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Summary

By solving the weak field limit of Einstein’s Field Equation including the Cosmological Constant, under the
constraint of spherical isotropy, it is shown that, at large cosmological distance, the gravitational force exceeds
the one that is predicted by Newton’s gravity law, such that it corresponds with Milgrom’s MOND hypothesis.
However, the resulting prediction that, at extremely large distances, gravity with some spatial periodicity turns
on-and-off into antigravity marks a decisive difference.
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Introduction

It is well known that the weak field limit of Einstein’s Field Equation corresponds with
Newton’s gravitation law. As | wish to discuss in this article, this is true as long as Einstein’s
Cosmological Constant is considered to be zero. This implies that a non-zero value of this
constant modifies Newton’ s law. Presently, a non-zero value of this constant is considered
to be feasible, because it would explain the phenomenon that the Universe is expanding in
acceleration rather than with a constant velocity such as presumed prior to 1998 [1,2]. It
means that the Cosmological Constant embodies the “dark energy”, which is seen as the
true cause of this phenomenon [3]. If the associated modification of Newton’s gravitation
law would also be responsible for the excessive orbital velocity of stars at the far end of
galaxies, it would be fair to state that the Cosmological Constant would embody “dark
matter” as well. This raises the question in how far the modification of Newton’s gravitation
law due to the Cosmological Constant corresponds with the empirical modification of this
law as proposed by Milgrom [4], known as MOND (Modified Newtonian Dynamics), as a
substitute for the dark matter hypothesis for explaining the flat rotation curves of stars in
galaxies. It is my aim to show that the gauge freedom in Einstein’s Field Equation allows
developing a theoretical basis for heuristic MOND, thereby revealing some unexpected
properties and predictions. To do so, first an outline will be given of the line of thought, the
details of which being addressed in an appendix. After that, a comparison will be given
between the developed theoretical model for modified gravity and the view as usually
presented in MOND.

The gravitational wave equation
Let us start by considering the gravitational wave equation as a consequence of the weak
field limit of the Einsteinean Field Equation. The equation reads as,

871G : 1
G, +Ag,, =—T, with G, =R, —ERgﬂv. (1)

ot

where T, is the stress-energy tensor, which describes the energy and the momenta of the
source(s) and where R, and R are respectively the so-called Ricci tensor and the Ricci
scalar, which can be calculated if the metric tensor components g are known [5,6,7]. The

guantity A is known as Einstein’s Cosmological Constant. In the case that a particle under
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consideration is subject to a central force only, the time-space condition shows a spherical
symmetric isotropy. This allows to read the metric elements g from a simple line element

that can be written as

ds® =g, (r,0)dg; + g, (r,t)dr’ +r’sin’dde’ + r’de?’, (2)
where g, =ict and i=+/-1.

It means that the number of metric elements g, reduce to a few, and only two of them are

time and radial dependent. A generalization of Schwarzschild’s solution of Einstein’s
equation for empty space and A =0, shown in the appendix of this paper, relates the metric
components as,

grrgtt = 1 * (3)
Solving Einstein’s equation under the weak field limit

g, (r.0) =1+ h,(r,1), where |, (r,t) <<1, (4)

under adoption of a massive source with pointlike distribution T,, = Mc>S5°(r), results in a
wave equation with the format (see Appendix),

1 9°

r c’ot?

8aGM

2
C

3 (r), (5)

10°
(Vh¢)+;ar—2(l"h(p) = -

Its stationary solution [8] is the well-known Newtonian potential,

<I)=—M—G,where h, =2—?. (6)
r c
where h(p =?;—q2>.

Eqg. (5) is the equation of a wave that propagates in the direction of » with a velocity c. This
equation is identical in format as Maxwell’s wave equation for electromagnetism. It proves
the causality of gravity.

