

1
2 **Densities and Refractive Indices of Potassium Carbonate -Based**
3 **Deep Eutectic Solvents with Dual Hydrogen Bond Donors at**
4 **Several Temperatures (293.15 to 343.15 K)**

5 **Hosein Ghaedi, Muhammad Ayoub*, Suriati Sufian, Azmi Mohd Shariff and Bhajan Lal**

6 Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 - Bandar Seri Iskandar, Perak,
7 MALAYSIA

8 * Correspondence: Muhammad.ayoub@utp.edu; Tel.: +60-53687623

9
10
11 **Abstract:** Deep eutectic solvents (DESs) are known as tunable solvents. It is possible to prepare
12 ternary deep eutectic solvent (TDES) are used for desired purpose by selecting the suitable molar
13 ratio and components of mixture. Therefore, four DESs and two TDESs were prepared in this work.
14 DESs and TDESs were prepared with potassium carbonate (PC) as a hydrogen bond acceptor (HBA)
15 and three hydrogen bond donors (HBDs) such as glycerol (GL), ethylene glycol (EG) and 2-amino-
16 2methyl-1-3-propanediol (AMPD) known as a hindered amine (HA). Binary DESs were PC-GL with
17 molar ratios 1:10 and 1:16 and PC-EG with the same molar ratios. TDES were prepared by adding
18 AMPD in binary DESs such as PC-GL-AMPD 1:16:1 and PC-EG-AMPD 1:10:1. The experimental
19 density and refractive index of all DESs and TDESs were measured at the temperature of 293.15 to
20 343.15 K with an interval of 5 K. The effect of temperature, molar ratio and alkyl chain length on the
21 properties was investigated. The molar volumes and isobaric thermal expansion were calculated
22 using experimental density data. The experimental refractive index data was used to derive the
23 specific refraction, molar refraction, free molar volume, electronic polarization, polarizability
24 constant and internal pressure at several temperatures.

25 **Keywords:** DES; TDES; salt; HBD; density; refractive index.
26

27 **1. Introduction**

28 Deep eutectic solvents (DESs) are derived from two or more salts as the hydrogen bond acceptors
29 (HBAs) and hydrogen bond donors (HBDs). Salts components are such as allyltriphenyl
30 phosphonium bromide (ATPPB), allyltriphenyl phosphonium chloride (ATPPC), methyltriphenyl
31 phosphonium bromide (MTPPB), methyltriphenyl phosphonium chloride (MTPPC), benzyltriphenyl
32 phosphonium bromide (BTPPB), benzyltriphenyl phosphonium chloride (BMTPPC), choline
33 chloride (ChCl) and potassium carbonate (PC). HBDs components are for example amides, amines,
34 alcohols, and carboxylic acids. In 2003, Abbot et al. [1] introduced DESs by synthesis of urea and a
35 range of quaternary ammonium salts.

36 Density of a solvent plays a very important role in studying its applicability in various field of
37 studies. It is well known that density is a function of temperature. The increase in temperature results
38 in more molecular activity and mobility. By increasing mobility, the molar volume of solution
39 increases, consequently the density of solution decreases. For many application, it is very important
40 to know the temperature effect on density [2].

41 Refractive index is another important physical property, which specifies the dielectric response
42 to an electrical field induced by electromagnetic waves (light) and is thus an optical property of
43 materials [2; 3]. Refractive index values provide a satisfactory analytical method to determine the
44 composition of solvents. These values are also used to evaluate molar refractions which describe the
45 molecular interactions between the solutes present in a mixture. It is used for different purposes, for
46 instance, in order to confirm the purity of materials, estimate the concentration of solutes in solutions
47 and identify a particular substance [2].

48 Leron et al. [4] measured the density of choline chloride (ChCl)/ ethylene glycol (EG) or glycerol
49 (GL) at several temperatures. They stated that the density and refractive index of DESs decrease as
50 the temperature increase. Leron and Li [5] measured the density of ChCl/ urea over the temperature
51 range (298.15 to 323.15) K and pressure up to 50 MPa. Their results disclosed that the densities
52 decrease with an increase in temperature (at constant pressure) due to thermal expansion and
53 increase with an increase in pressure (at constant temperature) because of volume compression.

54 The temperature dependence of both refractive index and density of DESs were reported by
55 Hayyan et al. [2] for fructose based deep eutectic solvents, Mjalli et al. [6] for potassium carbonate
56 based DESs, and Siongco et al. [7] in the cases of N,N-diethylethanol ammonium chloride-glycerol
57 (DEACG), N,N-diethylethanol ammonium chloride-ethylene glycol (DEACEG) and Kareem et al. [3]
58 for phosphonium based DESs. In addition, the effect of temperature on density was investigated by
59 AlOmar et al. [8] for Glycerol-based deep eutectic solvents, Yadav and Pandey [9] for reline, Baoyou
60 Liu and Yaru Liu [10] for acetamide-LiCl.

61 Florindo et al. [11] studied the effect of carboxylic group and length of alkyl chain on HBDs on
62 density of DESs. Their results showed that the increase in the hydrocarbon chain on HBDs leads to a
63 decrease in the density of the DES. Moreover, it was found that density of DESs increases as the
64 number of carboxylic group in DESs increases. Hayyan et al. [2] measured the density and refractive
65 index of fructose-based DES of choline chloride at various temperatures (25–85 °C) and found that by
66 increasing the salt molar ratio in mixtures, the density of the DESs decreases. However, this trend
67 was not observed in the case refractive index values. Therefore, it can be said that temperature, the
68 nature of salt and HBD, the amount of salt/HBD and alkyl chain length have a great effect on the
69 density and refractive index of pure DESs.

70 On the other hand, in order to improve the features of DESs for desired application, researchers
71 are trying to synthesize the ternary deep eutectic solvents (TDES), because DESs are known as tunable
72 solvents [12]. Maugeri and de Mari'a [13] reported the synthesis of TDES including ChCl, bio-based
73 HBDs and glycerol (GL) as second HBD and measured their viscosity. Dai et al. [14] prepared TDES
74 with the name of the natural deep eutectic solvents (NADES) by mixing the several abundant
75 constituents (primary metabolites) for example sugars, sugar alcohols, amino acids, organic acids,
76 and choline derivatives. Wang et al. [15] formed TDES with the components of ChCl, urea and nickel
77 chloride hexahydrate ($\text{NiCl}_2 \cdot 6\text{H}_2\text{O}$) and measured the physicochemical properties. Liu et al. [16]
78 synthesized several TDESs by mixing imidazolium halides, zinc halides and amides and reported the
79 physicochemical properties. Sze et al. [17] synthesized seven TDES for CO_2 capture by mixing the
80 ChCl, GL and different superbases. Khezeli and Daneshfar [18] synthesized two types of ChCl-based
81 TDES having ChCl, phenol, ethylene glycol and anhydrous iron (III) chloride (FeCl_3) and called
82 magnetic deep eutectic solvents (MDESs). Sarkar and Sampath [19] reported a TDES based on
83 acetamide, urea and gallium nitrate for the electrode position of gallium nitride/gallium indium

84 nitride. Hence, it is possible and interesting to synthesize task specific ternary deep eutectic solvents
85 (TSTDDES) for especial purposes particularly CO₂ capture, by suitable combinations of salts and HBDs.

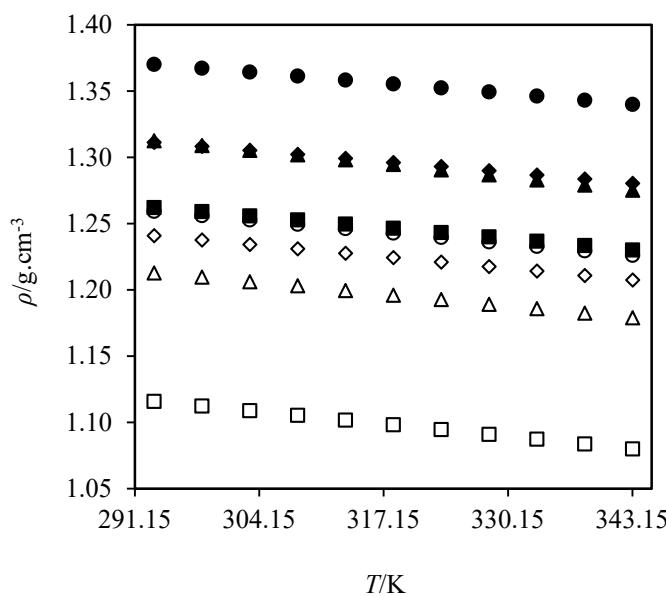
86 In the present work, four binary DESs and two new TDESs were synthesized by mixing salt such
87 as potassium carbonate (PC) with some HBDs for instance glycerol (GL), ethylene glycol (EG), and
88 2-amino-2methyl-1-3-propanediol (AMPD) as a hindered amine. The binary DESs were PC- GL and
89 PC- EG with molar ratios of 1:10 and 1:16. The TDESs were PC-GL-AMPD with molar ratio of 1:16:1
90 and PC-EG-AMPD with molar ratio 1:10:1. The experimental density and refractive index of HBDs,
91 DESs and TDESs were measured at several temperatures from 293.15 to 343.15 K with an interval of
92 5 K. These experimental values were used to calculate the molar volume, isobaric thermal expansion,
93 specific refraction, molar refraction, electronic polarization and internal pressure of DESs and TDESs.

