Preprint
Article

On the Duality of Regular and Local Functions

Altmetrics

Downloads

1491

Views

1458

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

16 July 2017

Posted:

17 July 2017

You are already at the latest version

Alerts
Abstract
In this paper, we relate Poisson’s summation formula to Heisenberg’s uncertainty principle. They both express Fourier dualities within the space of tempered distributions and these dualities are furthermore the inverses of one another. While Poisson’s summation formula expresses a duality between discretization and periodization, Heisenberg’s uncertainty principle expresses a duality between regularization and localization. We define regularization and localization on generalized functions and show that the Fourier transform of regular functions are local functions and, vice versa, the Fourier transform of local functions are regular functions.
Keywords: 
Subject: Computer Science and Mathematics  -   Analysis
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated