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Abstract: This paper develops Bayesian inference in reliability of a class of scale mixtures of
log-normal failure time (SMLNFT) models with stochastic (or uncertain) constraint in their reliability
measures. The class is comprehensive and includes existing failure time (FT) models (such as
log-normal, log-Cauchy, and log-logistic FT models) as well as new models that are robust in terms
of heavy-tailed FT observations. Since classical frequency approaches to reliability analysis based
on the SMLNFT model with stochastic constraint are intractable, the Bayesian method is pursued
utilizing a Markov chain Monte Carlo (MCMC) sampling based approach. This paper introduces a
two-stage maximum entropy (MaxEnt) prior, which elicits a priori uncertain constraint and develops
Bayesian hierarchical SMLNFT model by using the prior. The paper also proposes an MCMC
method for Bayesian inference in the SMLNFT model reliability and calls attention to properties
of the MaxEnt prior that are useful for method development. Finally, two data sets are used to
illustrate how the proposed methodology works.
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1. Introduction

In some practical situations, reliability analysis must engage positive data. This includes, for
example, cases requiring power plant system analysis, software reliability analysis, and hydrology
(flows in a river) among others (see [1,2]). Any reliability analysis must be based on precisely defined
model in order to estimate the reliability measure of interest from the available data and subsequently
provide a logical basis for improving the reliability of a system. The exponential model is the most
fundamental parametric model used to establish reliability. We refer to [3] for excellent review of
reliability analysis based on exponential model. Complex failure time events such as system failure
event, appear to always produce a set of positively skewed observations and show, initially, an
increase over time and, then, a decrease in hazard rate. In such cases, alternative to the exponential
model, log-normal distribution (denoted by LN (µ, σ2)) can be used to characterize and construct a
more plausible model for assessing the failure time Y of the event. The density of Y ∼ LN (µ, σ2) is

f (y|µ, σ2) = (y σ)−1(2π)−1/2 exp
{
−
(
log(y)− µ

)2

2σ2

}
, y > 0,

where µ = E[log(Y)] and σ2 = var(log(Y)). In current statistics literature, the use of the log-normal
distribution in reliability has become increasingly widespread. [4-7] used log-normal models for
reliability and security analysis; [8-10] applied these models for survival analysis, loss reserving
method, and hydrology, respectively. These studies were mainly concerned with the reliability of
log-normal models with no constraints on the parameter space. There are also numerous studies in
literature which deal with specific constrained parameter space problems in reliability analysis. See,
[11-13], for examples.
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However, information on the constraint may sometimes be uncertain. In theses cases, we have
to analyze reliability of log-normal model with a stochastic constraint on its parameter space, which
causes restriction of reliability measures in their functional forms. For example, in a automobile
system analysis, we may interest in estimating MTTF (mean time to failure) of steering, brakes, or
other mechanisms based on a log-normal model. Suppose it is known beforehand that such an
automotive system exhibits MTTF ∈ (a, b), but this information is uncertain. In spite of uncertain
prior information, if we adopt a log-normal model whose parameter space is truncated to µ ∈ C (i.e.,
MTTF ∈ (a, b)) for reliability analysis, we then have two problems. First, we pass over the uncertainty
of the prior information associated with our inference. Second, we may lose data information which
strongly contradicts the uncertain information µ ∈ C. Furthermore, there are few valid robust models
to assess poorly-distributed and fat-tailed failure time observations. A class of robust FT models can
be obtained by the use of scale mixtures of log-normal models. The study about the robust model
and its reliability estimation have not yet been tackled in the literature. These factors motivate the
contents of the present paper.

The remainder of this paper is arranged as follows. Section 2 introduces a class of scale mixtures
of log-normal failure time (SMLNFT) models by applying a scale mixture technique to log-normal
model. Subsequently, various class reliability measures are obtained. Section 3 provides a two-stage
MaxEnt prior of µ by applying Boltzmann’s maximum entropy theorem (see, e.g., [14,15]) to the
two-stages of prior hierarchy frame according to [16]. We also introduce a scale (degree of prior
belief) for stochastic constraint presumption µ ∈ C that is accounted for by the MaxEnt prior.
Section 4 develops the Bayesian hierarchical SMLNFT model by utilizing the two-stage MaxEnt
prior hierarchy involving µ and a scale mixture hierarch of the SMLNFT model. This section also
explores Bayesian inference in reliability for the proposed model utilizing an MCMC sampling based
approach. This section also develops MCMC sampling method based on the Gibbs sampler and
the Metropolis-Hastings algorithm, and discusses Monte Carlo methods in posterior estimation of
reliability measures. Section 5 illustrates the empirical performance of the proposed methodology
based on a real and artificial data applications involving proposed SMLNFT models. Section 6
provides concluding remarks and discussion.

2. The Class of SMLNFT Models

Let failure time Y have a log-normal distribution with parameters (µ, κ(η)σ2), denoted by
LN (µ, κ(η)σ2), where κ(η) is a suitably chosen positive weight function of a mixing variable
η ∼ G(η) and G(η) denotes the cumulative distribution function (cdf) of η. Subsequently, a simple

location model for the failure time Y can be formulated in terms of X d
= log(Y):

X = µ + ε, ε ∼ F, (1)

where F ∈ F with

F =
{

F : N
(

0, κ(η)σ2
)

, η ∼ G(η) with κ(η) > 0, and η > 0
}

(2)

so that the distribution of X is a scale mixtures of normal distributions, denoted by X ∼
SMN (µ, σ2, κ, G). The proposed model for the failure time Y can be defined as follows:

Definition 1. Let the model (1) construct a plausible model for a random failure time Y. Then the model for
Y can then be referred to as an SMLNFT (scale mixtures of log-normal failure time) model. The distribution
law of Y is a scale mixtures of log-normal (SMLN) distributions with a weight function κ(η) and the cdf G of
a mixing variable η. This is written by Y ∼ SMLN (µ, σ2, κ, G).
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The density of Y ∼ SMLN (µ, σ2, κ, G) is

f (y|µ, σ2) =
∫ ∞

0
(y σ)−1(2πκ(η))−1/2 exp

{
−
(
log(y)− µ

)2

2κ(η)σ2

}
dG(η), y > 0. (3)

