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1 Abstract: This paper discusses about control of the linear switched reluctance machines (LSRMs)
= network for the zero phase-difference tracking to a sinusoidal reference. The dynamics of each
s LSRM is derived by online system identification and modeled as a second-order linear system.
«  Accordingly, based on the coupled harmonic oscillators synchronization manner, a distributed
s controlis proposed to synchronize each LSRM state to a virtual LSRM node representing the external
s  sinusoidal reference for tracking it with zero phase-difference. Subsequently, a simulation scenario
» and an experimental platform with the identical parameter setup are designed to investigate the
s  tracking performance of the LSRMs network constructed by the proposed distributed control.
s  Finally, the simulation and experimental results verify the effectiveness of the proposed LSRMs
1o network controller, and also prove that the coupled harmonic oscillators synchronization method
1 can improve the synchronization tracking performance and precision.

1= Keywords: linear switched reluctance machine (LSRM); coordinated network; distributed control;
1z synchronization tracking

12 1. Introduction

15 Linear tracking control systems based on direct drive linear machines are vastly used in
1 manufacture industry, such as parts assembly, printed circuit boarding (PCB) drilling and chip
1z processing, etc. In addition, there are many tasks that require a cooperation of many linear machines
e to work harmonically. For example, in a multi-station PCB drilling machine, each linear machine acts
1o as one working unit. The board being processed requires the linear machines to track the command
20 position precisely and coordinates with each other to finish the whole drilling work. Therefore, each
=z linear machine often demands the state information from other machines, so as to work cooperatively
22 and synchronously. The overall motion control performance can be improved such as faster operation
= time, more efficiency and the annihilation of accumulated errors, etc., compared to a traditional
22 sequenced working manner [1]. Furthermore, if multiple linear machines can be organized as a
= coordinated and distributed motion tracking network and each machine has the position controller,
26 sensor and driver of its own, the ultimate global tracking control goal can be emerged by local
2z communications among the independent linear machine nodes with local controllers, without the
2s  necessity of any global supervision or decision [2].

20 Among different types of linear machines, a linear switched reluctance motor (LSRM) has the
s advantages of a simple and robust mechanical structure, low cost, high reliability and free of frequent
a1 maintenance or adjustments [3]. Current motion tracking research on LSRMs mainly focuses on the
sz control performance improvement for single machine based position control systems [4-7]. In [4], an

© 2017 by the author(s). Distributed under a Creative Commons CC BY license.


http://www.mdpi.com
http://www.mdpi.com/journal/energies
http://dx.doi.org/10.20944/preprints201705.0181.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/en10070949

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 May 2017 doi:10.20944/preprints201705.0181.v1

20f 14

s adaptive position controller is inspected to compensate uncertain behaviors of a double-sided LSRM.
sa A nonlinear proportional differential (PD) tracking controller based on the tracking differentiator is
s proposed for a real-time LSRM suspension system, to achieve a better dynamic position response
s [5]. A sliding mode position control technique is investigated in [6] and a passivity-based control
sz algorithm is proposed for the LSRM position tracking system to overcome the inherent nonlinear
ss  characteristics and ameliorate system robustness against uncertainties and bounded disturbances
3o [7]. From the latest development on the tracking control performance of LSRMs, the ratio of an
a0 absolute dynamic tracking error to full range of 5% can be achieved in single LSRM position control
a1 applications.

a2 As remarked above, by employing a multi-agent network formed by distributed control on
a3 the same product line, all LSRMs can be coordinated to work together harmonically. Up till
as  now, the experiment and technique studies on the tracking control network based on LSRMs have
«s gained much attention, and related researches are increasing [8], [9]. Current analysis of motion
s coordinated control of multi-agent network mainly focuses on distributed control methods with
«z  multi-agent network [10-16], which provides a guidance to the LSRMs network. Ref. [10] primarily
s investigates the consensus for coordinated control of multi-agent networks, and establishes the
4 connections between structural properties and the performance of networks. Cao [11] elaborates
so the main results and the progress about coordinated control algorithms for multi-agent networks
s1 and summarizes the future directions of the distributed coordination of multi-agent. At present,
s=  multi-agent network study has been classified into several major aspects, which include constrained
ss or imperfect communication [12], delay or switching information linkage [13], [14], agent with
s« nonlinear dynamics [15], influence of noise [16], etc. Furthermore, the multi-agent network by
ss distributed control distributed control algorithms have been exploited in the regime of spacecraft
se cluster [17], robots coordination [18], and unmanned aerial vehicle formation [19].

