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Abstract: This paper discusses about control of the linear switched reluctance machines (LSRMs)1

network for the zero phase-difference tracking to a sinusoidal reference. The dynamics of each2

LSRM is derived by online system identification and modeled as a second-order linear system.3

Accordingly, based on the coupled harmonic oscillators synchronization manner, a distributed4

control is proposed to synchronize each LSRM state to a virtual LSRM node representing the external5

sinusoidal reference for tracking it with zero phase-difference. Subsequently, a simulation scenario6

and an experimental platform with the identical parameter setup are designed to investigate the7

tracking performance of the LSRMs network constructed by the proposed distributed control.8

Finally, the simulation and experimental results verify the effectiveness of the proposed LSRMs9

network controller, and also prove that the coupled harmonic oscillators synchronization method10

can improve the synchronization tracking performance and precision.11

Keywords: linear switched reluctance machine (LSRM); coordinated network; distributed control;12

synchronization tracking13

1. Introduction14

Linear tracking control systems based on direct drive linear machines are vastly used in15

manufacture industry, such as parts assembly, printed circuit boarding (PCB) drilling and chip16

processing, etc. In addition, there are many tasks that require a cooperation of many linear machines17

to work harmonically. For example, in a multi-station PCB drilling machine, each linear machine acts18

as one working unit. The board being processed requires the linear machines to track the command19

position precisely and coordinates with each other to finish the whole drilling work. Therefore, each20

linear machine often demands the state information from other machines, so as to work cooperatively21

and synchronously. The overall motion control performance can be improved such as faster operation22

time, more efficiency and the annihilation of accumulated errors, etc., compared to a traditional23

sequenced working manner [1]. Furthermore, if multiple linear machines can be organized as a24

coordinated and distributed motion tracking network and each machine has the position controller,25

sensor and driver of its own, the ultimate global tracking control goal can be emerged by local26

communications among the independent linear machine nodes with local controllers, without the27

necessity of any global supervision or decision [2].28

Among different types of linear machines, a linear switched reluctance motor (LSRM) has the29

advantages of a simple and robust mechanical structure, low cost, high reliability and free of frequent30

maintenance or adjustments [3]. Current motion tracking research on LSRMs mainly focuses on the31

control performance improvement for single machine based position control systems [4–7]. In [4], an32
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adaptive position controller is inspected to compensate uncertain behaviors of a double-sided LSRM.33

A nonlinear proportional differential (PD) tracking controller based on the tracking differentiator is34

proposed for a real-time LSRM suspension system, to achieve a better dynamic position response35

[5]. A sliding mode position control technique is investigated in [6] and a passivity-based control36

algorithm is proposed for the LSRM position tracking system to overcome the inherent nonlinear37

characteristics and ameliorate system robustness against uncertainties and bounded disturbances38

[7]. From the latest development on the tracking control performance of LSRMs, the ratio of an39

absolute dynamic tracking error to full range of 5‰ can be achieved in single LSRM position control40

applications.41

As remarked above, by employing a multi-agent network formed by distributed control on42

the same product line, all LSRMs can be coordinated to work together harmonically. Up till43

now, the experiment and technique studies on the tracking control network based on LSRMs have44

gained much attention, and related researches are increasing [8], [9]. Current analysis of motion45

coordinated control of multi-agent network mainly focuses on distributed control methods with46

multi-agent network [10–16], which provides a guidance to the LSRMs network. Ref. [10] primarily47

investigates the consensus for coordinated control of multi-agent networks, and establishes the48

connections between structural properties and the performance of networks. Cao [11] elaborates49

the main results and the progress about coordinated control algorithms for multi-agent networks50

and summarizes the future directions of the distributed coordination of multi-agent. At present,51

multi-agent network study has been classified into several major aspects, which include constrained52

or imperfect communication [12], delay or switching information linkage [13], [14], agent with53

nonlinear dynamics [15], influence of noise [16], etc. Furthermore, the multi-agent network by54

distributed control distributed control algorithms have been exploited in the regime of spacecraft55

cluster [17], robots coordination [18], and unmanned aerial vehicle formation [19].56