94 2. Results and Discussion

95 Experimental Density, ρ , and refractive index, n_D values were correlated with temperature
96 through a linear equation:

$$97 \quad Y = a + b.(T) \quad (1)$$

98 where Y represents ρ and n_D ; T is the absolute temperature; and a and b are empirical constants
99 determined by fitting Equation (1) with the experimental values of ρ and n_D . The value of root mean
100 square error (RMSE) for properties of DESs and TDESs studied here, is calculated by:


$$101 \quad RMSE = \left[\frac{\sum (Y_{\text{exp}} - Y_{\text{pred}})^2}{K - L} \right]^{0.5} \quad (2)$$

102 where Y_{exp} and Y_{pred} are experimental and predicted properties of all DESs and TDESs, respectively.
103 K is the number of experimental data, and L is the number of parameters models including a and b .

104 2.1 Density property

105 Density is an important thermos-physical property owing to its effect on the design and operation
106 of processes [6; 8; 20]. Hence, it is essential to identify the behavior of density with respect to
107 temperature. In this work, the experimental density of the DESs, TDESs and their HBDs were
108 measured in temperature range of 293.15 to 343.15 K at ambient pressure. The experimental density
109 values of pure GL, pure EG, DESs and TDESs are tabulated in Table 1 and Figure 1 illustrates these
110 values as a function of temperature. Table 2 represents a comparison between the density of HBDs
111 such as GL and EG in this work and the literature data [21; 22]. Low values of average absolute
112 deviation (%AAD) values indicate that there is consistency between experimental data and literature
113 data, and the values are reproducible.

114

Figure 1. Experimental density, ρ , of the pure GL, pure EG, DESs and TDESs in this work, as a function of temperature: ■, pure GL; □, pure EG; ○, DES₁; Δ, DES₂; ◇, TDES₁; ●, DES₃; ▲, DES₄; ♦, TDES₂.

115

Table 1. Experimental density, ρ , of pure GL, pure EG, DESs and TDESs. Measurements were conducted within temperature range from $T = (293.15$ to $343.15)$ K and $p = 0.1$ MPa.

T/K	DESs and TDESs						Pure component	
	DES ₁	DES ₂	TDES ₁	DES ₃	DES ₄	TDES ₂	EG	GL
$\rho/(g.cm^{-3})$								
293.15	1.25933	1.21282	1.24090	1.37022	1.31252	1.31132	1.11578	1.26204
298.15	1.25606	1.20957	1.23763	1.36728	1.30890	1.30835	1.11230	1.25897
303.15	1.25277	1.20617	1.23431	1.36432	1.30528	1.30535	1.10878	1.25582
308.15	1.24948	1.20312	1.23098	1.36135	1.30196	1.30232	1.10524	1.25271
313.15	1.24618	1.19949	1.22766	1.35837	1.29813	1.29927	1.10169	1.24959
318.15	1.24287	1.19595	1.22432	1.35539	1.29461	1.29613	1.09812	1.24642
323.15	1.23954	1.19273	1.22096	1.35238	1.29058	1.29304	1.09453	1.24321
328.15	1.23619	1.18905	1.21759	1.34934	1.28679	1.28991	1.09092	1.23996
333.15	1.23282	1.18587	1.21420	1.34620	1.28290	1.28675	1.08728	1.23668
338.15	1.22947	1.18241	1.21083	1.34316	1.27911	1.28362	1.08362	1.23338
343.15	1.22610	1.17900	1.20744	1.34002	1.27522	1.28046	1.07994	1.23006

116

Table 2 . Comparison of the experimental and the literature data of the density and refractive index of EG and GL.

T/K	Ethylene glycol (EG)			Glycerol (GL)		
	Exp.	Lit.	%AAD ^a	Exp.	Lit.	%AAD
Density ($\rho/\text{g.cm}^{-3}$)						Density ($\rho/\text{g.cm}^{-3}$)
293.15	1.11578	1.1140 ^b	0.11087	1.26204	1.26110 ^c	0.07307
298.15	1.11230	1.1120 ^b		1.25897	1.25802 ^c	
303.15	1.10878	1.1104 ^b		1.25582	1.25495 ^c	
Refractive index						Refractive index
298.15	1.430964	1.4292 ^d	0.1370	1.47182	1.4697 ^f	0.07343
303.15	1.429986	1.4287 ^e		1.47035	1.4710 ^g	
313.15	1.428224	1.4254 ^e		1.46747	1.4670 ^g	

117 ^a %AAD is the average absolute deviation and calculated: $\%AAD = \frac{100}{n} \times \sum_{i=1}^{i=n} \frac{|Y_{\text{exp}} - Y_{\text{lit}}|}{Y_{\text{exp}}}$

118 where Y_{exp} and Y_{lit} are experimental data and literature data, respectively; n represents the number of
119 data point.

120 ^b [21].

121 ^c [22].

122 ^d [23].

123 ^e [24].

124 ^f [25].

125 ^g [26]

126

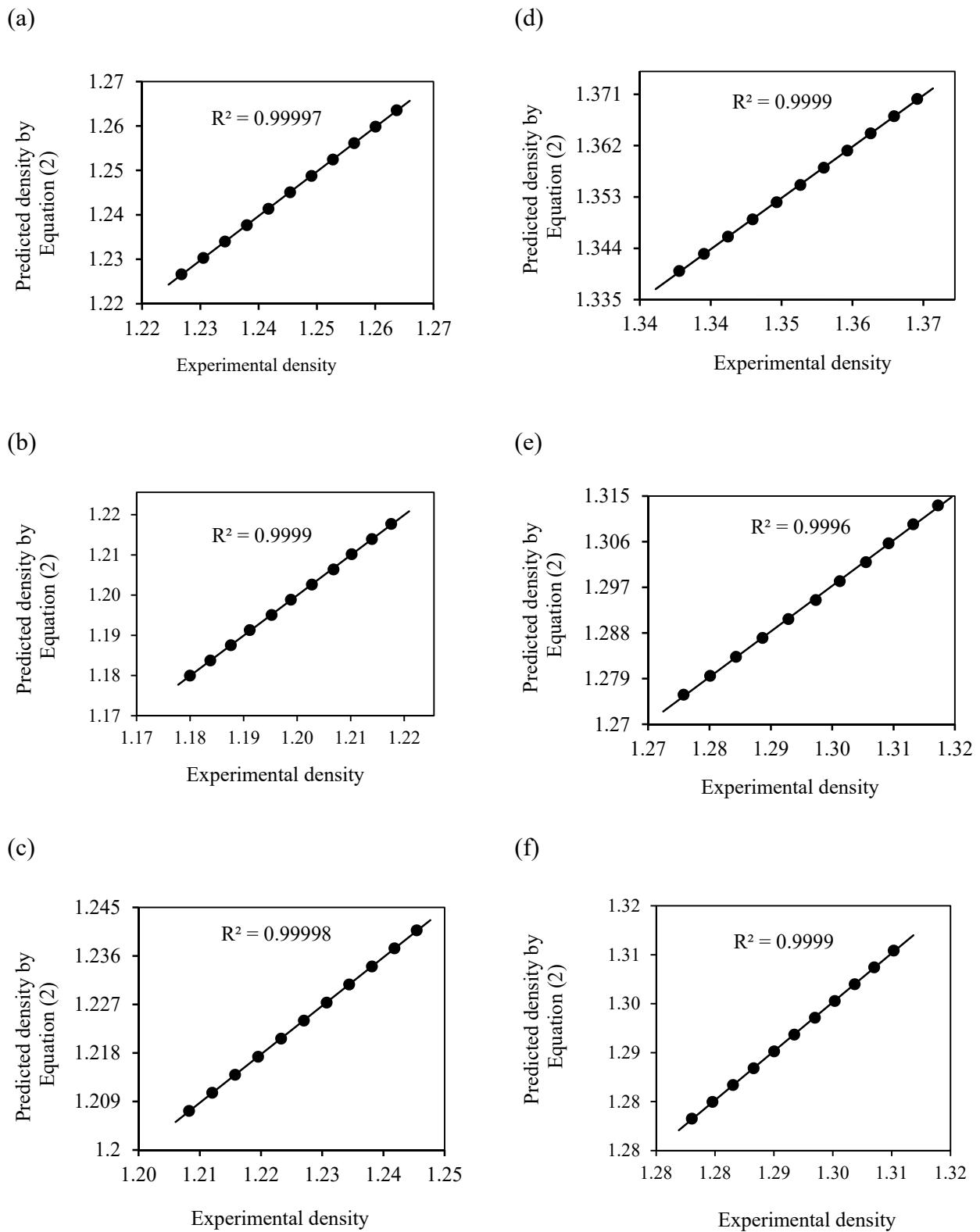
127 According to Table 1 and Figure 1, density values of HBDs (GL and EG) was less than those of
128 corresponding DESs at all temperatures. As can be observed from the Figure 1, as the temperature
129 increased the density of HBDs, DESs and TDESs decreased linearly. This could be attributed to the
130 wider spaces between the mixture molecules and the increased molecular mobility at higher
131 temperatures which increase the molar volume expansion and decrease the molecular interactions
132 [7; 8; 27].

133 As shown in Figure 1, an increase in the mole fraction of GL and EG in the mixture, the density
134 of DESs decreased. For example, the density of PC-GL 1:10 (DES4) is 1.36728 g.cm^{-3} while that of PC-
135 GL 1:16 (DES5) is 1.30890 at 298.15 K. Similarly, the density of PC-EG 1:10 (DES1) and of PC-EG 1:16
136 (DES2) are 1.25606 and 1.20957 g.cm^{-3} . These observations were in a well agreement with the results
137 obtain by Mjalli et al. [6] for potassium carbonate based DES together with GL and EG. Indeed, there
138 are two possible reasons for this behavior. Firstly, the density of PC is about 2.285 g.cm^{-3} is less than
139 those of GL (1.25897 g.cm^{-3}) and EG (1.11230 g.cm^{-3}). Therefore, by increasing the amount of GL and
140 EG in the DES, the density of DESs decreased toward the density of the HBD which is the lower
141 density in the mixture. Secondly, it is more likely that a decrease of hydrogen bond interactions in
142 DESs leads to a decrease in density of DESs [27].