57 It can be concluded from the above analysis that current theoretical work mainly concentrates on
s distributed control methods to achieve the network synchronization under some network topology
s constraint condition. The ultimate goal is to form a stable synchronized motion among the
so multiple agents within the network employing distributed and networked control algorithms. But
e1 in most industry processes, multiple LSRMs as a multi-agent network is not only required to
e2 motion synchronization but also to track some specific desired trajectory [20]. In practice, directly
es control every agent in a multi-agent network with a number of agents might be impossible or
es unnecessary. Therefore, pinning control is regarded as a desirable method [21]. Accordingly, the
es multi-agent network formed by the pinning control is defined as the leader-following network
e [2]. In leader-following network, a reference can be accessed directly by minority agents named
oz as leaders only, and then the rest of agents named as followers are steered to implement the
es synchronized motion to the common reference by the effect of the distributed control. Wang
oo [22] reviews elaborately advances in pinning control approaches, including the feasibility, stability
7 and effectiveness of pinning control and pinning-based consensus and flocking control of mobile
7 multi-agent networked systems. One of the challenges with leader-following network is that the
72 reference possesses different dynamic characteristics from all agents. Cao [23] proposes a distributed
73 consensus tracking algorithm for second-order dynamics guarantees global exponential tracking
7 without acceleration measurements, and the dynamic reference is modeled as the virtual leader with
»s time-varying velocity. Especially, in industrial processes, for implementing much of repetitive work,
76 some periodic motion modes such as sinusoid always are as the desired motion . Wang [24] proposes
7z an internal model controller compensating the reference dynamics for output synchronization of
7e more general heterogeneous multi-agents systems. Wieland [25] proves that an internal model
7o principle is necessary and sufficient for exponential synchronizability of the group to some common,
s non-trivial output trajectory, bounded by a polynomial function in time, and also notes that the
e1 internal model components may give rise to the instability of the multi-agent network under the
=2 influence of parametric uncertainties.
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83 In this paper, the mathematical model of each LSRM is derived by the online system
s« identification , which is essential modeled as a general second-order linear system. Second, inspired
es by coupled harmonic oscillators [26], [27], a distributed control is designed to track a sinusoidal
ss reference with zero phase-difference among each LSRM and the reference as virtual node , so as
ez to improve the tracking performance of the LSRMs network. Last, simulation and experimental
ss verification is provided to prove the effectiveness of the network controller design scheme.

80 The main contributions of this paper are three folds. First, for the convenience of the coordinated
%o motion control, the reference signal is modeled as a virtual LSRM node which has the same dynamic
o1 characteristics as three moter nodes based on the proposed distributed tracking control strategy.
o2 Second, three motor nodes and the virtual node can be realized the synchronization control by
o3 adopting the coupled harmonic oscillators method, so as to achieve for tracking the sinusoidal
sa reference signal with zero phase-difference. Finally, the distributed tracking control performance
os for the LSRMs network is investigated by a simulation and experimental platform testing.

o6 2. Model and Preliminaries

oz 2.1. Mathematical Preliminaries

Notations: Let R” and R"*™ indicate the # dimensional Euclidean space and the set of nn x m real
matrices, respectively. Iy represents a N-dimension unit matrix. The Kronecker product of matrices
A € R"™™ and B € RP*1 satisfies the following properties as,

(A®B)(C®D) = AC® BD 1)
(A2 B)T = AT@ BT
k(A® B) = (kA)® B= A® (kB)

A®(B1+B)=A®B +A®B;

98 The interaction topology of coordinated network building LSRMs network system is represented
e using a directed graph G = (V, £), as shown in Fig. 1, which is characterized by an edge-linked node
10 set V. It denotes N local closed-loop LSRM systems termed as LSRM node L;,i =1, ..., N, formed by
101 each LSRM and its local controller individually. An edge set £ € V x V represents M communication
102 linkages among all LSRM nodes, where an edge exists from LSRM node L; to L; if (j,i) € £. If a set
103 composed of LSRM nodes L; satisfies (j,i) € £ , it is named as the neighbor set N; associated with
10s  the LSRM node L;. A directed graph contains a directed spanning tree if there exists a node called
15 root such that there is one or more than one directed path from this node to every other node, such as
ws Lq in Fig. 1. A path from v; to v in G is formed by the & subset {(v;,v; +1)[i=1,...,k—1)}. A, L
denote its adjacency matrix and Laplacian matrix of G, respectively.