It can be concluded from the above analysis that current theoretical work mainly concentrates on57

distributed control methods to achieve the network synchronization under some network topology58

constraint condition. The ultimate goal is to form a stable synchronized motion among the59

multiple agents within the network employing distributed and networked control algorithms. But60

in most industry processes, multiple LSRMs as a multi-agent network is not only required to61

motion synchronization but also to track some specific desired trajectory [20]. In practice, directly62

control every agent in a multi-agent network with a number of agents might be impossible or63

unnecessary. Therefore, pinning control is regarded as a desirable method [21]. Accordingly, the64

multi-agent network formed by the pinning control is defined as the leader-following network65

[2]. In leader-following network, a reference can be accessed directly by minority agents named66

as leaders only, and then the rest of agents named as followers are steered to implement the67

synchronized motion to the common reference by the effect of the distributed control. Wang68

[22] reviews elaborately advances in pinning control approaches, including the feasibility, stability69

and effectiveness of pinning control and pinning-based consensus and flocking control of mobile70

multi-agent networked systems. One of the challenges with leader-following network is that the71

reference possesses different dynamic characteristics from all agents. Cao [23] proposes a distributed72

consensus tracking algorithm for second-order dynamics guarantees global exponential tracking73

without acceleration measurements, and the dynamic reference is modeled as the virtual leader with74

time-varying velocity. Especially, in industrial processes, for implementing much of repetitive work,75

some periodic motion modes such as sinusoid always are as the desired motion . Wang [24] proposes76

an internal model controller compensating the reference dynamics for output synchronization of77

more general heterogeneous multi-agents systems. Wieland [25] proves that an internal model78

principle is necessary and sufficient for exponential synchronizability of the group to some common,79

non-trivial output trajectory, bounded by a polynomial function in time, and also notes that the80

internal model components may give rise to the instability of the multi-agent network under the81

influence of parametric uncertainties.82
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In this paper, the mathematical model of each LSRM is derived by the online system83

identification , which is essential modeled as a general second-order linear system. Second, inspired84

by coupled harmonic oscillators [26], [27], a distributed control is designed to track a sinusoidal85

reference with zero phase-difference among each LSRM and the reference as virtual node , so as86

to improve the tracking performance of the LSRMs network. Last, simulation and experimental87

verification is provided to prove the effectiveness of the network controller design scheme.88

The main contributions of this paper are three folds. First, for the convenience of the coordinated89

motion control, the reference signal is modeled as a virtual LSRM node which has the same dynamic90

characteristics as three moter nodes based on the proposed distributed tracking control strategy.91

Second, three motor nodes and the virtual node can be realized the synchronization control by92

adopting the coupled harmonic oscillators method, so as to achieve for tracking the sinusoidal93

reference signal with zero phase-difference. Finally, the distributed tracking control performance94

for the LSRMs network is investigated by a simulation and experimental platform testing.95

2. Model and Preliminaries96

2.1. Mathematical Preliminaries97

Notations: Let Rn and Rn×m indicate the n dimensional Euclidean space and the set of n×m real
matrices, respectively. IN represents a N-dimension unit matrix. The Kronecker product of matrices
A ∈ Rn×m and B ∈ Rp×q satisfies the following properties as,

(A⊗ B)(C⊗ D) = AC⊗ BD (1)

(A⊗ B)T = AT ⊗ BT

k(A⊗ B) = (kA)⊗ B = A⊗ (kB)

A⊗ (B1 + B2) = A⊗ B1 + A⊗ B2

The interaction topology of coordinated network building LSRMs network system is represented98

using a directed graph G = (V , E), as shown in Fig. 1, which is characterized by an edge-linked node99

set V . It denotes N local closed-loop LSRM systems termed as LSRM node Li, i = 1, . . . , N, formed by100

each LSRM and its local controller individually. An edge set E ∈ V ×V represents M communication101

linkages among all LSRM nodes, where an edge exists from LSRM node Lj to Li if (j, i) ∈ E . If a set102

composed of LSRM nodes Lj satisfies (j, i) ∈ E , it is named as the neighbor set Ni associated with103

the LSRM node Li. A directed graph contains a directed spanning tree if there exists a node called104

root such that there is one or more than one directed path from this node to every other node, such as105