143 By adding AMPD to the binary mixture of PC-EG 1:10, the density of TDES₁ experienced a
 144 decreasing trend in the amount. For example, density of PC-EG 1:10 was 1.22610 g.cm⁻³ at 343.15 K,
 145 while that of PC-EG-AMPD 1:10:1 was 1.20744 g.cm⁻³ at the same temperature. This trend almost can
 146 be seen in the case of PC-GL-AMPD 1:16:1 (TDES₂) which had the higher density than PC-GL 1:16 at
 147 all temperatures except for 293.15 and 298.15 K.

148 At the same molar ratio of 1:10, PC-GL had the higher density value than PC-EG. This result is
 149 in a well agreement with the results reported by Mjalli et al. [6] who mentioned the density of PC-GL
 150 is higher than that of PC-EG with the same molar ratio of 1:6.

151 It is interesting to mention that as the molecular weight of DESs decreased the density of
 152 decreased provided that DESs have the same components but different molar ratio (see Table 11 for
 153 molecular weight and Table 1 and Figure 1 for density of DESs).


154 The experimental density values were fitted to linear relationship, as the following

$$155 \quad \rho = a + b.(T) \quad (3)$$

156 where ρ is the density in g.cm⁻³, T is the temperature in Kelvin, a and b are constant that depends on
 157 the type of DESs or TDESs. A method of least-squares was applied using the Levenberg-Marquardt
 158 algorithm to derive constant parameters (a and b) of Equation (3). The values of a and b for all DESs
 159 and TDESs together with RMSE and R^2 values are shown in Table 3. We compared graphically the
 160 predicted density by Equation (3) with the experimental density data for all DESs and TDESs, as
 161 portrayed in Figure 2. From Figure 2, it is clear that the predicted density values for all DESs and
 162 TDESs were in a well agreement with experimental density data with R^2 values of >0.999, which
 163 indicated that the density-temperature relationships were linear.

Table 3 . The constant parameters of a , b used in Equation (3), RMSE and R^2 values.

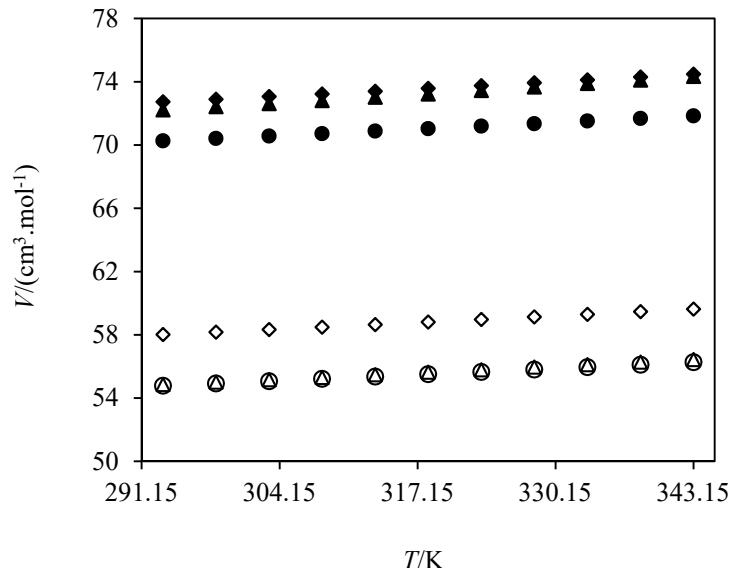
DES/TDES	a	$10^3 \times b$	$10^5 \times RMSE$	R^2
DES₁	1.454	-0.6646	5.926	0.99999
DES₂	1.412	-0.6791	14.4	0.9998
TDES₁	1.437	-0.6695	5.615	0.99999
DES₃	1.547	-0.6032	10.59	0.9999
DES₄	1.532	-0.7466	26.4	0.9996
TDES₂	1.493	-0.6182	10.61	0.9999

Figure 2. Comparison between the experimental and calculated values of density, ρ , for all DESs and TDESs: (a), DES₁; (b), DES₂; (c), TDES₁, (d), DES₃; (e), DES₄; (f), TDES₂.

166 The molar volume, V , of DESs and TDESs were calculated using the experimental density data
 167 for at different temperatures studied here, according to the following equation.

168
$$V = M/\rho \quad (4)$$

169 In the Equation (4), ρ and M are the density and molecular weight of DESs and TDESs. The
 170 molecular weight of DESs and TDESs are calculated according to the below equation [8; 28].


171
$$M = \frac{X_{\text{HBA}} M_{\text{HBA}} + X_{\text{HBD}} M_{\text{HBD}}}{X_{\text{HBA}} + X_{\text{HBD}}} \quad (5)$$

172 where M is the molecular weight of DES and TDES in $\text{g}\cdot\text{mol}^{-1}$, X_{HBA} and M_{HBA} are the molar ratio and
 173 molecular weight of the salt as HBA in $\text{g}\cdot\text{mol}^{-1}$, respectively; X_{HBD} and M_{HBD} are the molar ratio and
 174 molecular weight of the HBD in $\text{g}\cdot\text{mol}^{-1}$, respectively. The temperature dependence of molar volume
 175 of DESs and TDESs are shown in Figure 3. Different from density property, the molar volume of DESs
 176 and TDESs increased with raising temperature.

177 The effect of molar ratio on the molar volume was investigated and it was found that by
 178 increasing the amount of HBDs in DES, the molar volume of DESs increased, however, this changing
 179 was not much in the case of PC-EG DESs, as shown in Figure 3 and Table 4.

180

181

187

188

189

190

191

192

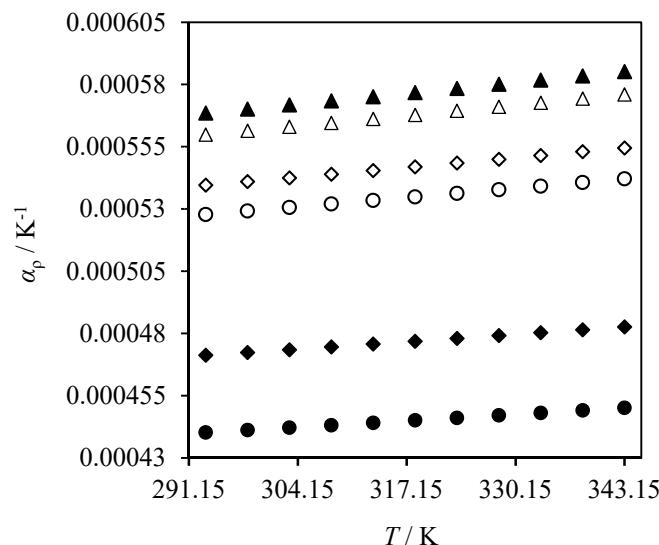
Figure 3. Molar volume, V , of DESs and TDESs as a function of temperature. The symbols are the same as symbols depicted in Figure 1.

Table 4. Calculated molar volume, V , of DESs and TDESs within temperature range from $T = (293.15$ to $343.15)$ K and $p = 0.1$ MPa.^a

T / K	DESs and TDESs					
	DES ₁	DES ₂	TDES ₁	DES ₃	DES ₄	TDES ₂
$V/(m^3 \cdot mol^{-1})$						
293.15	54.7845	54.8711	58.0258	70.2681	72.2297	72.7338
298.15	54.9272	55.0186	58.1791	70.4192	72.4295	72.8989
303.15	55.0714	55.1737	58.3356	70.5720	72.6303	73.0664
308.15	55.2164	55.3135	58.4934	70.7259	72.8158	73.2364
313.15	55.3626	55.4809	58.6516	70.8811	73.0304	73.4083
318.15	55.5101	55.6452	58.8116	71.0369	73.2292	73.5862
323.15	55.6592	55.7954	58.9734	71.1950	73.4576	73.7620
328.15	55.8100	55.9681	59.1366	71.3554	73.6740	73.9410
333.15	55.9626	56.1181	59.3017	71.5219	73.8974	74.1226
338.15	56.1151	56.2823	59.4668	71.6837	74.1163	74.3033
343.15	56.2693	56.4451	59.6337	71.8517	74.3424	74.4867

193

194 *2.2 Isobaric thermal expansion*


195 The liquid contained in the equipment will expand if there is an increase in temperature. That is
 196 why it is essential to design a safety and relief system which will relieve (or emit) the thermally
 197 expanding liquid and hinder the pressure arise from this expansion. If the pressure increase is too
 198 much, the process equipment or apparatus will be damaged. Thus, thermal expansion coefficient, α_p
 199 / K⁻¹, data is important in process engineering [27; 29]. This property which provides the information
 200 of how much a component can expand with regard to temperature shows the fractional change in
 201 density when temperature increases at constant pressure. The temperature dependence of the
 202 isobaric thermal expansion coefficients, α_p / K⁻¹, were derived at different temperatures from the
 203 parameters obtained by the fitting of the experimental density data using Equation (3) and is
 204 calculated according to the following equation:

$$205 \quad \alpha_p = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_P = -\frac{b}{a+bT} \quad (6)$$

206 where ρ is the density of DESs and TDESs in g.cm⁻³, T is the temperature in Kelvin, P is the ambient
 207 pressure, and a and b represent the parameters gained from the fitting of density data using Equation
 208 (3). Figure 4 depicts the temperature dependence of α_p for all DESs and TDESs. It can be clearly seen
 209 that temperature had not a great effect on α_p of DESs and TDESs. Moreover, there was a great effect
 210 on α_p of DESs due to changing in the amount of molar ratio in DESs. As can be seen from Figure 4, as
 211 the molar ratio of PC-EG and PC-GL DESs increased from 1:10 to 1:16, the amount of α_p of DESs
 212 increased especially in the case of PC-GL. It might be reasoned that a decrease of hydrogen bond
 213 interactions in DESs leads to a decrease in density, higher free volume of solvent (see Table 8 for free
 214 volume of DESs) and consequently raising the amount of isobaric thermal expansion coefficients [27].