Ly

/|

Ly ——= L3

Figure 1. Topology of coodinated network


http://dx.doi.org/10.20944/preprints201705.0181.v1
http://dx.doi.org/10.3390/en10070949

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 May 2017

108

40f 14

2.2. Model of the LSRM node

Any of the N three-phase LSRMs (indexed as i-th, i = 1,..., N) can be described in the voltage
equation as [4],

. dAg
Ui = Ryjiki + Flm,k =a,b,c (2)

where uy ;, Ri; and iy ; are terminal voltage, coil resistance and current, respectively. Ay ; represents
the flux-linkage of the k-th winding. Each LSRM can also be depicted as the second-order dynamics
as follows, 2
lctlitz +Bzi;§1+fli:fi 3)
where x;, B;, m;, f; and fI; represent position, friction coefficient, mass, total and load force of the i-th
LSRM, respectively. The second-order system as Eq. (3) can be further represented in the discrete-time
form as [5],
Az Nx; =Bz fi+e; @)

where A(z71) and B(z~!) are polynomials to be determined, z is the discrete-time operator, and e;
denotes unknown disturbances of the i-th LSRM.The polynomials A(z~!) and B(z~!) correspond to
the typical discrete-time form are depicted as,

Az Y =1+az7  +apz 2 )
B(z71) =bg + b1z !

The purpose of online system identification is to correctly estimate a1, 4, by and b; that contain
all dynamic information of each LSRM. For the n-th estimation, Eq. (4) can also be considered as a
typical least square form as follows,

xi(k) = @" (k= 1)0 + e;(k) (6)

where x;(k) is the i-th LSRM state including the position and velocity at time step k, and

T
0=[a ay by b |

(7)
plk—1) = [—xi(k=1) - —xi(k—n)fi(k) --- fi(k—m)]

The parameters described in Eq. (7) can be estimated by the recursive least square method as [29],

(k) = O(k —1>+R<k>ei<k>
Rk>= P(k = 1)g(k~1)[p+ 97 (K)P(k — Dg(k)] " (®)
1K) (R Pk~ 1)

where P is the covariance matrix and R is the gain, K and I are respectively the gain matrix and an
identity matrix with compatible dimensions, and  represents the estimated value of 6 through the
identification processc. p is the forgetting factor that reflects the relationship between the converging
rate and tracking ability and it falls into 0 and 1. For the LSRM, p is chosen as 0.98 for moderate
converging ripples and a fast identification speed. For initial values, P(0) can be chosen as 7 - I with

i~
—~
k)
~—

||

7 as a constant value of 50. Stochastic errors ¢; can be represented as,

ei(k) = xi(k) — 9" (k)8(k — 1) ©)

d0i:10.20944/preprints201705.0181.v1
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If the relative error from the present to the last step is comparatively a small positive value (, it can be
regarded that the present estimated value is correct. Then the termination criterion can be represented

as,
O(k+1) —8(k)
———| < 10
50 ¢ (10)
100 Any local LSRM control system is defined as a LSRM node in the LSRMs network. The control

10 block diagram for any LSRM node can be depicted as shown in Fig. 2. The LSRM node L; receives
11 both the position feedback information from its linear encoder and the node Lj, and only the leader
12 node (i.e. the node located at the root of a certain spanning tree in a coordinated network topology)
us  accesses the external reference information, i.e the input signal of the LSRMs network from outside.
s Each LSRM node is composed of a local position controller, the multiphase excitation scheme with
us look-up table linearizion, current controllers and a LSRM, and the control scheme conforms to the
ue typical dual-loop architecture [28]. For the LSRM node L;, position error is decided from the difference
ur between reference (the leader only) and actual position p; of the i-th LSRM, along with the position
us  information p; from the LSRM node L;. The position controller then calculates the control input, and
e the multi-phase excitation with the look-up table linearizion scheme determines the current command
120 for the k-th phase of the i-th LSRM, according to the current position of the i-th LSRM. Then the
i1 current controller outputs the actual current to the k-th winding.

force and current control loop

a current L
ij _ controller

f multiphase
i

=g U A position | excitation current n i-th
position \ — controller] with look-up controller LSRM
command P tables

+ current
_ controller —_—_—

linear encoder

Figure 2. Control block diagram for the LSRM node.

