Hybrid fiber reinforced composites can be controlled by price, weight and various mechanical properties depending on fiber ratio and lamination method. Despite these excellent hybrid properties, there is a disadvantage that inter-laminar fracture due to external impact, which is the biggest weakness of fiber reinforced composite materials, is weak. The test specimens were prepared by using a vacuum bag method, which is manufactured by using an autoclave device. The pre-preg is manufactured in the form of a B-stage. In the process of fabricating the nanoparticle pre-preg, the homogeneizer using an ultrasonic wave was used to disperse the epoxy subject without the curing agent into nanoparticles. The dispersion of the nanoparticles was dispersed by the weight of the epoxy resin. This is to take into account the cohesion of HNT and to understand the range of cohesion of HNT in a matrix with viscosity and its phenomenon. According to the Comparison of the interlayer interfacial properties and mechanical properties of Aramid / Basalt fiber hybrid composites by HNT addition, the fracture toughness, ILSS and bending strength of specimens with HNT content of more than a certain level were decreased because of the aggregation of HNT.
Keywords:
Subject: Chemistry and Materials Science - Nanotechnology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.