215 On the other hand, by adding AMPD in PC-GL 1:16, the α_p values of PC-GL-AMPD (TDES₂) 1:16:1
 216 decreased at all temperatures, while the α_p values of PC-EG-AMPD 1:10:1 (TDES₁) increased when
 217 the AMPD was added in PC-EG 1:10.

218

Figure. 4. Isobaric thermal expansion, α_0 , of DESs and TDESs at several temperatures of. The symbols are the as symbols depicted in Figure 1.

219

220 2.3. Refractive index and derived properties

221 Refractive index is a fundamental physical property of DESs and TDESs. The experimental
 222 refractive index of DESs, TDESs and their HBDs were measured as a function of temperature and
 223 repeated three times. The experimental refractive index values of pure GL, pure EG, DESs and TDESs
 224 are listed in Table 5 and graphically shown in Figure 5. The refractive index of pure GL and pure EG
 225 are compared with the literature data [23-26], as tabulated in Table 2. Low values of average absolute
 226 deviation (%AAD) indicate the confirmation of the reproducibility of the experiments.

227 From the data represented in Table 5 and displayed in Figure 5, it is evident that pure GL has the
 228 higher refractive index than pure EG in all temperature studied here.

229 There are several factors which have an effect on the refractive index of DESs and TDESs such as
 230 type of salt/HBD, molar ratio, temperature and molecular weight. The results disclosed that the
 231 values of n_D decreased with an increase in temperature, since temperature has an effect on the density
 232 of the DESs and TDESs, consequently affects the refractive indices of DESs and TDESs. In the case of
 233 DESs, the refractive index values of PC-GL DESs were higher than those of PC-EG DESs at all
 234 temperatures. Indeed, components with higher density value had the higher refractive index value
 235 whether single components or DESs. Furthermore, with an increase in mole fraction of HDSs in the
 236 DESs, the refractive indices decreased. Also, as the molecular weight of DESs decreased, the amount

237 of refractive index of DESs decreased at all temperatures. These behaviors are similar to density and
238 molar volume trends.

239 Similar to density, by adding AMPD to the binary mixture of PC-EG 1:10, the refractive index of
240 TDES₁ (PC-EG-AMPD 1:10:1) witnessed a decreasing trend in the value. For example, refractive index
241 of PC-EG 1:10 was 1.436820 at 343.15 K, while that of PC-EG-AMPD 1:10:1 was 1.441313 at the same
242 temperature. This trend almost can be seen in the case of PC-GL-AMPD 1:16:1 (TDES₂) which had the
243 higher values of refractive index than PC-GL 1:16 at all temperatures except for 293.15 and 298.15 K.

244 The experimental refractive index was fitted linearly by Equation (7),

245
$$n_D = a + b \cdot (T) \quad (7)$$

246 where n_D is the refractive index, T is the temperature in Kelvin, and a and b are constants parameters
247 that depend upon the salt/HBD molar ratio in the DESs and TDESs. In order to derive constant
248 parameters (a and b) of Equation (7), the method of least-squares was applied using the Levenberg-
249 Marquardt algorithm. Table 6 displays the values of a and b for the DESs and TDESs along with RMSE
250 and R^2 values. The correlated refractive index data by Equation (7) were compared with experimental
251 refractive index data. The results of this comparison are shown in Figure 6 for all DESs and TDESs
252 studied in this work. From Figure 6, it can be evident that the predicted refractive index data by
253 Equation (7) was in a well agreement with the experimental refractive index data with R^2 values of
254 >0.999.

255

Table 5 . Experimental refractive index, n_D , of pure EG, pure GL, DESs and TDESs at several temperatures. Measurements were conducted within temperature range from $T = (293.15$ to $343.15)$ K and $p = 0.1$ MPa.

T/K	DESs and TDESs						Pure component	
	DES ₁	DES ₂	TDES ₁	DES ₃	DES ₄	TDES ₂	EG	GL
Refractive index (n_D)								
293.15	1.447911	1.442980	1.452929	1.485031	1.478006	1.478364	1.431854	1.47333
298.15	1.446742	1.441660	1.451678	1.484014	1.476910	1.477329	1.430964	1.47182
303.15	1.445517	1.440463	1.450430	1.483051	1.475779	1.476244	1.429986	1.47035
308.15	1.444306	1.438892	1.449145	1.482050	1.474620	1.475165	1.429202	1.46887
313.15	1.443077	1.437701	1.447884	1.481045	1.473534	1.474074	1.428224	1.46747
318.15	1.441843	1.436381	1.446616	1.480204	1.472390	1.473101	1.427371	1.46597
323.15	1.440510	1.435027	1.445319	1.479201	1.471324	1.472129	1.426395	1.46456
328.15	1.439302	1.433762	1.444002	1.478246	1.470150	1.471006	1.425552	1.46312
333.15	1.438028	1.432379	1.442630	1.477131	1.469028	1.469859	1.424631	1.46161
338.15	1.436820	1.431223	1.441313	1.476176	1.4678600	1.468736	1.423742	1.46029
343.15	1.435546	1.429938	1.439941	1.475061	1.4667020	1.467589	1.422812	1.45867

256

257

258

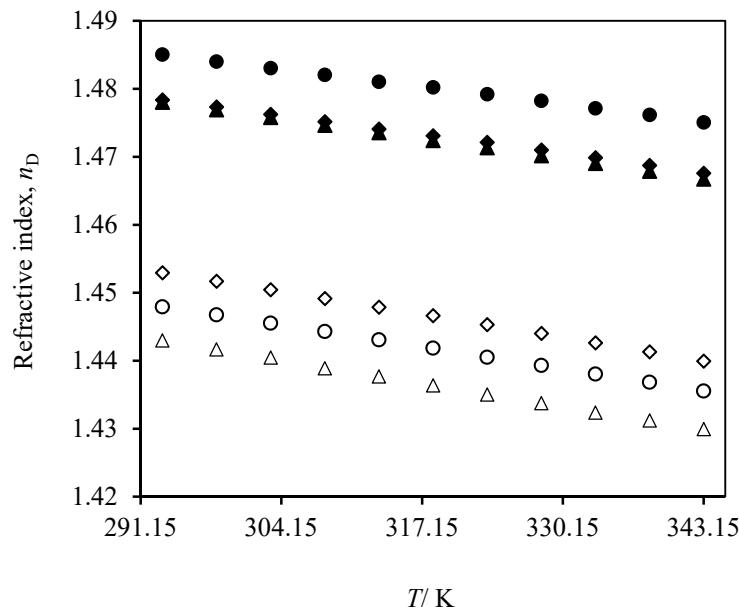
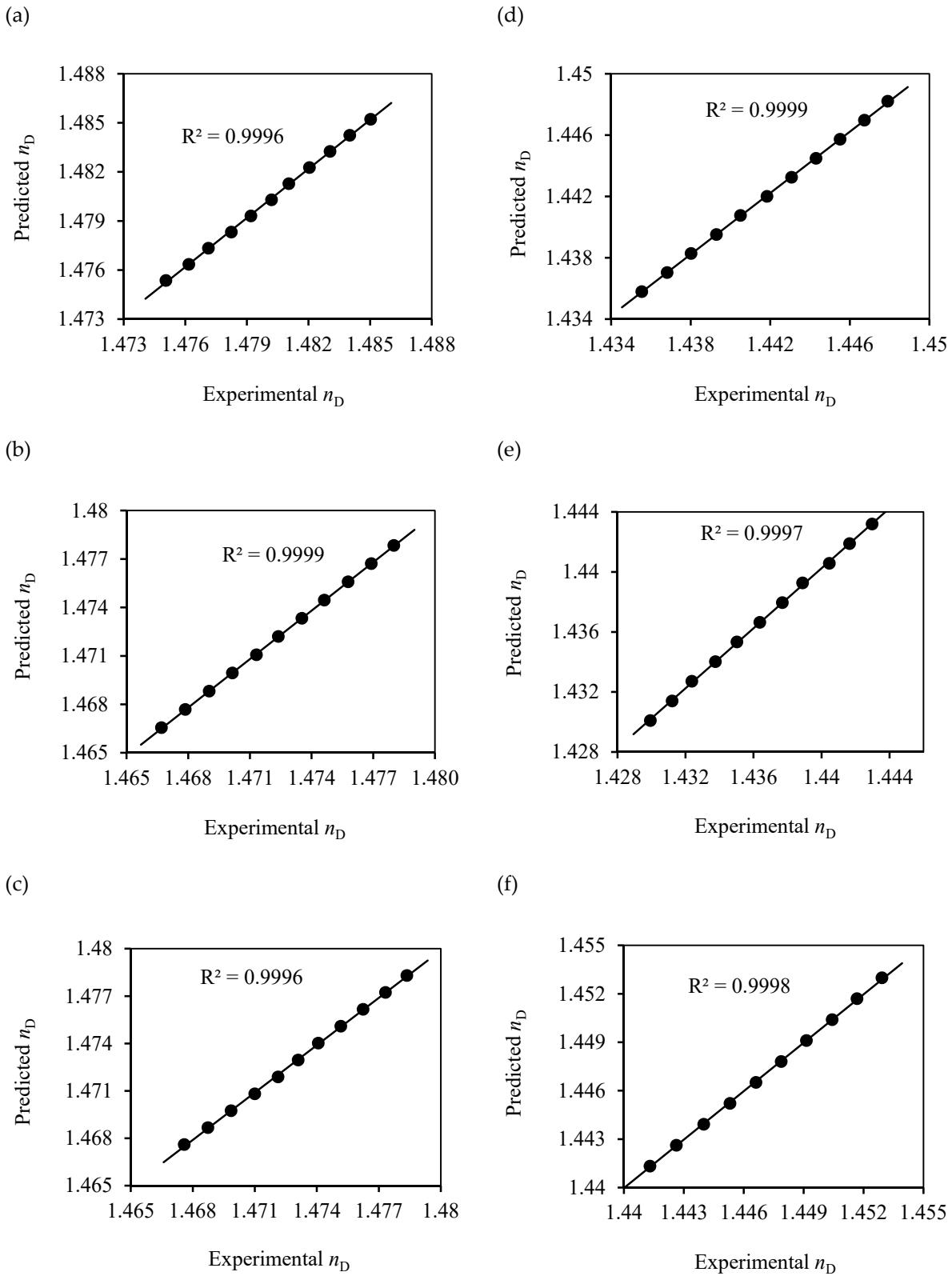