Rearranging Eq. (3) in the state-space form, we have

MY

122 where u; = f; — fl; is the control input of the i-th LSRM.

Pi

. +
Pi

‘| Uu; (11)

3‘»—!0

i

123 3. Synchronization Tracking Control Design

Since each LSRM is a mechatronic device fulfilling double-acting periodic line motion, some
sinusoidal or its combinatorial patterns are often applied as the predefined trajectory planning some
desired reciprocating motion for the LSRMs network. For this purpose, inspired by coupled harmonic
oscillators synchronization proposed in [26], [27], the distributed control law can be formulated as,

uj = —api+ Bigs — Y Kai [0i(t) = p5(0)] (12
JEN:

where a is a parameter assciated with the angular frequency w of the reference sinusoidal signal.
Substituting Eq. (12) into Eq. (11) , the LSRM node L; can be depicted as,

o 0 1 0 0 ; 0 . '
BRE PR ry e
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1 % - e | a0 -ao ] (13)
_% 0 Pi JEN; n;i,l l !
Let w? = o ko = %, p = [o1,.-.,0on]T, the model of LSRMs network can be derived as,
P On Iy P
= 14
HEEEE T "
N
According to Eq. (14), the LSRMs network can be reformulated as,
X=8X (15)

where X = [pT,pT]T.
To prove the LSRMs network Eq. (15) has ability to track a sinusoidal reference signal r =

M sin (wt 4 ) without phase disparity, the following lemma is provided.

Lemmal. LetY);, Y, ; bethe left and right eigenvectors of Laplacian matrix L associated to the i-th eigenvalue
Y;, i=1,..., N, respectively. the eigenvalues of S in Eq. (15) can thus be represented as,

B klﬂPi + 1/k§¢? — 4(4.)2

Aix = s
i+t 2

and its left and right eigenvectors can be denoted as the following,
T TIT T At g T
Apix = Y, MY N = [Y, —?‘I’m’] .

Proof of Lemma 1. We divide A;;., A, ;1 in two parts, denoted as A; ;1 = [AITu, Ale]T and A, ;1 =

AL, AZ )T, respectively. For convenience, we omit the subscript index i or i+. For A, ;1, we have,

[ AT, AL Js=a[ Al AL ] (16)
Similarly, for A, ;1, we have,
A A
S ru - ru (17)
[ Ar,d ] [ Ard ]

From Eq.(14), Eq.(16) can be derived as,

A
T T
Al,d — —E . Al,u (18a)
Al — kN L=A-A], (18b)
Likewise, we can obtain the equation as,
Ar,d - )\ . Ar,u (19a)
— @ Ay —ky LA = A Ay (19b)
Substituting Eq. (18a) into Eq. (18b), we obtain
T ky AAT L= AT
A, + el Ny, L= 2 “Aj (20)

d0i:10.20944/preprints201705.0181.v1
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A? 4+ w?
T T
—Aj = kpA Al

In addition, substituting Eq. (19a) into Eq. (19b), we have

—w?- Ny —kph - LNy = A% Ary (21a)
A? 4+ w?
- L- Ar,u = kbi/\ ERANETi (21b)
According to Eq. (21b), we notice p = — % , Y1 = A, are the eigenvalue and left eigenvector
of Laplacian matrix £, respectively. Therefore we have

A+ kA + w? =0 (22)

Eq. (22) can thus be solved as

BLUER [k2p? — 4w? )

2

+

127 Besides, from (18a) and (19a), we know A = [¥], —%TIT], Are = ¥, ALYNT. Lemma 1 is

122 proved. [

120 Theorem 1. If graph G describing the coordinated network includes a directed spanning tree, and the root
130 1ode can access to the reference position as sinusoidal signal r = sin (wt + 0) such as shown in Fig. 3a, the
131 LSRMs network Eq. (15) can track asymptotically the reference with zero difference-phase.