The SMLNFT model can vary depending on designation for the function κ(η) and the distribution
of η. In the special case where the distribution of η degenerates at κ(η) = 1, the SMLNFT model
produces a log-normal failure time (LNFT) model. In cases where η ∼ Gamma(ν/2, ν/2) with
E[η] = 1 and κ(η) = 1/η are chosen, the SMLNFT model changes to log-tν failure time (LtνFT) or
log-Cauchy failure time (LCFT≡ Lt1FT) models, allowing for the regulation of model tail distribution
by means of the degrees of freedom. The LCFT model has been particulary used for certain survival
processes where significant outliers or extreme results may occur (see, e.g., [17]). We also see that the
SMLNFT model approximately reduces to log-logistic failure time (LLFT) model (see, [18]), provided
that the choices are κ(η) = 4η2 and η2 ∼ IG(2.5, 1.233), where IG(α, β) is an inverse gamma
distribution with a probability function f (x) = βαx−(α+1)eβ/x/Γ(α). This approximation is known
to simplify the implementation of MCMC sampling. The LLFT model has been used in survival
analysis as a parametric model for mortality rate, hydrology, and networked telerobots (see, e.g., [19]).
Following the same procedure as in [20,21], we can construct new robust FT models through differing
designations of κ(η) and the distribution of η. Particularly, in the regulation of tail distribution in
the FT model, a log-slash failure time (LSFT) model can be obtained by taking κ(η) = η−1 and
η ∼ Beta(1/2, 1); that is Beta distribution. Therefore, the proposed class of SMLNFT models defined
by Eq.(1) is flexible enough to include existing FT models (i.e., LNFT, LCFT, and LLFT) and also
provide new robust failure time models (such as LtνFT and LSFT).

The densities of five SMLN(µ, σ2, κ, G) class members are shown in Figure 1 for different
designations of the mixing distribution η and κ(η). Figure 1 shows that the tail area of the log-normal
density is thinner than that of the other densities. Thus, the use of SMLN(µ, σ2, κ, G) models is
useful for flexible and robust reliability analysis of failure time data involving fat-tailed empirical
distribution. Figure 1 also demonstrates that the class of SMLN(µ, σ2, κ, G) models is useful to
describe those situation in which early failure or occurrences dominate the distribution. As indicated
in Figure 1, the hazard rate of the log-normal distribution initially increases and then decreases,
approaching zero in relation to sufficiently large values of times, but this pattern is not common
to all the SMLN(µ, σ2, κ, G) models.
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Figure 1. Densities of Y ∼ SMLN(µ, σ2, κ, G) for five different choices of the mixing variable
distribution G(η) and κ(η): (a) (µ, σ) = (0, 1) case and (b) (µ, σ) = (2, 0.5) case.

Reliability and hazard rate of the class of SMLNFT models are directly related to those
of the SMN (µ, σ2, κ, G) distribution. Let Y be failure time or down time formulated by the
SMLN (µ, σ2, κ, G) model, then respective MTTF (mean time to failure) and variance of Y be

E(Y) = E
[

exp
{

µ +
κ(η)σ2

2

}]
and Var(Y) = E

[
exp

{
2µ + κ(η)σ2

}(
exp

{
κ(η)σ2

}
− 1
)]

. (4)

In addition, the reliability and hazard rates of the SMLNFT model are given by

R(y; µ, σ2) = 1− E
[
Φ
(

A(η)
)]

(5)

and

h(y; µ, σ2) =
E
[
κ(η)−1/2φ

(
A(η)

)]
σ y E

[{
1−Φ

(
A(η)

)}] , (6)

where A(η) = (log(y) − µ)/(κ(η)1/2σ), η ∼ G(η), and φ and Φ are the density and the cdf of a
standard normal variable, respectively. Exact expressions for Eq.(5) and Eq.(6) based on the above
five FT models are available. For example, the expressions based on the LtνFT model are

R(y; µ, σ2) = 1− Fν

(
(log(y)− µ)/σ

)
and h(y; µ, σ2) =

fν

(
(log(y)− µ)/σ

)
σ y R(y; µ, σ2)

,

where Fν(·) and fν(·) denote the cdf and density function of a Student-tν distribution,
respectively. The reliable life Tγ, denoting the 100(1-γ)th percentile of the failure time distribution
SMLN (µ, σ2, κ, G) of the SMLNFT model, may also be expressed as

Tγ = E
[

exp
{

κ(η)1/2σ Φ−1(1− γ) + µ
}]

. (7)
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The expectations made for the reliability measures (Eq.(4) through Eq.(7)) are given in respect to the
distribution of η.

3. Two-Stage MaxEnt Prior

3.1. Stochastic Constraint on Reliability Measures

Let y1, . . . , yn be n complete (nontruncated/noncensored) failure times generated from the
SMLNFT model in Eq.(1), and let the reliability measures, defined by Eq.(4) through Eq.(7), have a
stochastic functional constraint in terms of µ and σ2, where the constraint does not depend on σ2. Thus
a reliability measure, written by B(µ, σ2), needs to be located in a restricted interval B(µ, σ2) ∈ (a, b)
(or equivalently µ ∈ C) with a degree of prior belief α, where C ⊂ R is either an interval or a
set of intervals. Nevertheless, observations from the SMLNFT model often do not provide strong
evidence about information of the constraint, µ ∈ C, is true and therefore may appear to contradict
the assumption of the model associated with the constraint.