L1 in Fig. 1. A path from v1 to vk in G is formed by the E subset {(vi, vi + 1)|i = 1, . . . , k− 1)}. A,L106

denote its adjacency matrix and Laplacian matrix of G, respectively.

L1

� �~~
L2 // L3

Figure 1. Topology of coodinated network

107
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2.2. Model of the LSRM node108

Any of the N three-phase LSRMs (indexed as i-th, i = 1, . . . , N) can be described in the voltage
equation as [4],

uk,i = Rk,iik,i +
dλk,i

dt
, k = a, b, c (2)

where uk,i, Rk,i and ik,i are terminal voltage, coil resistance and current, respectively. λk,i represents
the flux-linkage of the k-th winding. Each LSRM can also be depicted as the second-order dynamics
as follows,

mi
d2xi
dt2 + Bi

dxi
dt

+ f li = fi (3)

where xi, Bi, mi, fi and f li represent position, friction coefficient, mass, total and load force of the i-th
LSRM, respectively. The second-order system as Eq. (3) can be further represented in the discrete-time
form as [5],

A(z−1)xi = B(z−1) fi + ei (4)

where A(z−1) and B(z−1) are polynomials to be determined, z is the discrete-time operator, and ei
denotes unknown disturbances of the i-th LSRM.The polynomials A(z−1) and B(z−1) correspond to
the typical discrete-time form are depicted as,{

A(z−1) = 1 + a1z−1 + a2z−2

B(z−1) = b0 + b1z−1 (5)

The purpose of online system identification is to correctly estimate a1, a2, b0 and b1 that contain
all dynamic information of each LSRM. For the n-th estimation, Eq. (4) can also be considered as a
typical least square form as follows,

xi(k) = ϕT(k− 1)θ + ei(k) (6)

where xi(k) is the i-th LSRM state including the position and velocity at time step k, and
θ =

[
a1 a2 b0 b1

]T

ϕ(k− 1) =
[
− xi(k− 1) · · · − xi(k− n) fi(k) · · · fi(k− n)

]T
(7)

The parameters described in Eq. (7) can be estimated by the recursive least square method as [29],
θ̂(k) = θ̂(k− 1) + R(k)ei(k)
R(k) = P(k− 1)ϕ(k− 1)

[
ρ + ϕT(k)P(k− 1)ϕ(k)

]−1

P(k) = ρ−1[I − K(k)ϕT(k)
]
P(k− 1)

(8)

where P is the covariance matrix and R is the gain, K and I are respectively the gain matrix and an
identity matrix with compatible dimensions, and θ̂ represents the estimated value of θ through the
identification processc. ρ is the forgetting factor that reflects the relationship between the converging
rate and tracking ability and it falls into 0 and 1. For the LSRM, ρ is chosen as 0.98 for moderate
converging ripples and a fast identification speed. For initial values, P(0) can be chosen as η · I4 with
η as a constant value of 50. Stochastic errors ei can be represented as,

ei(k) = xi(k)− ϕT(k)θ̂(k− 1) (9)
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If the relative error from the present to the last step is comparatively a small positive value ζ, it can be
regarded that the present estimated value is correct. Then the termination criterion can be represented
as, ∣∣∣∣∣ θ̂(k + 1)− θ̂(k)

θ̂(k)

∣∣∣∣∣ < ζ (10)

Any local LSRM control system is defined as a LSRM node in the LSRMs network. The control109

block diagram for any LSRM node can be depicted as shown in Fig. 2. The LSRM node Li receives110

both the position feedback information from its linear encoder and the node Lj, and only the leader111

node (i.e. the node located at the root of a certain spanning tree in a coordinated network topology)112

accesses the external reference information, i.e the input signal of the LSRMs network from outside.113