Let us now memorize that Einstein derived his Field Equation by defining a covariant
derivative after proper time 7’ =ic7, such that that both the covariant derivatives of the
Einstein tensor G, and the energy-stress tensor 7, are zero, i.e.,

Do Dy, o
dqﬂ dqﬂ

Actually, this is a sum of covariant derivatives in Einstein notation, i.e.
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3D 30D
—G,UV :Z_T,uv =0 fOl" V= 0;112131 (9)
u=0 dg,u #=0 dqﬂ

From (8) it is concluded that

G +B, 6 =AT

uv uv uv?

for ©u=0,1,2,3. (10)

where 4 is a scalar constant and where B is a tensor with the particular property that its

covariant derivative is zero. Furthermore, because of

g, =0. (11)
U

i.e., because of the property the covariant derivatives of the metric tensor g, are zero, we

have,
B,uv = Ag,uv ’ (12)

where Ais a scalar constant. As is well known and shown in the appendix once more,
inclusion of this constant implies that under absence of massive sources, Einstein’s equation
can be satisfied if empty space is given up and is replaced by a space that behaves as a
perfect liquid in thermodynamic equilibrium. In this condition the stress-energy tensor of
space-time (described in Hawking-metric) without massive sources changes from
7,=0->T, =-pA, where p=g, /872G, [9,10,11]. If in this fluid a massive pointlike

source is inserted, the resulting wave equation under the weak field constraint is a
modification of (5), such that

9° : ) _ 871GM
—W(V(I))'i‘ar—z(l’q))'i‘i (V(I)) =-r cz

o’ (r), (13)

where A% =2A.
This is shown in the appendix as well. From the perspective of classic field theory, a wave

equation can be conceived as the result of an equation of motion derived under application
of the action principle from a Lagrangian density L of a scalar field with the generic format

1
L=—58ﬂ®8”®+U(<D)+p<D, (15)

where U(®) is the potential energy of the field and where p® is the source term. Comparing
various fields of energy, we have,

U@®)=0 for electromagnetism.
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U(®)=-2d*/2 forthis case,
U®)= 1D /2 for the nuclear forces [12]. (16)

The non-trivial solutions of (14) in homogeneous format are, for the first case and the third
case, respectively,

=20 and @ =, FPEAD). (17)
r Ar

The first case applies to electromagnetism (for ®, = QA4/4xe,) and Newtonian gravity (for
@, =—-MGA). The third case applies to Proca’s generalization of the Maxwellian field [13]. It
reduces to the first case if 4 — 0, while keeping ®,/ A constant. Generically, it represents a
field with a format that corresponds with the potential as in the case of a shielded electric

field (Debije [14]), as well with Yukawa’s proposal [15] to explain the short range of the
nuclear force.

Let us now consider the (unusual) second case. It can be readily verified from (14), and
elaborated once more in the Appendix, that a non-trivial solution for this case is,

cos Ar +sin Ar

e (18)

D=0,

In accordance with the concepts of classical field theory, the field strength can be
established as the spatial derivative of the potential ®@. Identifying ®,/Aas —MG and A
as a range parameter, we may identify this field strength as a cosmological gravitational
acceleration g. Let us compare this acceleration with the Newtonian one g, . To do so

more explicitly, we compare gNr2 with gr’. The comparison is shown in figure 1.

g N
3

2 CosmoGrav
Newton

Figure 1: The cosmological gravity force compared with the Newtionian force

This figure shows that, for relative small values of r, the cosmological acceleration behaves
similarly as the Newtonian one, but that its relative strength over the Newtonian one
increases significantly for large values of r. This is a similar behavior as heuristically
implemented in MOND. The effective range is determined by the parameter A. It might
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therefore well be that the cosmological gravity force manifests itself only at cosmological
scale. Let us consider its consequence.

Newtonian laws prescribe that the transverse velocity v, (r) of a cosmic object revolving in a

circular orbit with radius » in a gravity field is determined by

_ MG

r

2
Vo (r) (19)
where M (r)is the amount of enclosed mass and where G is the gravitational constant. This

relationship is often denoted as Kepler’s third law. Curiously, like first announced by Vera
Rubin [16] in 1975, the velocity curve of cosmic objects in a galaxy, such as, for instance, the
Milky Way, appears being almost flat. It is tempting to believe that this can be due to a
particular spectral distribution of the spectral density to compose M (r). This, however,

cannot be true, because M (r) builds up to a constant value of the overall mass. And Kepler’s
law states in fact that a flat mass curve M (r)is not compatible with a flat velocity curve.
Figure 2 illustrates the problem.

1r

2 4 6 8
Figure 2. Incompatibility of a flat enclosed mass curve with a flat rotation curve.