In this situation, a Bayesian approach can be effectively adopted to model the stochastic (or
uncertain) functional constraint on parameter µ. Bayesian reliability analysis of the model (1) begins
with specifying prior distribution π(µ, σ2), which represents information concerning the parameters
µ and σ2 that are combined with the joint probability distribution of yi’s to yield the posterior
distribution:

p(µ, σ2|y1, . . . , yn) ∝ π(µ, σ2)
n

∏
i=1

f (yi|µ, σ2),

where f (yi|µ, σ2) is the density given in Eq.(3). When there are no constraints on the location
parameter µ, then a common joint prior π(µ, σ2) (e.g. Jeffreys prior or normal-inverse gamma prior)
can be used, and posterior reliability inference can be performed without any difficulty. When
we have sufficient evidence that the constraint condition on the model (1) is true (i.e., α = 1),
then a suitable restriction on the parameter space such as using a truncated prior distribution, e.g.,
π(µ, σ2)I

(
µ ∈ C

)
, is expected. Here I(·) denotes an indicator function. See, e.g., [22-24], for various

applications of truncated prior distribution in Bayesian inference. However, it is often the case that
prior information about the constraint is not certain to carry out Bayesian reliability analysis. In this
case, it is expected that the uncertainty, i.e., Pr

(
µ ∈ C

)
= α, is taken into account in eliciting a prior

distribution of µ.

3.2. Two-stage MaxEnt prior

Assume that σ2 is known and that it is possible to specify that partial information concerning the
parameter µ ∈ R is of the form

E[tj(µ)] =
∫
R

tj(θ)π(µ)dµ = tj, j = 1, . . . , k, (8)

but nothing else about prior distribution π(µ). In this case, maximum entropy prior can be obtained
by choosing π(θ) that maximizes the entropy

Ent(π) = −
∫
R

π(µ) log π(µ)dµ,

in the presence of the partial information in the form of (8). Boltzmann’s maximum entropy theorem
(see, e.g., [14,15]) tells us that the density π(µ) that maximizes Ent(π), subject to the constraints
E[tj(µ)] = tj, j = 1, . . . , k, takes the k-parameter exponential family form

π(µ) ∝ exp
{

λ1t1(µ) + λ2t2(µ) · · ·+ λktk(µ)
}

, µ ∈ R, (9)

where λ1, λ2, . . . , λk can be determined, via the k-constraints, in terms of t1, . . . , tk.
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The theorem can be directly applied to obtain the MaxEnt prior π(µ) of the SMLNFT Model,
provided that prior information on the mean and variance of unconstrained µ can be specified, i.e.,
E[µ] = θ0 and E[(µ − θ0)

2] = σ2
0 . Suppose we have additional information that p(µ ∈ C) = α,

0 < α < 1, we then have the following lemma.

Lemma 2. Suppose we can specify partial prior information about µ by E[µ] = θ0, E[(µ− θ0)
2] = σ2

0 , and
µ ∈ C with degree of belief α. Then the MaxEnt prior density of µ is given by

πMaxEnt(µ) = φ(µ; θ0, σ2
0 )

Φ̄
(
C; θ0 + δ(µ− θ0), δ(1− δ)σ2

0

)
Φ̄(C; θ0, δσ2

0 )
, µ ∈ R, (10)

where the value of δ (δ ∈ [0, 1]) is determined by the following equation

α = Φ̄2

(
C × C; θ0, Σ0

)
/Φ̄(C; θ0, δσ2

0 ) with θ0 =

(
θ0

θ0

)
and Σ0 = σ2

0

(
δ δ

δ 1

)
. (11)

Here Φ̄(C; θ∗, σ2
∗) is probability p(W ∈ C) of W ∼ N(θ∗, σ2

∗) and Φ̄2

(
C × C : θ0, Σ0

)
denotes a joint

probability p(X1 ∈ C, X2 ∈ C) of X1 and X2 whose joint distribution is a bivariate normal N2(θ0, Σ0).

Proof. The stochastic constraint p(µ ∈ C) = α can be expressed in terms of a moment as E[I(µ ∈
C)] = α. Take t1(µ) = µ, t1 = θ0, t2(µ) = (µ− θ0)

2, t2 = σ2
0 , t3(µ) = I(µ ∈ C), t3 = α, and tk(µ) = 0

for k > 3. Then by setting λ1 = 0 and λ2 = −1/2σ2
0 , the MaxEnt prior of µ in (9) reduces to

πMaxEnt(µ) ∝ exp
{
(µ− θ0)

2/2σ2
0

}
exp

{
λ3t3(µ)

}
, µ ∈ R, (12)

Now the second exponential term in the right hand side of (12) can be determined by using the
stochastic constraint E[I(µ ∈ C)] = α: Among all the possible proper prior densities of the form (12),

the choice of λ3t3(µ) = ln
{

Φ̄
(
C; θ0 + δ(µ − θ0), δ(1 − δ)σ2

0

)
/Φ̄(C; θ0, δσ2

0 )
}

yields a proper prior
density. Further, this choice leads to the Eq.(11) which satisfies the stochastic constraint

E[I(µ ∈ C)] =
∫
C

πMaxEnt(µ)dµ = Φ̄2

(
C × C : θ0, Σ0

)
/Φ̄(C; θ0, δσ2

0 ) = α.

From Lemma 2, we see that δ = 0 implies no functional stochastic constraint on µ of the SMLNFT
model, while δ = 1 denotes that functional constraint on the model is certain so that Pr(µ ∈ C) = 1.
We also see that πMaxEnt(µ) reduces to the normal density π0(µ) = φ(µ; θ0, σ2

0 ) for the former case and
the truncated normal density π1(µ) = φ(µ; θ0, σ2

0 )/Φ̄(C; θ0, σ2
0 ) with the support µ ∈ C for the latter

case. This indicates that δ ∈ [0, 1] is directly related to the degree α of prior belief on the constraint
µ ∈ C, where α = Pr(µ ∈ C). The relationship between them is as follows.

Corollary 3. The degree α of prior belief on the constraint µ ∈ C accounted for by the MaxEnt prior

πMaxEnt(µ) is α = Φ̄2

(
C × C : θ0, Σ0

)
/Φ̄(C; θ0, δσ2

0 ), and its range is

Φ̄(C; θ0, σ2
0 ) ≤ α ≤ 1.