Each LSRM node is composed of a local position controller, the multiphase excitation scheme with114

look-up table linearizion, current controllers and a LSRM, and the control scheme conforms to the115

typical dual-loop architecture [28]. For the LSRM node Li, position error is decided from the difference116

between reference (the leader only) and actual position ρi of the i-th LSRM, along with the position117

information ρj from the LSRM node Lj. The position controller then calculates the control input, and118

the multi-phase excitation with the look-up table linearizion scheme determines the current command119

for the k-th phase of the i-th LSRM, according to the current position of the i-th LSRM. Then the120

current controller outputs the actual current to the k-th winding.121

i

j

Figure 2. Control block diagram for the LSRM node.

Rearranging Eq. (3) in the state-space form, we have[
ρ̇i
ρ̈i

]
=

[
0 1
0 − Bi

mi

] [
ρi
ρ̇i

]
+

[
0
1

mi

]
ui (11)

where ui = fi − f li is the control input of the i-th LSRM.122

3. Synchronization Tracking Control Design123

Since each LSRM is a mechatronic device fulfilling double-acting periodic line motion, some
sinusoidal or its combinatorial patterns are often applied as the predefined trajectory planning some
desired reciprocating motion for the LSRMs network. For this purpose, inspired by coupled harmonic
oscillators synchronization proposed in [26], [27], the distributed control law can be formulated as,

ui = −αρi + Bi ρ̇i − ∑
j∈Ni

Kd,i
[
ρ̇i(t)− ρ̇j(t)

]
(12)

where α is a parameter assciated with the angular frequency ω of the reference sinusoidal signal.
Substituting Eq. (12) into Eq. (11) , the LSRM node Li can be depicted as,[

ρ̇i
ρ̈i

]
=

{[
0 1
0 − Bi

mi

]
+

[
0 0
− α

mi

Bi
mi

]}[
ρi
ρ̇i

]
− ∑

j∈Ni

[
0

Kd,i
mi

] [
ρ̇i(t)− ρ̇j(t)

]
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=

[
0 1
− α

mi
0

] [
ρi
ρ̇i

]
− ∑

j∈Ni

[
0

Kd,i
mi

] [
ρ̇i(t)− ρ̇j(t)

]
(13)

Let ω2 = α
mi

, kb =
Kd,i
mi

, ρ = [ρ1, . . . , ρN ]
T , the model of LSRMs network can be derived as,[

ρ̇

ρ̈

]
=

[
0N IN

−ω2 · IN −kb · L(G)

]
︸ ︷︷ ︸

S

[
ρ

ρ̇

]
(14)

According to Eq. (14), the LSRMs network can be reformulated as,

˙̃X = S X̃ (15)

where X̃ =
[
ρT , ρ̇T]T .124

To prove the LSRMs network Eq. (15) has ability to track a sinusoidal reference signal r =125

M sin (ωt + θ) without phase disparity, the following lemma is provided.126

Lemma 1. Let Ψl,i, Ψr,i be the left and right eigenvectors of Laplacian matrixL associated to the i-th eigenvalue
ψi, i = 1, . . . , N, respectively. the eigenvalues of S in Eq. (15) can thus be represented as,

λi± =
kbψi ±

√
k2

bψ2
i − 4ω2

2
,

and its left and right eigenvectors can be denoted as the following,

Λl,i± = [ΨT
l,i, λi±ΨT

l,i]
T , Λr,i± = [ΨT

r,i,−
λi±
ω2 ΨT

r,i]
T .