It is one of the two: either the gravitational acceleration is, at cosmological distances, larger
than the Newtonian one, or dark matter, affecting the mass distribution is responsible.
Cosmological gravity as expressed by (18) may give the clue. Its effective range is determined
by the parameter A . It might therefore well be that the cosmological gravity force manifests
itself only at cosmological scale. Figure 3 shows that under influence of this force, the

rotation curves in the galaxy may assume a flat behavior indeed.
v

1r
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Figure 3: boost of the rotation curve under influence of cosmological gravity.
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This hypothetical cosmological gravity shows an intriguing phenomenon. Like shown in
figure 4, at very far cosmological distance, the attraction of gravity is inversed into repulsion.
There is some speculation reported in literature that such antigravity is required to explain
the phenomenon of dark energy, responsible for the accelerated expansion of the universe
[17]. Exploration of this phenomenon is a subject outside the scope of this article. It has to
be noted that the solution (18) is not unique. There are more solutions possible by modifying
the magnitude of sin Ar over cosAr. | have simply chosen here for the symmetrical solution.
Cosmological observations would be required to obtain more insight in this. Such
observations are required as well for establishing meaningful values for 4.

g N
1
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Figure 4: Inversion of the gravity force to antigravity at large cosmological distances. Black: Newtonian. Blue:
Cosmological Gravity.

Comparison with MOND
It is instructive to compare this view on cosmological gravity with MOND. MOND is a
heuristic approach based on a modification of the gravitational acceleration g such that

g=-"2" with x=g/a, (20)

()

where ¢(x)is an interpolation function, g, (= MG /r*)the Newtonian gravitational
acceleration and where ¢g, is an empirical constant acceleration. The format of the

interpolation function is not known, but the objectives of MOND are met by a simple
function like [4,18]

X

S

If g/a, <<1, such as happens for large r, (20) reduces to

g =448y - (22)

Under this condition, the gravitational acceleration decreases as r'instead of . As a
result, the orbital velocity curves as a function of » show up as flat curves.
Algebraic evaluation of (20) and (21) results into,

(21)
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(23)

1+ 1+ 4k (Ar)*
i:J+ P it k=

o 2 MGA

This expression allows a comparison with the hypothesis as developed in this article. From
(18), under consideration of ®, = MGA,

O = cbow S g=-VO =M—ZG{(I—lr)coslr+(1+lr)sin/1r} , (24)
r r

hence

£ = (1= Ar)cos Ar + (1+ Ar)sin Ar. (25)

8w

As illustrated in figure 5, a pretty good fit between (23) and (25) is obtained if

a,

k= >
MGA

=25—>a,=2.5MGX . (26)

Observations on various galaxies have shown that a,can be regarded as a galaxy-
independent constant with a value about a, =1x107%° m/s2.

The implication of (28) is, that a, = 1x10° m/s? is a second gravitational constant next to G

. The two constants determine the range A of the gravitational force in solar systems and
galaxy systems as 4> = 2a,/5MG, where M is the enclosed mass in those systems. Where

this second gravitational quantity a,is a constant, this is apparently not true for the
Einsteinean parameter A.

g oN

5

4 MOND
3 hypoth

1r
0.5 1 1.5 2

Figure 5: MOND’s interpolation function compared with the theory as developed.
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Discussion

In the description given in this article, gravity shows up as the disturbance of the equilibrium
state of some fluid in space by a massive source. The fluid executes a negative pressure on
the energetic flux from the source. It is the consequence of the adoption of a positive valued
cosmological constant in Einstein’s Field Equation. How to interpret the physical nature of
this fluid is a still unanswered question. Empty space could be a dance of virtual particles
that exist within Heisenberg’s uncertainty interval. That view comes close to the challenging
proposal as has been put forward by Verlinde [20], who regards space as a sea of such virtual
particles and who relates the gravitational process with the disturbance of their entropy,
from which Einstein’s equation comes forward as an emergent result. Other authors explain
the fluid as a result of gravitational vacuum polarization [21,22,23]. This hypothetical
phenomenon is based upon the concept of virtual particle pairs that may exist within the
uncertainty interval, such as put forward by Hawking in his studies on black holes [24]. Let us
suppose, like Hajdukovic [22] did, that such pairs are elementary gravitational dipoles. In
vacuum these dipoles have a random orientation. Their direction will be polarized under
influence of a massive source. Similarly as in the case of electrical polarization of a dielectric
material, the process can be characterized by a “charge” density p,(r) and a polarization

vector P, . These are related as [25],

p,(r)==V-P,.

g

(27)

Identifying the charge density as the 7, component of the stress-energy tensor, we know

from the analysis as presented in this article that p, is a negative constant decreasing with
the mass M of the polarizing source. More particularly,