F oo L L ——1I,
Ly ——=Lj Ly ——1Lj
(a) with reference (b) with virtual node

Figure 3. LSRMs network with virtual LSRM modeling reference.

Proof of Theorem 2. According to [29], for a directed graph G with a spanning tree in the network
topology, its Laplacian matrix —£(G) has the left eigenvector ¥;; = py and the right eigenvector
¥,1 = 1y. They correspond to a simple zero eigenvalue ; = 0 of £, and all rest of eigenvalues
P;,i = 2,...,N satisfy Re(¢;) < 0, where Re(+) is the real part of a complex number. Furthermore,
pn satisfies

pn >0 (24)

P]T\le =1.

According to Lemma 1, the first two eigenvalues of S in Eq. (15) are A1 1 = +jw, j is the imaginary
unit. Accordingly, the left eigenvector and right eigenvector are A1+ = [pl, £jwpk]T, Ay =
1k, + ]iwllT\]] T respectively. We have

S =PMP (25)
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where
T Jw 0 01x(2n-2)
P = [ A, NNt }rp_l = [ A1t NN } M= 0 —jw  O1xeNn-2)
Oon-2)x1 Opn—2)x1 (M)
Here J(Ay) is the Jordan block matrix associated to k = 2+,..., N+
Since eSt = PeMIP~1, lim; o0 J(Ag) = 0(2n—2)x (2N—2), it follows that,
(26)

. S T T M T T
tlb%e P (A Al AL A
T [

:le]wt l 1n ] [ PN

1 + lef]wt
jwPN

T
In PN
2 e | | Fen

[cos(wt) + j sin(wt)] l 1y 1 l PN r

2 jw - 1N

B 2 jw-1y | | PN

T
[cos (—wt) + 7 sin (—wt)] 1y PN
2 —jw -1y ]%PN
cos (wt)+ sin (wt) cos (wt)+] sin (wt)
2 ] 2wj ] ®1 T
wjlcos (wt)+)sin (wt)]  cos (wt)+jsin (wt) NPN
2 2
cos (wt)—7sin (wt) — cos (wt)+; sin (wt)
2 2 T
+ wj[— cos (wt)+]sin (wt)] cos (wt) fj]]sin (wt) ®1Inpy
2 2
cos (wt)  Lsin(wt) T
= 1
—wsin (wt)  cos (wt) ©1npy

where M4+ = la())] —(c)u]] is a block matrix of M assciated to A;1 = £wj and the simple zero

eigenvalue of — L.
Let X = [pT,pT] T the solution of LSRMs network in Eq. (14) can be obtained as

X(t) = e5tX(0) 27)

Moreover, according to Eq. (26) ,
(28)

.o i SEL
i X = flig e X0
B { [ cos (wt)  Lsin(wt)

—wsin (wt)  cos (wt) ® INPZII} X(0)

cos (wt)  Lsin(wt)

- { l —wsin (wt)  cos (wt) ®1N} ' [12 ®PH X(0)

According to Eq. (24), it can be seen that py can be set as [1, Oﬁfl]T in Eq. (28). Therefore, Eq. (28) is

® 1N} x1(0) (29)

derived as
{ [ cos (wt)  Lsin(wt)

lim X(t) =
oo () —wsin (wt)  cos (wt)
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where x1(0) is the initial values of the LSRM node L, as the root of a directed spanning tree in the
coordinated network topology G, as shown in Fig. 1. In addition, the states of LSRM nodes L;,i =
2,..., N converge to the steady state as,

pi(t) = cos (wh)py (0) + & sin (wt)p1 (0)
pi(t) = —wsin (wt)p1(0) 4 cos (wt)p1(0)

(30)

Obviously, the steady state values are determined by the initial values [p1(0), p1(0)] of root node
Li. Therefore, the states of other N —1 LSRM nodes L;,i = 2,..., N converge to the state of root
without phase disparity. The fact verifies under the effect of the coordinated control Eq. (12), the
states of LSRMs network can track the state of root node L represented as

p1(t) = cos (wt)p1(0) + % sin (wt)p1(0)

(31)
p1(t) = —wsin ()1 0) + cos (cwt)gr 0)
Let sin® = p;(0),cos® = 1p;(0), Eq. (31) is rewritten as,
t) = sin (wt + 6
p1(t) ( ) (32)
01(t) = wcos (wt + 6)
132 Accordingly, if the reference sinusoidal position signal * = sin (wt +6) in Fig. 3a and its