259

Table 6. The constant parameters of a , b used in Equation (3), $RMSE$ and R^2 values.

DES	a	$10^3.b$	$10^5.RMSE$ ^a	R^2 ^b
DES₁	1.521	-0.2483	4.373	0.9999
DES₂	1.52	-0.262	8.170	0.9996
TDES₁	1.529	-0.2593	6.942	0.9997
DES₃	1.543	-0.1971	7.204	0.9995
DES₄	1.544	-0.2257	3.123	0.9999
TDES₂	1.541	-0.2139	7.590	0.9996

260

261


Figure 5. Refractive index, n_D , of the pure GL, pure EG, DESs and TDESs as a function of temperature. The symbols are the same as symbols depicted in Figure 1.

262

263

264

265

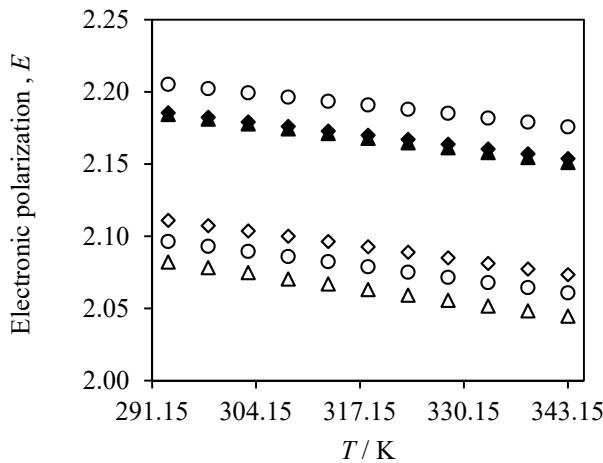
Figure 6. Comparison between the experimental and calculated values of refractive index, n_D , for all DESs and TDESs: (a), DES₁; (b), DES₂; (c), TDES₁, (d), DES₃; (e), DES₄; (f), TDES₂.

267 The molar refraction, R_m /($\text{cm}^3 \cdot \text{mol}^{-1}$), is a measure of the polarizability of a substance. The
 268 knowledge of specific refraction, R_D /($\text{g}^{-1} \cdot \text{cm}^3$), molar refraction and electronic polarization, E , and
 269 polarizability constant, δ , of solvents play a vital role in many fields such as chemical, medical,
 270 biotechnical and engineering. Indeed, all of these properties are associated with refractive index. In
 271 the present work, all of the aforementioned properties of DESs and TDESs at several temperatures
 272 were calculated as following equations [30]:

273
$$E = n_D^2 \quad (8)$$

274
$$R_D = \frac{n_D^2 - 1}{n_D^2 + 2} \cdot \frac{1}{\rho} \quad (9)$$

275
$$R_m = \frac{n_D^2 - 1}{n_D^2 + 2} \cdot V \quad (10)$$


276
$$R_m = \frac{4}{3} \pi \cdot N_A \cdot \delta \quad (11)$$

277 where ρ , V and n_D are density, molar volume and refractive index of DESs and TDESs, respectively.
 278 δ is polarizability constant of liquid DESs and TDESs. N_A is Avogadro constant.

279 In order to study the forces between molecules and their behavior in solutions, extraction of E
 280 data is important [31]. Since E is power state of refractive index, it is expected that with an increase
 281 in temperature, the amount of electronic polarization of DESs and TDESs decreased. Similarly, this
 282 matter was observed when the molar ratio of DESs increased, as shown in Figure 7. The E values for
 283 PC-GL 1:10 and PC-EG 1:10 were 2.2023 and 2.0931 at 298.15 K, respectively. After the increasing
 284 mole fraction HBDs in DESs, these values for PC-GL 1:16 and PC-EG 1:16 decreased to 2.1813 and
 285 2.0784 at the same temperature, respectively.

286 On the other hand, by adding AMPD to binary DESs, the values of E for both TDESs almost
 287 increased compared with those of binary DESs. For example, the E value for PC-GL 1:10 was
 288 2.0931 while that of PC-EG-AMPD 1:10:1 (TDES₂) was 2.1074 at 298.15 K.

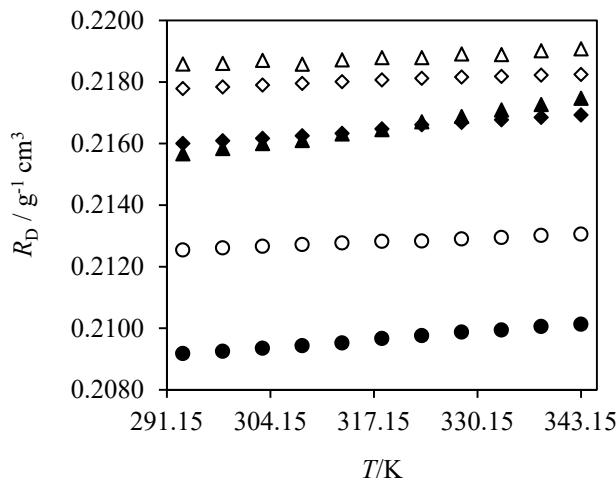

289

Figure 7. Electronic polarization, E , of DESs and TDESs with various molar ratios at several temperatures. The symbols are the same as symbols depicted in Figure 1.

290 Figure 8 displays the specific refraction, R_D , of DESs and TDESs. As can be seen, molar ratio
 291 salt/HBDs had a significant effect on the specific refraction of DESs. As the molar ratio increased this
 292 property decreased at all temperatures. However, temperature had not a great effect on R_D and an
 293 increase in temperature from 293.15 K to 343.15 K, brought about a minimal increase in the amount
 294 of R_D for all DESs and TDESs. As can be seen from Figure 8, there was a slight upward trend on the
 295 specific refraction of all DESs and TDESs by increasing temperature. In the case of TDESs, their R_D
 296 values decreased in comparison to their corresponding binary DESs, though this decreasing in R_D
 297 value for PC-GL-AMPD 1:16:1(TDES₂) occurred after 313.15 K.

298

Figure 8. Specific refraction, R_D , of DESs and TDESs with various molar ratio at several temperatures. The symbols are the same as symbols depicted in Figure 1.

299

300 Table 7 represents the numerical values of molar refraction, R_m , of DESs and TDESs and Figure 9
 301 depicts these values against various temperatures. Although, temperature had not a great effect on
 302 R_m of DESs and TDESs, the effect of molar ratio was clear on R_m of DESs. In the case of PC-EG DESs,
 303 as the molar ratio increased from 1:10 to 1:16 salt to HBD, the R_m values decreased marginally.
 304 However, there was an increase in the R_m values of PC-GL DESs when the molar ratio increased.

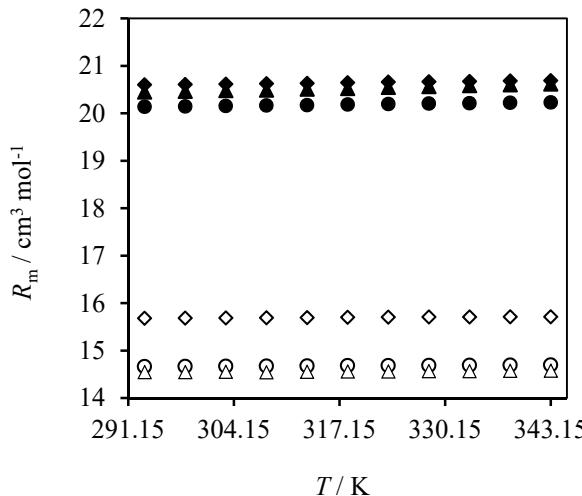

305 From the data listed in Table 7 and shown in Figure 9, it is obvious that by adding AMPD as a
 306 third part to binary DESs, the R_m values of both TDESs increased compared with their corresponding
 307 binary DES. For example, PC-GL 1:16 (DES₄) had the R_m value of 20.4623 cm³.mol⁻¹ at 298.15 K, in
 308 contrast the R_m value for PC-GL-AMPD 1:16:1 (TDES₂) was 20.6104 cm³.mol⁻¹ at the same
 309 temperature.