C a
—pA=-Sc  withe =—% 28
pr="PR="0, ° T 107G° (28)

Hence, from (27) and (28),
1 d_, Co
=——{{r'Pr)=—". 29
Pr="3 dr{ e (1)} ;i (29)
After integrating, we have
__%
Pg(l’)——ﬁl’ﬁ'co. (30)

Obviously C, is the maximum density of polarized dipoles. It occurs at » = 0. For r >0 the number

of polarized dipoles gradually decreases. That this decrease is less the larger the mass M of the
polarizing source is not surprising. It is therefore not surprising as well that Milgrom’s acceleration

constant a,is the true constant of nature and that Einstein’s Cosmological Constant decreases with

M . This makes the gravitational process as described in this article akin to the Debye
process of an electrically charged particle in a plasma. The difference, though, is in the sign
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of the pressure, which can be accommodated in the sign of the polarization vector P, . In the

Debye process the resulting Coulomb field is suppressed (“screened”), because a charged
source is surrounded by a (displacement) space charge with opposite sign. In the
gravitational process the field is enhanced, because the massive source is surrounded by a
(displacement) space charge with the same sign. These processes are characterized by a
range parameterA. In the gravitational case, Ais closely related with the cosmological
constant as A*> = 2A. This view fits extremely well with the theory developed in this article.
The disclaimer, though, is the problem how to relate the virtual pair with known quantum
mechanical particles.

The gravitational model adopted in this article is isotropic and spherically symmetric. It
therefore applies to solar and galaxy systems. The concept may apply to the universe as
whole. In that case a somewhat different description is required, because, according to
Friedmann’s view, the universe has to be conceived as an equi-temporal plane without a
center. The gravitational model as developed in this article can be harmonized with the
heuristic Milgrom’s MOND hypothesis for galaxies, which is supported by overwhelming
experimental evidence from observations. This harmonization requires to equate

A (=2A) =2a,/5MG, whereM is the enclosed mass in those systems and where
Milgrom’s acceleration constant a, =1x101° m/s? shows up as a true second gravitational

constant next to G. This is not in conflict with Einstein’s theory, because the cosmological
constant is not necessarily a constant of nature. As pointed out before, it is a scalar constant
that therefore does not show a dependence on space-time coordinates. It may depend on
physical attributes (like A ).

Conclusion

It has been shown that the weak field limit solution of Einstein’s Field Equation with
inclusion of the Cosmological Constant, under the constraint of spherical isotropy, produces
a gravitational wave equation with an underlying Lagrangian density in a format that
resembles the scalar part of Proca’s generalization of the Maxwellian one. For
electromagnetism, Proca’s “mass term” is zero, for nuclear (Yukawa) forces the “mass term”
is positive, for gravity the “mass term” is negative. As a consequence, the electromagnetic
field potential decays as 1/r, the nuclear potential decays more aggressively as exp(—Ar)/r
and the gravity potential decays less aggressively as (cos Ar +sin Ar)/r . Effectively, the
gravity potential remains the Newton one in our common world, but is different at
cosmological scale. This property explains the cosmological phenomenon that is usually
assigned to dark matter. Because of the match in results, the developed model can be
regarded as an underlying theory for the heuristic MOND approach, albeit that the prognosis
that, at very large cosmological distances, gravity periodically turns on-and-off into
antigravity marks a decisive difference. It is shown in this article that the range determining
parameter A is related with a second gravitational constant a, =1x107'° m/s? next to G . The

two constants determine the range A of the gravitational force in solar systems and galaxy
systems as A* = 2a,/5MG, where M is the enclosed mass in those systems. So, where this
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second gravitational quantity a,seems to be a constant of nature, this is not true for the

Einsteinean parameter A, which appears being just a scalar constant, i.e., being
independent of space-time coordinates. The theory as developed in this article gives an
adequate explanation for the galaxian phenomenon of flat rotation curves and for the
cosmological phenomenon that our universe is expanding in acceleration, such as predicted
by Friedmann’s law, under influence of a positive value of Einstein’s cosmological parameter.

APPENDIX : THE GRAVITATIONAL WAVE EQUATION
The objective in this appendix is to derive the weak field limit of the gravitational wave
equation with inclusion of the Cosmological Constant. This objective implies that we have to

solve Einstein’s Field Equation for a spherically symmetric space-time metric that is given by
the line element (2),

ds’> =g, (r,t)dq; + g, (r,t)dr’ + r’sin’dd@’ +r’d’, (A-1)
where g, =ict.

