. The method
proposed in this paper is a method of reducing the number of objects compared with the center of
existing clusters, and is not exclusive, and the existing methods and the methods proposed in this
paper can be integrated with each other.
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