Proof. For the cases where δ = 0 and δ = 1, the degree of prior beliefs are
∫
C πMaxEnt(µ)dµ =∫

C π0(µ)dµ = Φ̄(C; θ0, σ2
0 ) and

∫
C πMaxEnt(µ)dµ =

∫
C π1(µ) = 1, respectively. When 0 < δ < 1,

Φ̄(C; θ0, σ2
0 ) < α < 1
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because Φ̄2

(
C × C : θ0, Σ0

)
> Φ̄(C; θ0, σ2

0 )Φ̄(C; θ0, δσ2
0 ) by the Theorem of [25].

Corollary 3 indicates that πMaxEnt(µ) is useful for eliciting priori uncertainty concerning
constraint on µ by varying the value of δ. By applying the work of [26], we can organize πMaxEnt(µ)

within the frame of the two-stage prior hierarchy by [16].

Theorem 4. The distribution of πMaxEnt(µ) can be expressed as a two-stage prior hierarchy:

µ|µ0 ∼ N(µ0, (1− δ)σ2
0 ),

µ0 ∼ TNC(θ0, δσ2
0 ),

where δ ∈ [0, 1] and TNC(θ0, δσ2
0 ) denote a truncated N(θ0, δσ2

0 ) distribution with the support µ0 ∈ C.

Proof. From the hierarchy of the prior distributions, we see that

π(µ) =
∫

µ0∈C
p(µ|µ0)p(µ0)dµ0 =

∫
µ0∈C φ(µ; µ0(1− δ)σ2

0 )φ(µ0; θ0, δσ2
0 )dµ0

Pr(µ0 ∈ C)

=
φ(µ; θ0, σ2)

Φ̄(C; θ0, δσ2)

∫
µ0∈C

φ
(
µ0; θ0 + δ(µ− θ0) , δ(1− δ)σ2

0
)
dµ0,

which is equivalent to πMaxEnt(µ).

From now on, we shall call the MaxEnt prior πMaxEnt(µ), expressed by the two-stage prior
hierarchy in Theorem 4, as a “two-stage MaxEnt prior" of µ.

4. Bayesian Hierarchical SMLNFT Model

4.1. Bayesian Hierarchical Model

Let (y1, . . . , yn) be n complete failure times as generated from the SMLNFT model in Eq.(1),
and let ηi denote contribution of latent variable η in relation to each observation yi. Suppose one of
reliability measures defined by Eq.(4) through Eq.(7) has a stochastic functional constraint in terms of
µ, e.g., B(µ) ∈ (a, b) (or equivalently µ ∈ C), with the degree of prior belief α, and suppose C ⊂ R is
either an interval or a set of intervals. Then, from Eq.(3) and Eq.(10), we obtain posterior distribution
of µ and σ2 given by

p(µ, σ2|y1, . . . , yn) ∝
n

∏
i=1

∫ ∞

0

[
(yi σ)−1(2πκ(ηi))

−1/2 exp
{
−
(
log(yi)− µ

)2

2κ(ηi)σ2

}]
G(ηi)dηi

×
φ(µ; θ0, σ2

0 )Φ̄
(
C; θ0 + δ(µ− θ0), δ(1− δ)σ2

0

)
Φ̄(C; θ0, δσ2

0 )
p(σ2),

where p(σ2) is a prior distribution of σ2. This is a complex function for the Bayesian inference
in reliability based on the SMLNFT model. Alternately following hierarchical representation of
the stochastically constrained SMLNFT Model is useful for simple Bayesian inference. Using the
two-stage MaxEnt prior in Theorem 4 and assuming prior independence of µ and τ = 1/σ2, we
formulate a Bayesian hierarchical model for the stochastically constrained SMLNFT model as follows:
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yi|(µ, τ, ηi)
d
= exp{xi}|(µ, τ, ηi), τ = σ−2 i = 1, . . . , n, (13)

xi|(µ, τ, ηi)
ind∼ N(µ, κ(ηi)τ

−1),

µ|µ0 ∼ N(µ0, (1− δ)σ2
0 ), 0 < δ < 1,

µ0 ∼ TN(θ0, δσ2
0 ) I(

(
µ0 ∈ C

)
,

τ ∼ Gamma(ν1, ν2),

ηi
ind∼ G(ηi).

All hyper-parameters, {θ0, σ0, δ, ν1, ν2}, are assumed to be given from the prior information of
previous studies or alternate sources. In particular, the value of δ is chosen to satisfy Eq.(11) for given
values of α, θ0, and σ2

0 . In cases where the prior information is not available, a convenient strategy
of avoiding improper posterior distribution is to use proper priors with fixed hyper-parameters as
appropriate quantity to reflect the diffuseness of the priors (i.e., limiting non-informative priors).

4.2. The Gibbs Sampler

Let η = (η1, . . . , ηn)> be the latent variables, and let x = (x1, . . . , xn)> be logarithmic failure
time data where xi = log(yi). Based on the Bayesian Hierarchical SMLNFT model structure, the joint
posterior distribution of (µ, µ0, τ, η) given the observed data x is

p(µ, µ0, τ, η|x) ∝
( n

∏
i=1

φ(xi; µ, κ(ηi)τ
−1)
)

φ(µ; µ0, (1− δ)σ2
0 )

×
φ(µ0; θ0, δσ2

0 )I(µ0 ∈ C)
Φ̄(C; θ0, δσ2

0 )
f (τ; ν1, ν2)

( n

∏
i=1

g(ηi)
)

, (14)

where f (τ; ν1, ν2) is the density of Gamma(ν1, ν2) variate and g(ηi) is the density of the mixing
variable ηi. Note that the joint posterior distribution of the structure parameters, µ and τ, is

p(µ, τ|x) =
∫

η>0

∫
C

p(µ, µ0, τ, η|x)dµ0dη.