1z derivative is regarded as the state [pr, f;] T of a virtual root node L,, as shown in Fig. 3b, the sinusoidal
13s  reference signal can be tracked asymptotically by the LSRMs network Eq. (15) in a coupled harmonic
15 oscillators synchronization manner . Theorem 2 is proved. [

13s  Remark 1. By selecting appropriate initial values of virtual root node L,, the LSRMs network Eq. (15) can
17 converge to the specified sinusoidal reference, which has phase 6 = arcsin(p,(0)) and angular frequency
£r(0)

138 W = ‘oS0 "

130 4. Illustrative examples

1s0  Example 1. The sinusoidal reference r is modeled as a virtual LSRM node L, and its initial phase and
wa  amplitude are 7,30mm, respectively. In addition, the angular frequency of L, is set as 27t to investigate
w2 the system control feature tracking a higher frequency sine signal.

Each LSRM can be characterized by the second-order dynamics Eq. (11). According to the

method proposed in [8], system matrices A; and B; (i = 1,2,3) can be obtained by the online least
squares identification [4] with a sampling time of T = 0.001 s and they can be derived as

A=

0 1 B 0
0 033337 |0.6667]|"

1z The initial positions of three LSRM nodes are set as p1(0) = 0,02(0) = 0, p3(0) = —12, respectively,
1as and all velocities of three LSRM nodes are 0. The control gain ky, is set as 0.25 empirically (according
15 to some parameter tuning experience). The topology of the LSRMs network is depicted as Fig. 3.

146 The results of the state and position error responses are depicted in Figs. 4a and b, respectively.
w7 Fig. 4a illustrates that the LSRMs network Eq. (14) tracks the reference r = sin(27t + J) in a zero
e phase-difference and asymptotic manner by applying the proposed control law Eq. (12). the position
1o error among all nodes including {L,, L1, Ly, L3} are illustated in Fig. 4b. The disparity of position
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errors are eliminated for all LSRM nodes after about 0.9s.
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Figure 4. (a) Position and velocity response and (b) relative position error response.

Example 2. To further verify the effectiveness of the proposed control strategy, a comparative study with
Example 1 are addressed. We locate the initial positions of three LSRM nodes at p1(0) = 0,02(0) = 0, p3(0) =
12, respectively, and three LSRM nodes start work from static state. we set the reference r initial phase as 7,
and the angular frequency are selected as T to test the track feature to a lower frequency sine wave. The other
systems parameters, such as the control gain etc., are given the identical values as in Example 1.

N = =N W
[eNeoloNoNeNe]

position(mm)

&
o
O P~

velocity(mm/s)

time(s)

(@)

position(mm)

6 8 10 12 14 16 18 20
time (s)

(b)

Figure 5. (a) Position and velocity response and (b) relative position error response.

The simulation results are shown in Figs. 5a and b, respectively. The control performance from
the proposed control method shows that a slower dynamic response can be achieved with a lower
frequency sinusoidal reference, compared to Example 1 for the same system without considering

uncertain parameters and external disturbances.

The results also demonstrate that the LSRMs

network has successfully achieved the stable state without phase-difference after 10s. Therefore, the

proposed tracking control scheme has certain superior stability.


http://dx.doi.org/10.20944/preprints201705.0181.v1
http://dx.doi.org/10.3390/en10070949

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 May 2017 d0i:10.20944/preprints201705.0181.v1

11 0f 14

16s Remark 2. From two example comparative results, it is noted that the response effectiveness of Example 2 is
1es counterintuitive, since the state consensus process of Example 2 takes longer time rather than Example 1 as
w65 with expected. The main cause is that the angular frequency of the reference sinusoidal signal strongly effects
s the response rate of each LSRM node through Eq. (12).