Proof of Lemma 1. We divide Λl,i±, Λr,i± in two parts, denoted as Λl,i± = [ΛT
l,u, ΛT

l,d]
T and Λr,i± =

[ΛT
r,u, ΛT

r,d]
T , respectively. For convenience, we omit the subscript index i or i±. For Λl,i±, we have,[

ΛT
l,u ΛT

l,d

]
S = λ

[
ΛT

l,u ΛT
l,d

]
(16)

Similarly, for Λr,i±, we have,

S
[

Λr,u

Λr,d

]
= λ

[
Λr,u

Λr,d

]
(17)

From Eq.(14), Eq.(16) can be derived as,

ΛT
l,d = − λ

ω2 ·Λ
T
l,u (18a)

ΛT
l,u − kbΛT

l,d · L = λ ·ΛT
l,d (18b)

Likewise, we can obtain the equation as,

Λr,d = λ ·Λr,u (19a)

−ω2 ·Λr,u − kb · LΛr,d = λ ·Λr,d (19b)

Substituting Eq. (18a) into Eq. (18b), we obtain

ΛT
l,u +

kb
ω2 λ ·ΛT

l,u · L = − λ2

ω2 ·Λ
T
l,u (20)
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−ΛT
l,u · L =

λ2 + ω2

kbλ
ΛT

l,u

In addition, substituting Eq. (19a) into Eq. (19b), we have

−ω2 ·Λr,u − kbλ · L ·Λr,u = λ2 ·Λr,u (21a)

−L ·Λr,u =
λ2 + ω2

kbλ
·Λr,u (21b)

According to Eq. (21b), we notice ψ = − λ2+ω2

kbλ , Ψl = Λr,u are the eigenvalue and left eigenvector
of Laplacian matrix L, respectively. Therefore we have

λ2 + kbψλ + ω2 = 0 (22)

Eq. (22) can thus be solved as

λ± =
kbψ±

√
k2

bψ2 − 4ω2

2
(23)

Besides, from (18a) and (19a), we know Λl± = [ΨT
l ,− λ±

ω2 ΨT
l ], Λr± = [ΨT

r , λ±ΨT
r ]

T . Lemma 1 is127

proved.128

Theorem 1. If graph G describing the coordinated network includes a directed spanning tree, and the root129

node can access to the reference position as sinusoidal signal r = sin (ωt + θ) such as shown in Fig. 3a, the130

LSRMs network Eq. (15) can track asymptotically the reference with zero difference-phase.131

r // L1

��~~
L2 // L3

(a) with reference

Lr // L1

��~~
L2 // L3

(b) with virtual node

Figure 3. LSRMs network with virtual LSRM modeling reference.

Proof of Theorem 2. According to [29], for a directed graph G with a spanning tree in the network
topology, its Laplacian matrix −L(G) has the left eigenvector Ψl,1 = pN and the right eigenvector
Ψr,1 = 1N . They correspond to a simple zero eigenvalue ψ1 = 0 of L, and all rest of eigenvalues
ψi, i = 2, . . . , N satisfy Re(ψi) < 0, where Re(·) is the real part of a complex number. Furthermore,
pN satisfies

pN ≥ 0 (24)

pT
N1N = 1.

According to Lemma 1, the first two eigenvalues of S in Eq. (15) are λ1± = ±ω,  is the imaginary
unit. Accordingly, the left eigenvector and right eigenvector are Λl,1± = [pT

N ,±ωpT
N ]

T , Λr,1± =

[1T
N ,± 1

ω 1T
N ]

T respectively. We have
S = PMP (25)
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where

P =
[

Λl,1±, . . . , Λl,N±
]
,P−1 =

[
Λr,1±, . . . , Λr,N±

]T
,M =

 ω 0 01×(2N−2)
0 −ω 01×(2N−2)

0(2N−2)×1 0(2N−2)×1 J(λk)


Here J(λk) is the Jordan block matrix associated to k = 2±, . . . , N±.