This is not simplified in an analytic form of known density, and is thus intractable for posterior
inference. Accordingly, we treat latent observations in η as hypothetical missing data, and augment
the observed data set x with η in posterior analysis. Thus we derive each conditional posterior
distribution of µ, µ0, τ and η, for posterior inference based on Markov chain Monte Carlo (MCMC).
All the full conditional posterior distributions are as follows:

(1) The full conditional distribution of µ is an univariate normal given by:

[
µ|µ0, τ, η, x

]
∼ N

(τ−1µ0 + ∆ ∑n
i=1 κ(ηi)

−1xi

τ−1 + ∆ ∑n
i=1 κ(ηi)−1 ,

1
∆−1 + τ ∑n

i=1 κ(ηi)−1

)
, (15)

where ∆ = (1− δ)σ2
0 .

(2) The full conditional distribution of µ0 is a truncated normal given by:

[
µ0|µ, τ, η, x

]
∼ TN

(∆θ0 + ∆0µ

∆ + ∆0
,

1
∆−1 + ∆−1

0

)
I(µ0 ∈ C), (16)

where ∆0 = δσ2
0 .
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(3) The full conditional distribution of τ is a Gamma distribution:

[
τ|µ, µ0, η, x

]
∼ Gamma

(
ν1 +

n
2

, ν2 +
∑n

i=1 κ(ηi)
−1(xi − µ)2

2

)
. (17)

(4) The full conditional distributions of ηi’s are independent and their densities are

p(ηi|µ, µ0, τ, x) ∝ g(ηi)κ(ηi)
−1/2 exp

{
− τκ(ηi)

−1(xi − µ)2

2

}
, i = 1, . . . , n, (18)

where g(ηi) is the density of a mixing variable.

The conditionals in Eq.(15) through Eq.(18) define the Gibbs sampler, provided that Eq.(18) is a
known density of standard form. Otherwise, we can define a Metropolis-within-Gibbs sampler that
uses M-H (Metropolis-Hastings) step to sample from the conditional in Eq.(18). See, [27], for the
Metropolis-within-Gibbs sampler.

4.3. Markov chain Monte Carlo Method

An MCMC method that works with the posterior Eq.(14) is not complicated since Gibbs
sampling of (µ, µ0, τ) is routinely implemented based on each of their full conditionals outlined in
Subsection 4.2. However, in posterior sampling of η, an M-H sampling algorithm may be used when
the conditional posterior density Eq.(18) does not have explicit form of known distribution. For the
MCMC method, one should note the following points.

note 1 : With given initial values of (µ, µ0, τ, η), implementation of the Gibbs
(or Metropolis-within-Gibbs) sampling algorithm consists of drawing repeatedly from
distributions Eq.(15) through Eq.(18). The R package tmvtnorm and the R package mvtnorm

can be used to sample from the conditionals and to calculate δ for a given α from Eq.(11).
note 2 : In cases using the LNFT model, ηi degenerates at κ(ηi) = 1. This means that the
conditional distribution Eq.(18) can be eliminated from the Gibbs sampler by setting κ(ηi) = 1
for the conditionals of µ and τ.
note 3 : When the LtνFT model is used for reliability analysis, the last stage of the Bayesian
hierarchical model in Eq.(13) becomes ηi ∼ Gamma(ν/2, ν/2) with κ(ηi) = η−1

i . Thus, the
conditional distribution in Eq.(18) yields

[
ηi|η\ηi

, µ, µ0, τ
]
∼ Gamma

(ν + 1
2

,
ν + τηi(xi − µ)2

2
)
,

where η\ηi
denotes an (n− 1)× 1 vector whose elements are those of η except for ηi. Note that

LCFT model is a special case of the LtνFT model with ν = 1. To allow ν to be determined
within the model, one can specify one more prior stage for the Bayesian hierarchy in Eq.(13).
As suggested by [32], a uniform prior on 1/ν (0 < 1/ν < 1) can be considered. To limit
model complexity, we consider only fixed ν so that the investigation of different LtνFT models
is possible.
note 4 : The conditional distribution Eq.(18) for LSFT model is[

ηi|η\ηi
, µ, µ0, τ

]
∼ Gamma

(
1, τ(xi − µ)2/2

)
I(ηi ∈ (0, 1)),

a truncated gamma whose support is ηi ∈ (0, 1).
note 5 : It is easily seen that the approximate conditional distribution η2

i for LLFT model is[
η2

i |η\ηi
, µ, µ0, τ

]
∼ IG

(
3, 1.233 + τ(xi − µ)2/8

)
.

Then, a move to the proposal point ηi and postrior sampling of ηi’s can be made by using the
M-H algorithm suggested by [18]. See, e.g., [28], a general procedure for M-H algorithm.
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note 6 : The convergence of an MCMC algorithm is an important issue for the correct
estimation of the posterior distribution of interest. See [29] for an example of multiple
convergence diagnosis and output analysis. When the Markov chain is converged,
Rao-Blackwellization yields good estimates of µ and τ.
note 7 : As measures of model comparison among SMLNFT models, deviance information
criterion (DIC) can be used. This measure can be calculated based on extensions of the MCMC
method. See [29, 30] and references therein for a review and comparisons of such extensions.

The Rao-Blackwellized Bayesian estimate of µ and τ = 1/σ2 from m post-convergence Markov
chain values are given by the ergodic theorem as:

µ̂ =
1
m

m

∑
k=1

E[µ|µ(k)
0 , τ(k), η(k), x] =

1
m

m

∑
k=1

µ
(k)
0 /τ(k) + ∆(k) ∑n

i=1 xi/κ(η
(k)
i )

1/τ(k) + ∆(k) ∑n
i=1 1/κ(η

(k)
i )

,

τ̂ =
1
m

m

∑
k=1

E[τ|µ(k), µ
(k)
0 , η(k), x] =

1
m

m

∑
k=1

ν1 + n/2

ν2 + ∑n
i=1(xi − µ(k))2/(2κ(η

(k)
i ))

,

and σ̂2 = τ̂−1.