Note: The space-time (ict, r, ¥, ¢ ) is described on the basis of the “Hawking” metric (+,+,+,+).
The components g, compose the metric tensor g, , which determine the Ricci tensorR ,

and the Ricci scalar R. These quantities play a decisive role in Einstein’s Field Equation,
which reads as

&G . 1
G,uv +Ag,uv = C—T with G#V = R,uv —ERg/N . (A‘Z)

4 Tuv
In a space without massive sources, the Einstein Field Equation under this symmetric

spherical isotropy, reduces to a simple set of equations for the elements R, of the Ricci

tensor,
1 1
Rtt _ERgtt +Agtt = 0' RV” _ERgrr +Agrr = O' (A_3a'b'c'd)

1 1
R, _ERgM +Agys =0; RWJ _ERgW +Ag¢,qJ =0.

Let us proceed by considering the Ricci scalar. It is defined generically as

R =ZZg”VRW. (A-4)

In spherical symmetry the matrices contain diagonal elements only, so that (A-4) reduces to

3
R=Yg"R,,. (A-5)

u=0

10
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This result can be applied to (A-3). Multiplying the first one with g% (= g"), the second one
with g“ , etc., and subsequent addition results of the terms u =1,2,3 gives, (A-6),

3 3
1
> g"R, —%R +3A=-g"R,+> g"R,, —%R t3A=—g"R, —JR+3A=0

H=1 1=0

1
sothat g"R, = —ER +3A. (A-7)
Repeating this recipe for g, (= g™), we have for reasons of symmetry
u 1
g“R, :—5R+3A. (A-8)

Note that the subscripts and superscripts 00, 11 ,22, and 33 are, respectively, identical to
it,rr, 99 and g . Applying this result to Einstein’s equation set gives,

8nGT,, g™
2¢"R,, _2A:c—’:“, (A-9)
such that after multiplication by g,, we have

872GT,,
2Ry =28 = (A-10)

Let us proceed under the condition of the absence of massive sources (7, =0) and let us

consider the Ricci tensor component R, under use of the results shown in Table A-1,
obtained by a calculation shown later in this Appendix. Note: g’and g”means
differentiation, respectively double differentiation of ginto r; gand ¢ means
differentiation, respectively double differentiation of g into 7. Multiplying (A-3a) by 1/g,
and (A-3b)by 1/g,. gives,

R R
R _lRiA=0 and ”—%R+A:O, (A-11)

gtt 2 grr

which, after subtraction and under use of the expressions in Table A-1 results into.

1 1 ’ ’

L (Br i Suy, (A-12)
rgrr grr gtt

hence

11
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which can be integrated to (the Schwarzschild condition),
grrgtt = 1 *

This, in turn, gives

&4_&—0
Enw 8u

7’

Using (A-13), (A-15) and the Table A-1 values on R, gives

1.1, 1, g, . 1 13d%@g,) 1 dg,
it :_(__gn__gn_ gz): (__ 2 + 2 2
2 r 2¢ g 2r  or 2¢” ot

rr rr

).

Hence, from (A-10) and (A-16),

2 19°rg,), 1 9, 87GT,

R >t 7)) 2Ag, =,
g, 2r or 2¢° ot c
or, equivalently,

19°(r 19° 870G T,
_ (fll)_i__2 gztl _2A: . 1t .

roor c” ot c
Applying the well-known conditions,
A=0 (no cosmological constant),

g, (r,)=1+h,(r.,1), where |, (r,1)

<<1 (the weak field limit)

T, =Mc’8°(r), (pointlike massive source)
yields the proper wave equation

d°(rh,) 1 9°rh,  82GM

or’ R c?

rd’(r),

which results in the static regime to

9 (rh
10°(r ¢):_87ZGM§3(F).

rooor’ c?

12
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(A-13)

(A-14)

(A-15)

(A-16)

(A-17)

(A-18)

(A-19a,b,c)

(A-20)

(A-21)
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This is similar to Poisson’s equation,

2
Vo=l O (r®) _ —4nGp = —-4nGMS’ (1), (A-22)

rooor?

the solution of which is the Newtonian potential,

_GM

r

o= [m2s72]. (A-23)

Comparing (A-20) with (A-22) gives the equivalence

h,=. (A-24)

Let us now consider the case A #0 under absence of a massive source. Obviously, (A-18) is
only satisfied if the influence of the cosmological constant is counter balanced by the
hypothetical source

c
T, =—pA, where p= and g, =1. A-25
w =P P= g (A-25)

Note the factor 2 difference with [11], which can be traced back to the (overlooked) A
dependencein R.