Since eS t = PeMtP−1, limt→∞ J(λk) = 0(2N−2)×(2N−2), it follows that,

lim
t→∞

eS t =[ΛT
l,1+, ΛT

l,1−]e
M1±t[ΛT

r,1+, ΛT
r,1−] (26)

=
1
2

eωt

[
1N

ω · 1N

] [
pN

1
ω pN

]T

+
1
2

e−ωt

[
1N

−ω · 1N

] [
pN
−1
ω pN

]T

=
[cos(ωt) +  sin(ωt)]

2

[
1N

ω · 1N

] [
pN

1
ω pN

]T

+
[cos (−ωt) +  sin (−ωt)]

2

[
1N

−ω · 1N

] [
pN
−1
ω pN

]T

=

[ cos (ωt)+ sin (ωt)
2

cos (ωt)+ sin (ωt)
2ω

ω[cos (ωt)+ sin (ωt)]
2

cos (ωt)+ sin (ωt)
2

]
⊗ 1NpT

N

+

[ cos (ωt)− sin (ωt)
2

− cos (ωt)+ sin (ωt)
2ω

ω[− cos (ωt)+ sin (ωt)]
2

cos (ωt)− sin (ωt)
2

]
⊗ 1NpT

N

=

[
cos (ωt) 1

ω sin(ωt)
−ω sin (ωt) cos (ωt)

]
⊗ 1NpT

N

where M1± =

[
ω 0
0 −ω

]
is a block matrix of M assciated to λ1± = ±ω and the simple zero

eigenvalue of −L.
Let X̃ =

[
ρT , ρ̇T]T , the solution of LSRMs network in Eq. (14) can be obtained as

X̃(t) = eS tX̃(0) (27)

Moreover, according to Eq. (26) ,

lim
t→∞

X̃(t) = lim
t→∞

eS t · X̃(0) (28)

=

{[
cos (ωt) 1

ω sin(ωt)
−ω sin (ωt) cos (ωt)

]
⊗ 1NpT

N

}
X̃(0)

=

{[
cos (ωt) 1

ω sin(ωt)
−ω sin (ωt) cos (ωt)

]
⊗ 1N

}
·
[
12 ⊗ pT

N

]
X̃(0)

According to Eq. (24), it can be seen that pN can be set as [1, 0T
N−1]

T in Eq. (28). Therefore, Eq. (28) is
derived as

lim
t→∞

X̃(t) =

{[
cos (ωt) 1

ω sin(ωt)
−ω sin (ωt) cos (ωt)

]
⊗ 1N

}
x1(0) (29)
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where x1(0) is the initial values of the LSRM node L1 as the root of a directed spanning tree in the
coordinated network topology G, as shown in Fig. 1. In addition, the states of LSRM nodes Li, i =
2, . . . , N converge to the steady state as, ρi(t) = cos (ωt)ρ1(0) + 1

ω sin (ωt)ρ̇1(0)

ρ̇i(t) = −ω sin (ωt)ρ1(0) + cos (ωt)ρ̇1(0)
(30)

Obviously, the steady state values are determined by the initial values [ρ1(0), ρ̇1(0)] of root node
L1. Therefore, the states of other N − 1 LSRM nodes Li, i = 2, . . . , N converge to the state of root
without phase disparity. The fact verifies under the effect of the coordinated control Eq. (12), the
states of LSRMs network can track the state of root node L1 represented as ρ1(t) = cos (ωt)ρ1(0) + 1

ω sin (ωt)ρ̇1(0)

ρ̇1(t) = −ω sin (ωt)ρ1(0) + cos (ωt)ρ̇1(0)
(31)

Let sin θ = ρ1(0), cos θ = 1
ω ρ̇1(0), Eq. (31) is rewritten as, ρ1(t) = sin (ωt + θ)

ρ̇1(t) = ω cos (ωt + θ)
(32)

Accordingly, if the reference sinusoidal position signal r = sin (ωt + θ) in Fig. 3a and its132

derivative is regarded as the state [ρr, ρ̇r]T of a virtual root node Lr, as shown in Fig. 3b, the sinusoidal133

reference signal can be tracked asymptotically by the LSRMs network Eq. (15) in a coupled harmonic134

oscillators synchronization manner . Theorem 2 is proved.135

Remark 1. By selecting appropriate initial values of virtual root node Lr, the LSRMs network Eq. (15) can136

converge to the specified sinusoidal reference, which has phase θ = arcsin(ρr(0)) and angular frequency137