As indicated by Eq.(4) through Eq.(7), it is evident that the reliability measures are functions of
µ and σ2 as denoted by u(µ, σ2). Represent Bayesian estimate with

E[E[u(µ, σ2|η)]] =
∫ ∞

0

{ ∫
Ω

u(µ, σ2|η)p(µ, σ2|y)dµdσ2
}

g(η)dη,

where p(µ, σ2|y) is joint posterior density of µ and σ2 based on a fitted SMLNFT model, g(η) is the
density of η, and Ω = {(µ, σ2); µ ∈ R, σ2 > 0} is the support of p(µ, σ2|y). Next a Bayesian Monte
Carlo estimate of u(µ, σ2) is given by

û(µ, σ2) =
1
K

K

∑
k=1

( 1
m

m

∑
r=1

u(µ(r), σ2(r)|η(k))
)

, (19)

where (µ(r), σ2(r)), r = 1, . . . , m, denote the rth Gibbs sample obtained from a fitted SMLNFT model,
while η(k) is independently generated kth sample value from the mixing distribution η ∼ G(η).
When we have exact expression of u(µ, σ2), then the Monte Calro integration, using generated η(k)’s,
vanishes from Eq.(19). For example, the estimate of posterior predictive reliability of the LtνFT model
for specified y is

R̂(y; µ, σ2) = 1− 1
m

m

∑
r=1

Fν

( log(y)− µ(r)

σ(r)

)
,

where (µ(r), σ2(r)), r = 1, . . . , K, denote the rth Gibbs sample obtained from the fitted LtνFT model.
Now (1− α)× 100% credible interval of the reliability at time y can be calculated by [R1−α/2, Rα/2],

where Rq denotes the qth quantile value of R(r)’s with R(r) = 1− Fν

(
log(y)−µ(r)

σ(r)

)
. When the LNFT

model is assumed, Bayesian estimates of reliability measures can be simply obtained by setting
κ(η(k)) = 1 to Eq.(18). That is, the reliability at time y is

R̂(y; µ, σ2) = 1− 1
m

m

∑
r=1

Φ
( log(y)− µ(r)

σ(r)

)
.

5. Numerical Illustrations

We provide two data applications to illustrate and demonstrate the performance of the proposed
methodology. The first real data application demonstrates the performance of the proposed
methodology (MCMC method based on Bayesian hierarchical SMLNFT model) for inference in
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reliability with stochastic constraint. Proposed SMLNFT models were fitted to the second data set
and compared in terms of their data-fitting performances, estimating parameters, and robustness to
fat-tailed empirical distribution. For numerical implementations, we developed our program written
in R, which is available from the author upon request.

5.1. Equipment Failure Data Example

This example considers failure time data (assessed in hours) from a reliability study of assembly
line equipment. The data, available in [31], consists of 43 observations of the failure time (Y). It
provides summary statistics as listed in Table 1. The Shapiro-Wilks (S-W) and Kolmogorov-Simirnov
(K-S) tests were also implemented to determine the log-normality of Y, that is the normality of X =

log(Y). The test statistic values and corresponding p-values are also in Table 1.

Table 1. Summary statistics for the failure time data.

variable mean s.d. S-W (p-value) K-S (p-value)
Y 2201.488 2519.174 0.732 (<0.01) 0.231 (<0.01)
X 7.143 1.088 0.982 (0.760) 0.064 (>0.150)

As seen in the table, the formal tests do not reject the normality of X = log(Y), i.e., Y ∼
LN (µ, σ2). Our objective of data analysis is to estimate reliability of the assembly line equipment
subject to Pr(µ ∈ C) = α, where C = (c, ∞), c ≥ 7.5 and µ is the mean of log-failure time. We
may have priori information about the mean µ of the log-observation model from past studies or
an assembly line quality control report. The stochastic constraint on µ indicates the belief that the
reliability of the LNFT model decreases slower than the empirical implication, because x̄ = 7.143 <

c(c ≥ 7.5). Thus, it is possible to use the Bayesian hierarchical LNFT model can be used to carry out
reliability analysis of the assembly line. Following the proposal of this paper, the two-stage MaxEnt
prior πMaxent(µ) can be used to elicit the stochastic constraint on µ.

To see the adequacy of the Bayesian hierarchical LNFT model, we fitted the failure time data
to five models. The models were Bayesian hierarchical LNFT, LLFT, LCFT, Lt5FT, and LSFT models.
They were compared in terms of their deviance information criterions (DIC) which a measure of
model comparison and adequacy. Based on each model, we ran a MCMC sampling algorithm
(using Gibbs sampler) on this data set and generated 100,000 random samples from the conditional
posteriors. For the MCMC algorithm, we used a burn-in period of 1000, a thin interval of 100,
and the following choice of hyper-parameter values: θ0 = 7, σ0 = 1, and ν1 = ν2 = 0.001. DIC
values of the five models were calculated and they were DICLNFT = 132.421, DICLLFT = 135.704,
DICLCFT = 150.209, DICLt5FT = 135.698, and DICLSFT = 145.971. Thus, Bayesian hierarchical LNFT
model achieves minimum DIC value among the five models. This, along with the formal normality
tests in Table 1, provides support in favor of the LNFT model for fitting the data.

Table 2 shows some posterior summary statistics obtained from the MCMC posterior samples
based on the LNFT model with various values of C and δ. The statistics include posterior estimate,
posterior standard deviation (S.D.), 0.025th quantile, 0.975th quantile, and MC error calculated from
the samples. The values in the last four columns of the table were obtained by setting δ = 0.9. In
estimating the Mote Carlo (MC) error, we used the batch mean method with 50 batches. See, e.g., [29,
pp.39-40] for the batch mean method. The degree α of the prior belief in the constraint (µ ∈ C) were
calculated by use of Eq.(11), and their values are also listed in Table 2.
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Table 2. Posterior summaries for each model parameters and degree α of prior belief.