167 5. System Construction and Experimental results

s 5.1. System Construction

Figure 6. Experimental platform of LSRMs network. (1) LSRM 1, (2) LSRM 2, (3) LSRM 3, (4) Linear
encoder, (5) RT-LAB, (6) Current amplifier, (7) Power supply, (8) Connection interface to RT-LAB

169 The experimental platform on the LSRMs network is exhibited in Fig. 6. The platform applies
170 RT-LAB (OP5600) real-time digital simulator as the distributed controllers on each LSRM node, and
i1 builds a virtual LSRM node L, modeling the specific sinusoidal reference r. The position state of each
172 LSRM node is measured and collected by a linear magnetic encoder and inspected by the host PC
173 which is the management terminal remotely. The sampling frequency of the position control loop is 1
1za  kHz. The current drivers of each LSRMs node are connected to RT-LAB through the analog-to-digital
175 converters. The current control is realized by three commercial amplifiers that are capable of
e inner current regulation based on the proportional-integral-differential algorithm with a switching
1wz frequency of 20 kHz. The sampling frequency of the position control loop is 1 kHz. The proposed
we distributed tracking control algorithm Eq. (12) can be programmed under MATLAB/Simulink®
17e  environment, and the developed algorithm can be downloaded to the digital signal processor of
1o RT-LAB. All control parameters can be modified on-line The real time state response waveforms of
1e1  all LSRM nodes of the LSRMs network are monitored and recorded by the host PC.

182 The control objects of three LSRM nodes are three identical LSRMs that conform to the
13 6/4 switched reluctance machine structure. A double-sided machine arrangement guarantees a
1es  more stable and reliable output performance and the asymmetry of the stators ensures a higher
s force-to-volume ratio. The major specifications of the LSRM are demonstrated in [28]. LSRM
16 parameters can be obtained as a; = 0.3,ap = 0.315,byp = 0.026,b; = 0.014, and through the online
17 recursive least square parameter identification scheme.

1ss 5.2, Experimental Results

189 In order to validate the proposed control scheme based on coupled harmonic oscillators, the
10 experiment of the tracking control is implemented for the LSRMs network based on the designed
101 controller. Moreover, to compare with two aforementioned simulation example, system scenario and
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102 its parameters, including initial states of the reference and LSRM nodes and its controller gain, are
103 given the same values as in Example 1 and 2.
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Figure 7. Position and velocity of reference and three LSRMs corresponding with Example 1.
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Figure 8. Position and velocity of reference and three LSRMs corresponding with Example 2.
108 The tracking response waveforms for the three LSRMs node are shown in Fig. 7 and Fig. 8.
195 Fig. 7a illustrates the tracking control of three LSRM nodes takes the zero phase-difference effect

16 at about the time of 0.4s. From Fig. 7b, the relative position errors among three LSRMs and the
107 reference fall into 1.2mm in stable state after the transient time of 0.4s.

108 Fig. 8a illustrates the dynamic position and relative position error response waveforms under
19 tracking control of three LSRM nodes. It is clear that the zero phase-difference effect is taken at about
200 the time of 11s. From the dynamic error response profiles as Fig. 8b, it is clear that the maximum
201 error values fall into 1.2mm.

202 According to the tracking profiles of the three LSRMs in Fig. 7 and Fig. 8, the LSRMs network
203 has all capable of following the position reference signal in zero phase-difference manner. However,
20 the control performance from the three LSRMs is disagreement and fluctuating slightly, especially at
205 steady state. This is mainly because the imperfect manufacture and assembly of three LSRMs, which
206 results in the asymmetric control performance from the positive and negative transitions. But from
207 Figs. 4-5 and Figs. 7-8, it can be seen that the tracking control effect displays high similarity to the
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20 aforementioned numerical simulative examples. It can be concluded that proposed control method is
200  effective.

210 6. Conclusions

211 A distributed control strategy of the LSRMs network is proposed for tracking to a sinusoidal
212 reference in a zero phase-difference manner. The dynamics of the LSRM nodes are modeled as
23 general second-order linear systems by online system identification. Subsequently, inspired by
zs the coupled harmonic oscillators synchronization, a distributed control is presented to track a
215 sinusoidal reference without the phase-difference among each LSRM and the reference. Simulation
zs  and experimental results verify that the proposed control improves the synchronization and tracking
21z accuracy performance of the LSRMs network through eliminating the phase-difference among LSRM
2s nodes and virtual node modeling the sinusoidal reference. To further improve the tracking precision,
210 it is suggested that the advanced internal model compensation schemes are introduced to the
220 feedback control design of the LSRMs network. For the tracking control of some general periodical
a1 reference signals, the combined frequency domain analysis is also recommended for better control
222 schemes.
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