Table 7 . Calculated molar refraction, R_m , of DESs and TDESs within temperature range from $T = (293.15$ to
 $343.15)$ K and $p = 0.1$ MPa.

DESs and TDESs						
	DES ₁	DES ₂	TDES ₁	DES ₃	DES ₄	TDES ₂
T / K	R_m /(cm ³ .mol ⁻¹)					
293.15	14.6635	14.5464	15.6815	20.1401	20.4460	20.6018
298.15	14.6684	14.5477	15.6854	20.1473	20.4623	20.6104
303.15	14.6720	14.5544	15.6900	20.1567	20.4774	20.6176
308.15	14.6759	14.5460	15.6936	20.1649	20.4869	20.6255
313.15	14.6795	14.5556	15.6977	20.1732	20.5069	20.6332
318.15	14.6830	14.5603	15.7019	20.1873	20.5202	20.6468
323.15	14.6838	14.5602	15.7055	20.1962	20.5444	20.6597
328.15	14.6885	14.5682	15.7085	20.2072	20.5608	20.6676
333.15	14.6915	14.5667	15.7101	20.2139	20.5809	20.6750
338.15	14.6962	14.5752	15.7131	20.2249	20.5977	20.6829
343.15	14.6991	14.5794	15.7147	20.2317	20.6166	20.6904

310

311

Figure 9. Molar refraction, R_m , of DESs and TDESs with various molar ratio at several temperatures. The symbols are the same as symbols depicted in Figure 1.

312 Tariq et al. [31] used Eq (15) for calculating the free volume, f_m , phosphonium-based ionic liquids.
 313 Since, DESs and TDESs are defined as ionic liquid analogues, this equation was used to calculate the
 314 free volume of DESs.

315
$$f_m = V - R_m \quad (12)$$

316 where V is molar volume in $\text{cm}^3 \cdot \text{mol}^{-1}$; R_m is molar refraction in $\text{cm}^3 \cdot \text{mol}^{-1}$. Table 8 represents free
 317 volume of all DESs and TDESs at several temperatures. From Table 8, it is clear that with an increase
 318 in temperature all DESs and TDESs witnessed a gradual rise in the free volume. Further, by increasing
 319 molar ratio (from 1:10 to 1:16), the free volume all DESs increased. Amongst DESs with the same
 320 molar ratio, DESs with GL in their structure had the higher free volume. This may be explained by
 321 the fact that the higher alkyl chain on HBDs. From the Figure 11, it can be seen that GL has an
 322 additional CH in its structure and consequently caused the higher free volume. Moreover, by adding
 323 AMPD in binary DESs to form TDESs, the free volume of both TDESs increased compared with their
 324 corresponding binary DESs.

325

326

327

328

329

330

331

332

333

334

335

Table 8 . Calculated free volume, f_m , of DESs and TDESs within temperature range from $T = (293.15$ to $343.15)$ K and $p = 0.1$ MPa.

T / K	DESs and TDESs					
	DES ₁	DES ₂	TDES ₁	DES ₃	DES ₄	TDES ₂
f_m /(cm ³ .mol ⁻¹)						
293.15	40.1210	40.3248	42.3442	50.1280	51.7837	52.1319
298.15	40.2587	40.4709	42.4937	50.2719	51.9672	52.2885
303.15	40.3994	40.6193	42.6456	50.4153	52.1530	52.4488
308.15	40.5405	40.7675	42.7998	50.5610	52.3290	52.6109
313.15	40.6832	40.9254	42.9538	50.7079	52.5234	52.7751
318.15	40.8271	41.0848	43.1096	50.8496	52.7090	52.9393
323.15	40.9754	41.2352	43.2679	50.9989	52.9133	53.1023
328.15	41.1216	41.3998	43.4281	51.1483	53.1132	53.2734
333.15	41.2711	41.5515	43.5916	51.3080	53.3165	53.4475
338.15	41.4189	41.7070	43.7536	51.4588	53.5186	53.6204
343.15	41.5702	41.8658	43.9191	51.6200	53.7258	53.7963

336

337 Extraction of the refraction index and polarizability, δ , values of DESs and TDESs as a solvent
 338 media are important because having access to this data can give vital information about the behavior
 339 of DESs and TDESs such as dispersion forces. Indeed, a solvent with a large δ value has the strong
 340 dispersion forces [31]. The δ values of DESs and TDESs are shown in Table 9. From Table 9, it is clear
 341 that there was a decrease in the δ value of DESs as the molar ratio of DESs increased. Also, the δ
 342 values for both TDESs were lower than those of their corresponding binary DESs. For example, the δ
 343 values for PC-GL 1:16 (DES₄) and PC-GL-AMPD 1:16:1 (TDES₂) were $1.7078 \cdot 10^{-23}$ and $1.6113 \cdot 10^{-23}$
 344 cm³.mol⁻¹ at 298.15 K. Furthermore, there was a marginal increase in the δ values of DESs and TDESs,
 345 as the temperature increased.

346

Table 9

Calculated polarizability constant, δ , of DESs and TDESs within temperature range from $T = (293.15$ to $343.15)$ K and $p = 0.1$ MPa.

T / K	DESs and TDESs					
	DES ₁	DES ₂	TDES ₁	DES ₃	DES ₄	TDES ₂
$10^{23} \delta$ /(cm ³ .mol ⁻¹)						
293.15	1.6848	1.3099	1.2064	2.0281	1.7074	1.6111
298.15	1.6856	1.3102	1.2066	2.0289	1.7078	1.6113
303.15	1.6865	1.3105	1.2070	2.0297	1.7081	1.6115
308.15	1.6874	1.3108	1.2072	2.0306	1.7085	1.6120
313.15	1.6883	1.3111	1.2076	2.0314	1.7088	1.6124

318.15	1.6892	1.3113	1.2078	2.0322	1.7092	1.6127
323.15	1.6901	1.3117	1.2080	2.0329	1.7095	1.6132
328.15	1.6909	1.3120	1.2081	2.0337	1.7099	1.6136
333.15	1.6918	1.3123	1.2084	2.0343	1.7102	1.6140
338.15	1.6927	1.3126	1.2088	2.0351	1.7105	1.6144
343.15	1.6936	1.3129	1.2090	2.0359	1.7109	1.6148

347 *2.4. Internal pressure of DESs*

348 One of the major properties of liquids is internal pressure, P_{int} . Extraction of internal pressure
 349 values is of the utmost importance because this property affected many properties of liquids
 350 including ultrasonic velocity, free volume, viscosity, surface tension, solubility parameter and so on
 351 [31; 32]. Generally, internal pressure of a liquid is defined as,

$$352 \quad P_{\text{int}} = \left(\frac{\delta U}{\delta V} \right)_T \quad (13)$$

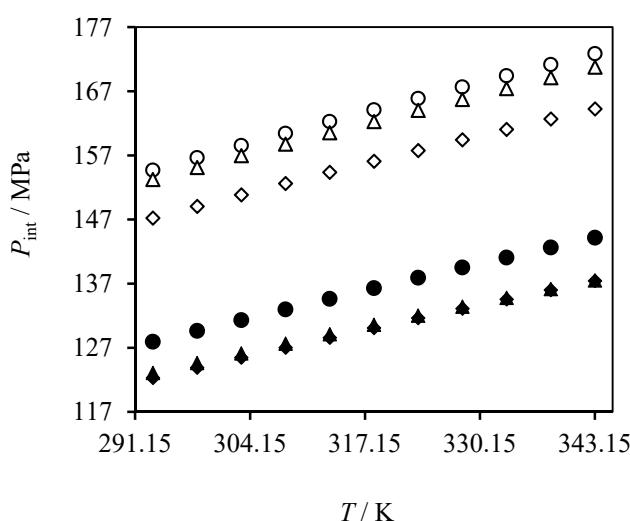
353 where P_{int} is internal pressure in Pa which shows the change in internal energy of one mole of solvent
 354 with respect to molar volume of liquid at the constant temperature. Indeed, P_{int} reflects generally
 355 dispersion, repulsion, and dipole–dipole interactions in the solvent which vary most rapidly near the
 356 equilibrium molecular separation [33]. Using the molar refraction and molar volume data, the
 357 internal pressure of DESs and TDESs is calculated through the Buchler–Hirschfelder–Curtis equation
 358 of state at the given temperature, as defined [31; 34; 35],

$$359 \quad P_{\text{int}} = \frac{2^{1/6} RT}{2^{1/6} V - d \cdot N_A^{1/3} V^{2/3}} \quad (14)$$

360 where P_{int} is internal pressure in MPa; R and T are the gas constant in $\text{J.K}^{-1} \cdot \text{mol}^{-1}$ and temperature in
 361 Kelvin, respectively; N_A is Avogadro constant in mol^{-1} ; V is the molar volume of DESs and TDESs in
 362 $\text{cm}^3 \cdot \text{mol}^{-1}$; d is the molecular radius in cm, which can be defined as the following equation,

$$363 \quad d = 2 \left(\frac{3 R_m}{4 \pi N_A} \right)^{1/3} \quad (15)$$

364 where R_m is the molar refraction in $\text{cm}^3 \cdot \text{mol}^{-1}$; R and T are the gas constant and temperature in Kelvin;
 365 N_A is Avogadro constant in mol^{-1} .