C parameter δ = 0 δ = 0.5 δ = 0.9 δ = 1 S.D. 2.5% 97.5% MC error
(7.5, ∞) µ 7.141 7.182 7.261 7.553 0.155 6.964 7.569 0.002

σ2 1.181 1.185 1.196 1.327 0.295 0.812 1.930 0.004
α 0.308 0.698 0.865 1.000 - - - -

(8.0, ∞) µ 7.141 7.202 7.364 8.029 0.157 7.067 7.684 0.002
σ2 1.181 1.188 1.228 1.941 0.313 0.823 2.036 0.004
α 0.158 0.660 0.834 1.000 - - - -

(9.0, ∞) µ 7.141 7.255 7.637 9.035 0.187 7.306 8.041 0.002
σ2 1.181 1.198 1.408 4.734 0.401 0.901 2.450 0.005
α 0.023 0.610 0.780 1.000 - - - -

The small MC error values listed in Table 2 convince us of the convergence of the MCMC
algorithm. The table shows that πMaxEnt(µ) induces a shrinkage effect in the Bayesian estimation
of µ with the uncertain interval constraint, i.e., Pr(µ ∈ C) = α. This effect can be seen from the
comparison of the posterior estimates of µ obtained from the case of δ = 0 with those from δ ∈ (0, 1].
This comparison indicates the followings: (i) The Bayesian estimate of µ, based on the two-stage prior
πMaxEnt(µ), shrinks toward the interval C = (c, ∞). The magnitude of shrinkage effect induced by
using the proposed prior becomes more evident as value of δ (or the degree α of belief in the interval
constraint µ ∈ C) gets larger. Especially, in case of C = (9, ∞) and δ = 0.9, we see that the 95% credible
interval for µ does not include µ̂Bayes = 7.141 (estimate of µ with no constraint). This highlights the
shrinkage effect induced by using πMaxEnt(µ). (ii) When the priori constraint is certain, i.e., δ = α = 1,
Table 2 shows that estimate of µ locates in the given constraint C. These advocates the use of Bayesian
hierarchical LNFT model for reflecting the uncertain parameter constraint in reliability analysis.
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Figure 2. Estimated posterior predictive reliability measures for δ = 0.9: (a) Reliability function; (b)
Hazard rate function. The value for tick marks in the y-axis of (b) is multiplied by 104.
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Posterior predictive reliability measures of the LNFT model were also estimated by using the
failure time data. Figure 2 depicts estimates of posterior predictive reliability and hazard rate
functions for the each case where the stochastic constraint is µ ∈ C = (c, ∞), c = 0.5, 0.7, 0.9 for given
δ = 0.9. The figure also compares the functions with those obtained by setting c = −∞ which denotes
the case where there is no priori constraint on µ, i.e., the case of δ = 0.. Figure 2 clearly indicates that
the two-stage MaxEnt prior appropriately reflects the priori stochastic constraint µ ∈ C = (c, ∞) in
estimating the posterior predictive predictive measures. The left panel (a) shows that reliability of the
constrained LNFT model decreases slower than that of the unconstrained model (with c = −∞), and
this phenomenon is more evident as the constrained interval C locates far from the empirical mean
value x̄ = 7.143. This in turn affects shape of hazard rate functions in the right panel (b). For c > x̄,
priori constrained LNFT models tend to produce lower hazard rates than the unconstrained LNFT
model at all time point, but the pattern of their hazard rate functions is similar. We also see that the
hazard rate becomes lower as the value of c gets larger. This coincides with the implication of the
reliability functions in the panel (a).

5.2. Artificial Data Example

A study using an artificial data is done to evaluate the performance of proposed Bayesian
hierarchical estimation methodology based on the class of SMLNFT models. For the study, we
have considered Lt5FT model with location µ = 2 and scale parameter σ2 = 0.25. By use of the
model, we simulated a sample of size 300 complete failure times. Five models (LNFT, LCFT, Lt5FT,
LSFT, and LLFT models) were fitted to the same simulated data. Using the data, we ran MCMC
sampling algorithm based on each Bayesian hierarchical model with no constraint (i.e. δ = 0) and
generated 50,000 random samples from the conditional posteriors by using burn-in period of 5,000
and thin interval of 10. For constructing each hierarchical model, we used the following choice of
hyper-parameter values, θ0 = 0, σ0 = 3, and ν1 = ν2 = 0.001, which reflect the diffuseness of the
priors (i.e., limiting non-informative priors) of µ and τ.

Table 3 provides posterior summaries from the posterior samples generated by using the MCMC
algorithm developed for each of five models. The small MC error values listed in Table 3 indicate that
we have calculated the parameter estimates with precision and the MCMC algorithm has converged
to its target distributions as well. DIC values of all models are also presented in the table. We
observe that the Lt5FT model has the lower DIC value, while the other models results in considerably
higher DIC values than the corresponding one under the Lt5FT model. This demonstrates model
selection function of the methodology. Concerning the posterior estimates, the estimate of σ2 under
the Lt5FT model is accurate in comparison to that under the other models. To be more specific, the
scale parameter σ2 ranges from 0.025 to 0.365 with 95% posterior probability for the Lt5FT model,
while for the other models, none of the credible intervals include true value σ2 = 0.25 with the same
posterior probability. On the other hand, Table 3 shows that the MCMC algorithm applied to each of
five models correctly estimates true location parameter value µ = 2. This implies that the proposed
Lt5FT model is robust to fat tailed failure time observations affecting the scale parameter.

Table 3. Posterior summaries for parameters of five models.