Because all four members of the Einstein set (A-10) have to be satisfied, we have, under
consideration of (A-10) and Table A=1,

r,=-pAand g, =1. (A-26)

This particular stress-energy tensor with equal diagonal elements corresponds with the one
for a perfect fluid in thermodynamic equilibrium [21]. So, where empty space corresponds
with virtual sources T,, =0, the fluidal space corresponds with virtual sources T, =-pA .

Insertion of a massive pointlike source in this fluid and modifying (A-17) by adding the virtual
sources, gives

)—2Ag, = 8AGT, i (A-27)

4
C

i(_ia%rgm 1 d’g,
g, 2r or’ 2¢° ot’

Under the weak field limit condition, this equation evaluates to

0°(rh,) _iazrhw 8AGM

57 o +2Arh, = - - rd’(r). (A-28)

Obviously, this is a proper wave function. After redefining the scalar constant A as

13
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A= A-29
5 (A-29)

It is written as

az(rh(p)_iazrhw
or? c* o’

+Arh, =— 8aGM ré’(r). (A-30)

2
C

If A<0, we have under static conditions, a similarity with Helmholtz’ equation with the
screened Poisson’s equation, the solution of which is Yukawa’s potential,

D= oM exp(—Ar), (A-31)
r

which reduces to Poisson’s one for 4 — 0.

If A>0, we have under static conditions, a similarity with Helmhotz’ equation [19] with a
characteristic solution,

CI):GM
r

{cos Ar +sin Ar}. (A-32)

This solution reduces to Poisson’s one for 4 — 0 as well.

This is the weak field limit solution of Einstein’s Equation if one does not take the validity of
Poisson’s equation of gravity for granted, but adopts Helmholtz equation instead under an
appropriate choice of the Cosmological Constant.

Table Al: metric tensor and Ricci tensor

metric tensor Ricci tensor
= 1 n .o ) 7 7 ’ . . . 1 7
gtt gOO Rtt:__&_ g2r1 + gtt &‘i‘&)_ gzrr (&4_&)_—&
2 grr 2C grr 4grr grr gtt 4c grr grr gtt r grr
= 1 V 4 .o 7 /‘ 7 . . . 1 7
grr gll Rrr :__&_ gzrr + gtt (gi_i_&)_ gzrr (&_i_&)_l__&
2 gtt 2C gtt 4gtt grr gtt 4C gtt grr gtt r grr
nggzzzrz r & & 1
Ryy =1+ E=-=")-——

28, 8w &u  &n
8pp =&y = r*sin’ (%) R, = sin® (R,

Calculation of the Ricci tensor
The Ricci tensor is described in expanded form by
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or¥
:Z(a”— ’k)+ZZ(FF" . (A-33)

3
k=0 04, j i=0 k=0

The Christoffel symbols 1";‘ represent functions of the metric elements, such that

i ag/m agim _agji}'

(A-34)
dq, 861.,» aq,,

Under symmetric spherical isotropy, only diagonal terms remain, so that the expression
reduces to

orf orf &
>G-S S mr N, (a-35)
.

3
k=0 , =0 k=0

and the Christoffel symbols reduce to

.1 dg, odg, 98,
I“l.j_ { + -

i (A-36)
2g, 9q, aqj 9q,

such that only three different forms remain,

re= L %u, peo L% yand T =T = %Sk

28 u an ! 284 a% 28 u aqi .

(A-37)

Table A2: Christoffel elements and affine connections of the isotropic non-rotating metric

Fti Ft; Ft; Ft:
1_‘;[ F:r 1_‘:; F}:’
|
|
r’, ry
T, Ty,
re re | re
op o [,
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Table A2 shows the Christoffel elements different from zero, where

retd oo L& popls
2lc gtt 2lc gtt 2 gtt
1g/ 1 g 1 g
L L i R P Vi
2g, 2g, 2ic g,,
. 2
r rsin” ¢
r,=——— 1, =—""-"2
1919 grr 7 gl”l‘
1
v _ 7Y _ 2 1
=T, = " I,, =—sindcos?
1
ry =T, = - Iy, =T, =cotd (A-38)

Application of (A-38) on (A-33) gives the Ricci tensor as listed in Table Al.
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