366 The internal pressures of DESs and TDESs are shown in Table 10 and depicted in Figure 10 against
 367 different temperatures. These results reveal that DESs and TDESs can be considered as the class of
 368 liquids which have the positive temperature coefficients of internal pressure. That is, internal
 369 pressure of DESs and TDESs increased with raising temperature, in the defined temperature range.
 370 According to Figure 10, there was an increasing trend on the internal pressure values of DESs and
 371 TDESs when the temperature was increased. However, the effect of molar ratio on internal pressure
 372 was different. The amount of internal pressure of all DESs decreased as the molar ratio increased. For
 373 instance, PC-EG 1:10 had P_{int} value of 156.6580 MPa at 298.15 K, but by increasing the amount of EG
 374 in DES, this value for PC-EG 1:16 was 155.1311 MPa at the same temperature.

375 It is worthy to investigate the effect of alkyl chain lengths on the internal pressure of DESs. It can be
 376 clearly evident from Figure 10 that DESs with EG in their structure at the same molar ratios had the
 377 higher P_{int} values rather than DESs with GL in their structures at all temperatures studied here.
 378 Indeed, GL has an additional CH in its structure, as shown in Figure 11; then DESs having GL in
 379 structure had the lower P_{int} values. This matter has been well established in the case of ILs [33].
 380 Further, the P_{int} values of TDESs were even lower than those of binary DESs. The decreasing was
 381 more obvious in the case of PC-EG-AMPD 1:10:1 (TDES₁) rather than PC-GL-AMPD 1:16:1 (TDES₂).
 382

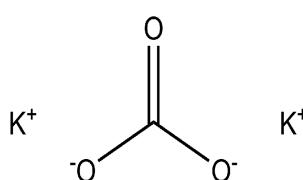
Table 10. Calculated internal pressure, P_{int} , of DESs and TDESs within temperature range from $T = (293.15$ to $343.15)$ K and $p = 0.1$ MPa.

	DESs and TDESs					
	DES ₁	DES ₂	TDES ₁	DES ₃	DES ₄	TDES ₂
T / K	P_{int}/MPa					
293.15	154.7205	153.2630	147.2526	127.9432	123.0968	122.3129
298.15	156.6580	155.1311	149.0718	129.6383	124.6351	123.9146
303.15	158.5571	156.9879	150.8645	131.3274	126.1491	125.4885
308.15	160.4379	158.7733	152.6257	132.9928	127.6690	127.0453
313.15	162.2910	160.5557	154.3726	134.6413	129.1374	128.5823
318.15	164.1197	162.2937	156.0941	136.3100	130.6064	130.1193
323.15	165.8977	164.0434	157.7847	137.9262	132.0237	131.6465
328.15	167.6843	165.7304	159.4475	139.5349	133.4245	133.1230
333.15	169.4287	167.4329	161.0722	141.0827	134.8081	134.5756
338.15	171.1720	169.1354	162.6923	142.6613	136.1749	136.0209
343.15	172.8730	170.7874	164.2741	144.1780	137.5154	137.4422

383

Figure 10. Internal pressure, P_{int} , of DESs and TDESs with various molar ratios at several temperatures. The symbols are the as symbols depicted in Figure 1.

384 3. Materials and Methods


385 3.1 Chemicals

386 Potassium carbonate (PC) with >99.9% purity and 2-amino-2methyl-1-3-propanediol (AMPD)
 387 with >99% purity were supplied by Sigma-Aldrich; glycerol (GL) with >99.8 %purity and ethylene
 388 glycol (EG) >99.5% purity were purchased from R&M Chemicals supplier. Table 11 represents the
 389 abbreviation of these chemicals and DESs along with molar ratios, symbol and molecular weight of
 390 each component and DESs. In order to prevent moisture and any contamination, all materials were
 391 kept in a controlled environment. Figure 11 shows the molecular structure of the PC and the HBDs.
 392 In this study, DES₁ and DES₂ represent PC-EG 1:10 and PC-EG 1:16, respectively; DES₃, DES₄ show
 393 PC-GL 1:10 and PC-GL 1:16, respectively; TDES₁ and TDES₂ represent PC-EG-AMPD 1:10:1 and PC-
 394 GL-AMPD 1:16:1, respectively.

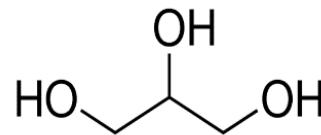
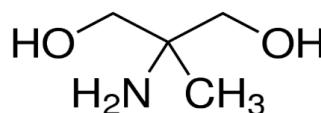

395

Table 11. The abbreviations, molecular weights and molar ratios for components and DESs and TDESs in this work.


DES/TDES	Salt		HBD		Molar ratio		
Symb. ^a	M _{DES/TDES} ^b	Abb. ^c	M _{salt} ^d	Abb. ^c	M _{HBD} ^e	Salt	HBD
PC-EG (DES ₁)	68.992	PC	138.21	EG	62.07	1	10
PC-EG (DES ₂)	66.549	PC	138.21	EG	62.07	1	16
PC-EG- AMPD (TDES ₁)	72.004	PC	138.21	EG & AMPD	62.07	1	10:1 105.14
PC-GL(DES ₃)	96.283	PC	138.21	GL	92.09	1	10
PC-GL(DES ₄)	94.803	PC	138.21	GL	92.09	1	16
PC-GL- AMPD (TDES ₂)	95.377	PC	138.21	GL & AMPD	92.09	1	16:1 105.14

396 ^a Symbol.397 ^b M_{DES} molecular weight of DES and TDES in g·mol⁻¹ was calculated according to AlOmar et al. [8].398 ^c Abbreviation.399 ^d Molecular weight of salt in g·mol⁻¹.400 ^e Molecular weight of HBD in g·mol⁻¹.


Potassium Carbonate (PC)

Glycerol (GL)

Ethylene glycol (EG)

2-amino-2methyl-1-3-propanediol (AMPD)

Figure. 11. A schematic of chemical structure of the salt and HBDs.

401 *3.2 DES preparation*

402 Binary DESs were prepared with the ratios of 1:10 for PC to EG and 1:16 for PC to GL. In order
403 to form ternary TDESs, a type of hindered amine (HA) called 2-amino-2methyl-1,3-propanediol
404 (AMPD) was mixed with the binary mixtures with the molar ratios of 1:10:1 for PC-EG-AMPD and
405 1:16:1 for PC-GL-AMPD. The weight measurements of pure components of all DESs and TDESs were
406 performed in a digital balance (Sartorius, model BSA 224S-CW) with an uncertainty of ± 0.1 mg. The
407 salts were mixed with related HBDs using magnetic stirrer at 350 rpm, atmospheric pressure and the
408 temperature of 333.15 to 353 K for 1-2 h in a fume hood until a homogeneous and uniform liquid
409 without any precipitate was formed. For preparation of TDESs, after 15-30 minutes mixing the binary
410 mixtures, AMPD as a ternary part was immediately added to binary mixture while stirring. The
411 heating of ternary mixture continued more than 1h. The formed DESs and TDESs were kept in the
412 tight bottles to prevent any contamination with atmospheric water vapor. The DESs and TDESs were
413 used without any further purification. Since DESs and TDESs are known as the hygroscopic solvents,
414 their water contents were measured using a Mettler Toledo Karl-Fischer (C30) after preparation. It
415 was found that the water content of DESs and TDESs is less than 0.2 wt%. The DESs and TDESs were
416 used without any further purification.

417 *3.3 Density measurement*

418 A digital density meter (Anton Par, model, DMA-4500M) was applied to measure the density of
419 HBDs, DESs and TDESs with an accuracy of $\pm 5 \times 10^{-5}$ g.cm⁻³, and a temperature control accuracy of
420 ± 0.01 K. The density meter works on the principle of oscillating U-tube method. In order to gain
421 accurate results and remove any unwanted particles, the U-shaped tube of density meter was cleaned
422 by acetone and standard water of millipore quality. An air blower was used to dry the moisture
423 content inside the tube and avoid any influence on the results. Density of all DESs and TDESs was
424 measured in three runs at atmospheric pressure and temperatures raising from 293.15 to 343.15 K
425 and the average value was reported for the further study.

426 *3.4 Refractive index measurement*

427 Refractive index of HBDs, DESs and TDESs were measured by means of a digital Abbemat
428 automatic refractometer (Anton Par, model WR), with an accuracy of $\pm 4 \times 10^{-5}$ n_D , and a temperature
429 control accuracy of ± 0.03 K. In order to obtain accurate and reliable data, standard water of millipore
430 quality was utilized to calibrate the refractometer. Before pouring the sample into the sample mold,
431 the prism face was carefully cleaned with ethanol and dried to prevent any disturbance in the results
432 because of possible minute sediments on the prism face. Experimental refractive index of DESs and
433 TDESs was measured three times at atmospheric pressure and temperature ranging from 293.15 to
434 343.15 K with a regular interval of 5 K at wavelength of 589.3 nm. All refractive index values were
435 reported in the average experimental values.

436 **4. Conclusions**

437 In this work, the binary DESs were PC-GL with molar ratios 1:10 and 1:16 and PC-EG with the
438 same molar ratios. TDESs were prepared by adding AMPD in binary DESs such as PC-GL-AMPD

439 1:16:1 and PC-EG-AMPD 1:10:1. The experimental density and refractive index of all DESs, TDESs
440 and their HBDs were measured at the temperature of 293.15 to 343.15 K with an interval of 5 K. The
441 effect of temperature, molar ratio, type of HBD and molecular weight was investigated on the
442 properties. The results revealed that as the temperature increases, the density and refractive index
443 values of DESs and TDESs decrease. Moreover, the molar ratio had an effect on these properties DESs.
444 By increasing amount of HBDs in DESs the density and refractive index values of DESs decreased
445 toward the properties of their HBD. By adding AMPD to the binary DES of PC-GL 1:16 the density
446 and refractive index of PC-GL-AMPD 1:16:1 (TDES₂) increased at all temperatures except for density
447 at 293.15 and 298.15 K. The density of PC-EG-AMPD 1:10:1 (TDES₁) decreased at all temperatures by
448 adding AMPD to the binary DES of PC-EG 1:10, while the refractive index of this TDES₁ increased at
449 the same temperatures. It was found that DESs with the GL in their structures had the higher density
450 and refractive index values in comparison to DESs having EG in their structures with same molar
451 ratios. Finally, there was a decrease in the density and refractive index of DESs (with the same
452 components but different molar ratios) when the molecular weight decreased.