ω = ρ̇r(0)
cos θ .138

4. Illustrative examples139

Example 1. The sinusoidal reference r is modeled as a virtual LSRM node Lr, and its initial phase and140

amplitude are π
2 , 30mm, respectively. In addition, the angular frequency of Lr is set as 2π to investigate141

the system control feature tracking a higher frequency sine signal.142

Each LSRM can be characterized by the second-order dynamics Eq. (11). According to the
method proposed in [8], system matrices Ai and Bi (i = 1, 2, 3) can be obtained by the online least
squares identification [4] with a sampling time of T = 0.001 s and they can be derived as

Ai =

[
0 1
0 0.3333

]
, Bi =

[
0

0.6667

]
.

The initial positions of three LSRM nodes are set as ρ1(0) = 0, ρ2(0) = 0, ρ3(0) = −12, respectively,143

and all velocities of three LSRM nodes are 0. The control gain kb is set as 0.25 empirically (according144

to some parameter tuning experience). The topology of the LSRMs network is depicted as Fig. 3.145

The results of the state and position error responses are depicted in Figs. 4a and b, respectively.146

Fig. 4a illustrates that the LSRMs network Eq. (14) tracks the reference r = sin(2πt + π
2 ) in a zero147

phase-difference and asymptotic manner by applying the proposed control law Eq. (12). the position148

error among all nodes including {Lr, L1, L2, L3} are illustated in Fig. 4b. The disparity of position149
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errors are eliminated for all LSRM nodes after about 0.9s.
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Figure 4. (a) Position and velocity response and (b) relative position error response.

150

151

Example 2. To further verify the effectiveness of the proposed control strategy, a comparative study with152

Example 1 are addressed. We locate the initial positions of three LSRM nodes at ρ1(0) = 0, ρ2(0) = 0, ρ3(0) =153

12, respectively, and three LSRM nodes start work from static state. we set the reference r initial phase as π
2 ,154

and the angular frequency are selected as π
4 to test the track feature to a lower frequency sine wave. The other155

systems parameters, such as the control gain etc., are given the identical values as in Example 1.156
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Figure 5. (a) Position and velocity response and (b) relative position error response.

The simulation results are shown in Figs. 5a and b, respectively. The control performance from157

the proposed control method shows that a slower dynamic response can be achieved with a lower158

frequency sinusoidal reference, compared to Example 1 for the same system without considering159

uncertain parameters and external disturbances. The results also demonstrate that the LSRMs160

network has successfully achieved the stable state without phase-difference after 10s. Therefore, the161

proposed tracking control scheme has certain superior stability.162
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Remark 2. From two example comparative results, it is noted that the response effectiveness of Example 2 is163

counterintuitive, since the state consensus process of Example 2 takes longer time rather than Example 1 as164

with expected. The main cause is that the angular frequency of the reference sinusoidal signal strongly effects165

the response rate of each LSRM node through Eq. (12).166

5. System Construction and Experimental results167

5.1. System Construction168

3

21

4

5

6

7

8

Figure 6. Experimental platform of LSRMs network. (1) LSRM 1, (2) LSRM 2, (3) LSRM 3, (4) Linear
encoder, (5) RT-LAB, (6) Current amplifier, (7) Power supply, (8) Connection interface to RT-LAB

The experimental platform on the LSRMs network is exhibited in Fig. 6. The platform applies169

RT-LAB (OP5600) real-time digital simulator as the distributed controllers on each LSRM node, and170

builds a virtual LSRM node Lr modeling the specific sinusoidal reference r. The position state of each171