Model parameter Mean S.D. MC error 2.5% Median 97.5% DIC
LNFT µ 2.043 0.147 <0.001 1.755 2.043 2.332 861.602

σ2 4.329 0.438 0.002 3.554 4.300 5.274 -
LCFT µ 1.948 0.043 <0.001 1.863 1.948 2.035 463.242

σ2 0.146 0.026 <0.001 0.101 0.146 0.204 -
Lt5FT µ 1.948 0.043 <0.001 1.862 1.948 2.033 394.339

σ2 0.289 0.036 <0.001 0.225 0.286 0.365 -
LSFT µ 1.992 0.118 <0.001 1.761 1.992 2.227 867.325

σ2 0.557 0.098 <0.001 0.389 0.548 0.776 -
LLFT µ 2.025 0.132 <0.001 1.767 2.025 2.282 842.847

σ2 1.363 0.176 <0.001 1.056 1.350 1.745 -
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6. Conclusion

This paper have provided a methodology for Bayesian inference in reliability of SMLNFT models
in cases where the interval constraint µ ∈ C must be incorporated due to uncertainty. For failure
time modeling with stochastic restriction, we proposed a Bayesian hierarchical model involving
a two-stage MaxEnt prior distribution of µ based on Boltzmann’s maximum entropy theorem.
The two-stage MaxEnt prior reflects uncertainty about the prior constraint, that is, the Bayesian
hierarchical SMLNFT models are subject to reliability restriction with uncertainty. Furthermore, we
provide an MCMC method for assessing inference in reliability of SMLNFT models based on their
Bayesian hierarchical models. The effectiveness of our methodology is demonstrated by conducting
two data applications.

We find that the proposed class of SMLNFT models is flexible enough to account for behavior of
reliability, unlike the log-normal FT model. We also find a connection between the degree of constraint
presumption and the hyper-parameters of the two-stage MaxEnt prior, indicating adequacy of the
MaxEnt prior in eliciting the priori uncertain constraint (see, Corollary 3). Finally, we find that
the proposed Bayesian hierarchical methodology enables the development of a simple MCMC
algorithm to assess the posterior inference in reliability of the SMLNFT models with a stochastic
constraint. Our proposed methodology can be easily extended to cases where the failure time
data is incomplete, as a result, for example, of truncated or censored data, as well as to other FT
models, including exponential, Weibull, and Gamma FT models. In addition, the class of SMLNFT
models could accommodate multivariate FT models at higher dimension without much difficulty.
The methodological process proposed here in relation to Bayesian estimation can be extended to the
multivariate models with a multivariate stochastic constraint.

Acknowledgements

Research of Hea-Jung Kim was supported by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of Education
(NRF-2015R1D1A1A01057106).

Author Contributions: In reliability analysis, the author proposes new failure time models and develops
Bayesian estimation of the models subject to a stochastic constraint. The author proposes a class of failure
time models (SMLNFT models) which is useful for modeling poorly-distributed and fat-tailed failure time
observations. In addition, the author develops a Bayesian hierarchical methodology by utilizing a two-stage
MaxEnt prior which provides a simple MCMC sampling based approach for inference in reliability of the
SMLNFT model with a stochastic constraint.

Conflicts of Interest: The author declares no conflict of interest.

Bibliography

1. Stefanescu, C.; Turnbull, B. W. Multivariate frailty models for exchangeable survival data with covariates.
Technometrics 2006, 48(3), 411-417.

2. Kavam, P. H.; Pena, E. A. Estimating load-sharing properties in a dynamic reliability system. Journal of the
American Statistical Association 2005, 100, 262-272.

3. Sun, J. The Statistical Analysis of Interval-Censored Failure Time Data; Spring-Verlag; New York, USA, 2002.
4. Yue, S. The bivariate lognormal distribution for describing joint statistical properties of multivariate storm

event. Environmetrics 2002, 13, 811-819.
5. Yerel, S.; Konuk, A. Bivariate lognormal distribution model of cutoff grade impurities: A case study of

magnesitr ore deposit. Scientific Research and Essay 2009, 4(12), 1500-1504.
6. Lee, C-.F.; Finnerty, J.; Lee, J.; Lee, A.C.; Wort, D. Security Analysis, Portpolio Management, and Financial

Derivatives; World Scientific Publishing Company: Singapore, 2012.
7. Halliwell, L.J. The lognormal random multivariate. Casualty Actuarial Society E-Forum 2015, Spring, 1-5.
8. Weinke, A. Frailty Models in Survival Analysis; Chapman and Hall: Baco Raton, USA, 2010.
9. de Alba, E. Claims reserving when there iare negative values in the runoff triangle: Bayesian analysis using

the three-parameter log-normal distribution. North American Axtuarial Journal 2006, 10(2), 28-38.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 May 2017                   doi:10.20944/preprints201705.0043.v1

Peer-reviewed version available at Entropy 2017, 19, , 274; doi:10.3390/e19060274

http://dx.doi.org/10.20944/preprints201705.0043.v1
http://dx.doi.org/10.3390/e19060274


15 of 15

10. Yue, S. The bivariate lognormal distribution to model a multivariate flood episode. Hydrol. Process. 2000,
14, 2575-2588.

11. Elshqeirat, B.; Soh, S.; Rai, S.; Lazarescu, M. Dynamic programming for minimal cost topology with
reliability constraint. Journal of Advances in Computer Network 2013, 1(4), 286-290.

12. Lin, Y-K. Reliability evaluation for an information network with node failure under cost constraint. IEEE
Transections of Systems, Man, and Sybernatics-Part A: Systems and Humans 2007, 37, 180-188.

13. Koide, T.; Shinmori, S.; Ishii, H. Topological optimization with a network reliability constraint. Descrete
Applied Mathematics 2001, 115, 135-149.

14. Cercignani, C. The Boltzman Equation and Its Applications; Springer-Verlag: Berlin, Germany, 1988.
15. Leonard, T.; Hsu, J.S.J. Bayesian Methods: An Analysis for Statisticians and Interdisciplinary Researchers.

Cambridge: New York, USA, 1999.
16. O’Hagan, A.; Leonard, T. Bayes estimation subject to uncertainty about parameter constraints. Biometrika

1976, 63(1), 201-203.
17. Lindsey, J. K. Statistical Analysis of Stochastic Process in Time; Cambridge University Press: Massachusetts,

USA, 2004.
18. Chen, M. H.; Dey, D. K. Bayesian modeling of correlated binary responses via scale mixture of multivariate
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