453 References

1. Abbott A. P.; Capper G.; Davies D. L.; Rasheed R. K., and Tambyrajah V. Novel solvent properties of choline chloride/urea mixtures. *Chem. Commun.* **2003**, 70-71.
2. Hayyan A.; Mjalli F. S.; Alnashef I. M.; Al-Wahaibi T.; Al-Wahaibi Y. M., and Hashim M. A. Fruit sugar-based deep eutectic solvents and their physical properties. *Thermochim. Acta* **2012**, 541, 70-75.
3. Kareem M. A.; Mjalli F. S.; Hashim M. A., and Alnashef I. M. Phosphonium-based ionic liquids Analogues and their physical properties. *J. Chem. Eng. Dat* **2010**, 55, 4632-4637.
4. Leron R. B.; Soriano A. N., and Li M.-H. Densities and refractive indices of the deep eutectic solvents (choline chloride + ethylene glycol or glycerol) and their aqueous mixtures at the temperature ranging from 298.15 to 333.15 K. *J. Taiwan Inst. Chem. Eng.* **2012**, 43, 551-557.
5. Leron R. B. and Li M.-H. High-pressure density measurements for choline chloride: Urea deep eutectic solvent and its aqueous mixtures at T = (298.15 to 323.15) K and up to 50 MPa. *J. Chem. Thermodyn.* **2012**, 54, 293-301.
6. Mjalli F. S.; Naser J.; Jibril B.; Al-Hatmi S. S., and Gano Z. S. Ionic liquids analogues based on potassium carbonate. *Thermochim. Acta* **2014**, 575, 135-143.
7. Siongco K. R.; Leron R. B., and Li M.-H. Densities, refractive indices, and viscosities of N,N-diethylethanol ammonium chloride-glycerol or -ethylene glycol deep eutectic solvents and their aqueous solutions. *J. Chem. Thermodyn.* **2013**, 65, 65-72.
8. Alomar M. K.; Hayyan M.; Alsaadi M. A.; Akib S.; Hayyan A., and Hashim M. A. Glycerol-based deep eutectic solvents: Physical properties. *J. Mol. Liq.* **2016**, 215, 98-103.
9. Yadav A. and Pandey S. Densities and viscosities of (Choline Chloride + Urea) deep eutectic solvent and its aqueous mixtures in the temperature range 293.15 K to 363.15 K. *J. Chem. Eng* **2014**, 59, 2221-2229.
10. Liu B. and Liu Y. Physical Properties of Aqueous mixtures of acetamide-LiCl eutectic ionic liquids as a function of temperature and composition. *Asian J. Chem.* **2014**, 26, 8557-8562.

479 11. Florindo C.; Oliveira F. S.; Rebelo L. P. N.; Fernandes A. M., and Marrucho I. M. Insights into
480 the synthesis and properties of deep eutectic solvents based on cholinium chloride and
481 carboxylic acids. *ACS Sustainable Chem. Eng.* **2014**, 2, 2416-2425.

482 12. Nkuku C. A. and Lesuer R. J. Electrochemistry in deep eutectic solvents. *J. Phys. Chem.* **2007**, 111,
483 13271-13277.

484 13. Maugeri Z. and Dominguez De Maria P. Novel choline-chloride-based deep-eutectic-solvents
485 with renewable hydrogen bond donors: levulinic acid and sugar-based polyols. *RSC Adv.* **2012**,
486 2, 421-425.

487 14. Dai Y.; Van Spronsen J.; Witkamp G.-J.; Verpoorte R., and Choi Y. H. Natural deep eutectic
488 solvents as new potential media for green technology. *Anal. Chim. Acta* **2013**, 766, 61-68.

489 15. Wang H.; Jia Y.; Wang X.; Yao Y., and Jing Y. Physical-chemical properties of nickel analogs
490 ionic liquid based on choline chloride. *J. Therm. Anal. Calorim.* **2014**, 115, 1779-1785.

491 16. Liu Y.-T.; Chen Y.-A., and Xing Y.-J. Synthesis and characterization of novel ternary deep
492 eutectic solvents. *Chin. Chem. Lett.* **2014**, 25, 104-106.

493 17. Sze L. L.; Pandey S.; Ravula S.; Pandey S.; Zhao H.; Baker G. A., and Baker S. N. Ternary deep
494 eutectic solvents tasked for carbon dioxide capture. *ACS Sustainable Chem. Eng.* **2014**, 2, 2117-
495 2123.

496 18. Khezeli T. and Daneshfar A. Synthesis and application of magnetic deep eutectic solvents: Novel
497 solvents for ultrasound assisted liquid-liquid microextraction of thiophene. *Ultrason. Sonochem*
498 (in press).

499 19. Sarkar S. and Sampath S. Ambient temperature deposition of gallium nitride/gallium oxynitride
500 from a deep eutectic electrolyte, under potential control. *Chem. Commun.* **2016**, 52, 6407-6410.

501 20. García G.; Aparicio S.; Ullah R., and Atilhan M. Deep eutectic solvents: physicochemical
502 properties and gas separation applications. *J. Am. Chem. Soc.* **2015**, 29, 2616-2644.

503 21. Nayak J. N.; Aralaguppi M. I., and Aminabhavi T. M. Density, viscosity, refractive index, and
504 speed of sound in the binary mixtures of 1,4-Dioxane + Ethanediol, + Hexane, + Tributylamine,
505 or + Triethylamine at (298.15, 303.15, and 308.15) K. *Chem. Eng. Data* **2003**, 48, 1152-1156.

506 22. Cristancho D. M.; Delgado D. R.; Martínez F.; Abolghassemi Fakhree M. A., and Jouyban A.
507 Volumetric properties of glycerol + water mixtures at several temperatures and correlation with
508 the Jouyban-Acree model. *Revista Colombiana de Ciencias Químico - Farmacéuticas* **2011**, 40, 92-115.

509 23. Aminabhavi T. M. and Banerjee K. Density, viscosity, refractive index, and speed of sound in
510 binary mixtures of Methyl Acetate + Ethylene Glycol or + Poly(ethylene glycol) in the
511 temperature interval (298.15–308.15) K. *Chem. Eng. Data* **1998**, 43, 852-855.

512 24. Tsiеркеzos N. G. and Molinou I. E. Densities and viscosities of ethylene glycol binary mixtures
513 at 293.15 K. *Chem. Eng. Data* **1999**, 44, 955-958.

514 25. Vural U. S.; Muradoglu V., and Vural S. Excess molar volumes, and refractive index of binary
515 mixtures of glycerol+ methanol and glycerol+ water at 298.15 K and 303.15 K. *Chem. Soc. Ethiop.*
516 **2011**, 25, 111-118.

517 26. Koohyar F.; Rostami A. A.; Chaichi M. J., and Kiani F. Study on Thermodynamic properties for
518 binary Systems of Water. *J. Chem.* **2012**, 2013,

519 27. Chemat F.; Anjum H.; Shariff A. M.; Kumar P., and Murugesan T. Thermal and physical
520 properties of (Choline chloride + urea + l-arginine) deep eutectic solvents. *J. Mol. Liq.* **2016**, 218,
521 301-308.

522 28. Abbott A. P.; Harris R. C.; Ryder K. S.; D'agostino C.; Gladden L. F., and Mantle M. D. Glycerol
523 eutectics as sustainable solvent systems. *Green Chem.* **2011**, *13*, 82-90.

524 29. Yaws C. L. Chemical Properties Handbook. first ed., McGraw-Hill Company, New York, USA,
525 1999. pp. 616-642.

526 30. Arun B. Nikumbh and Rathi M. V. Study of molar refraction and polarisability constant of
527 aqueous solutions of NH_4NO_3 and KBrO_3 at different temperatures. *AJER* **2016**, *5*, 195-200.

528 31. Tariq M.; Forte P. a. S.; Gomes M. F. C.; Lopes J. N. C., and Rebelo L. P. N. Densities and refractive
529 indices of imidazolium- and phosphonium-based ionic liquids: Effect of temperature, alkyl
530 chain length, and anion. *J. Chem. Thermodyn.* **2009**, *41*, 790-798.

531 32. Goharshadi E. K. and Nazari F. Computation of internal pressure of liquids using a statistical
532 mechanical equation of state. *Fluid Phase Equilib.* **2001**, *187-188*, 425-431.

533 33. Singh T. and Kumar A. Temperature dependence of physical properties of imidazolium based
534 ionic liquids: internal pressure and molar refraction. *J. Solution Chem.* **2009**, *38*, 1043-1053.

535 34. Casás L. M.; Marino G.; Mascato E.; Iglesias M.; Orge B., and Tojo J. Excess molar internal
536 pressures and changes in refractive indices of acetone + methanol + (2-methyl-1-propanol or 3-
537 methyl-1-butanol) at 298.15 K. *Phys. Chem. Liq.* **2005**, *43*, 473-483.

538 35. Zorebski E. Internal pressure in liquids and binary liquid mixtures. , *J. Mol. Liq.* **2009**, *149*, 52-54.

539

540