LSRM node is measured and collected by a linear magnetic encoder and inspected by the host PC172

which is the management terminal remotely. The sampling frequency of the position control loop is 1173

kHz. The current drivers of each LSRMs node are connected to RT-LAB through the analog-to-digital174

converters. The current control is realized by three commercial amplifiers that are capable of175

inner current regulation based on the proportional-integral-differential algorithm with a switching176

frequency of 20 kHz. The sampling frequency of the position control loop is 1 kHz. The proposed177

distributed tracking control algorithm Eq. (12) can be programmed under MATLAB/Simulinkr178

environment, and the developed algorithm can be downloaded to the digital signal processor of179

RT-LAB. All control parameters can be modified on-line The real time state response waveforms of180

all LSRM nodes of the LSRMs network are monitored and recorded by the host PC.181

The control objects of three LSRM nodes are three identical LSRMs that conform to the182

6/4 switched reluctance machine structure. A double-sided machine arrangement guarantees a183

more stable and reliable output performance and the asymmetry of the stators ensures a higher184

force-to-volume ratio. The major specifications of the LSRM are demonstrated in [28]. LSRM185

parameters can be obtained as a1 = 0.3, a2 = 0.315, b0 = 0.026, b1 = 0.014, and through the online186

recursive least square parameter identification scheme.187

5.2. Experimental Results188

In order to validate the proposed control scheme based on coupled harmonic oscillators, the189

experiment of the tracking control is implemented for the LSRMs network based on the designed190

controller. Moreover, to compare with two aforementioned simulation example, system scenario and191
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its parameters, including initial states of the reference and LSRM nodes and its controller gain, are192

given the same values as in Example 1 and 2.193

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3
time (s)

-30
-20
-10

0
10
20
30

p
o
si
ti
o
n
(m

m
)

r = 30 sin(2πt+
π

2
)

r
ρ1

ρ2

ρ3

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3
time(s)

-200

-100

0

100

200

v
el
o
ci
ty
(m

m
/
s)
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Figure 7. Position and velocity of reference and three LSRMs corresponding with Example 1.
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Figure 8. Position and velocity of reference and three LSRMs corresponding with Example 2.

The tracking response waveforms for the three LSRMs node are shown in Fig. 7 and Fig. 8.194

Fig. 7a illustrates the tracking control of three LSRM nodes takes the zero phase-difference effect195

at about the time of 0.4s. From Fig. 7b, the relative position errors among three LSRMs and the196

reference fall into 1.2mm in stable state after the transient time of 0.4s.197

Fig. 8a illustrates the dynamic position and relative position error response waveforms under198

tracking control of three LSRM nodes. It is clear that the zero phase-difference effect is taken at about199

the time of 11s. From the dynamic error response profiles as Fig. 8b, it is clear that the maximum200

error values fall into 1.2mm.201

According to the tracking profiles of the three LSRMs in Fig. 7 and Fig. 8, the LSRMs network202

has all capable of following the position reference signal in zero phase-difference manner. However,203

the control performance from the three LSRMs is disagreement and fluctuating slightly, especially at204

steady state. This is mainly because the imperfect manufacture and assembly of three LSRMs, which205

results in the asymmetric control performance from the positive and negative transitions. But from206

Figs. 4-5 and Figs. 7-8, it can be seen that the tracking control effect displays high similarity to the207
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aforementioned numerical simulative examples. It can be concluded that proposed control method is208

effective.209

6. Conclusions210

A distributed control strategy of the LSRMs network is proposed for tracking to a sinusoidal211

reference in a zero phase-difference manner. The dynamics of the LSRM nodes are modeled as212

general second-order linear systems by online system identification. Subsequently, inspired by213

the coupled harmonic oscillators synchronization, a distributed control is presented to track a214

sinusoidal reference without the phase-difference among each LSRM and the reference. Simulation215

and experimental results verify that the proposed control improves the synchronization and tracking216

accuracy performance of the LSRMs network through eliminating the phase-difference among LSRM217

nodes and virtual node modeling the sinusoidal reference. To further improve the tracking precision,218

it is suggested that the advanced internal model compensation schemes are introduced to the219

feedback control design of the LSRMs network. For the tracking control of some general periodical220

reference signals, the combined frequency domain analysis is also recommended for better control221

schemes.222
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