Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 May 2017 d0i:10.20944/preprints201705.0182.v1

The Induced Stress Field in Cracked Composites by Heat
Flow

Jacob Aboudi

School of Mechanical Engineering
Faculty of Engineering,
Tel Aviv University,
Ramat Aviv 69978, Israel
E-mail: aboudi@eng.tau.ac.il, tel: +972-3-6408131, fax: +972-3-6407617

© 2017 by the author(s). Distributed under a Creative Commons CC BY license.


http://dx.doi.org/10.20944/preprints201705.0182.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/jcs1010004

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 May 2017 d0i:10.20944/preprints201705.0182.v1

A multiscale (micro-macro) approach is proposed for the establishment of the full ther-
mal and induced stress fields in cracked composites that are subjected to heat flow. Both the
temperature and stresses distributions are determined by the solution of a boundary value
problem with one-way coupling. In the micro level and for combined thermomechanical
loading, a micromechanical analysis is employed to determine the effective moduli, coeffi-
cients of thermal expansion and thermal conductivities of the undamaged composite. In
the macro level, the representative cell method is employed according to which the periodic
damaged composite region is reduced, in conjunction with the discrete Fourier transform, to
a finite domain problem. As a result, a boundary value problem is obtained in the Fourier
transform domain which is appropriately discretized and solved. The inverse transform and
an iterative procedure provide the full thermal and stress fields. The proposed method is
verified by comparisons with exact solutions. Applications are given for the determination
of the thermal and stress fields in cracked fiber-reinforced polymeric composite, cracked
porous ceramic material and cracked periodically layered ceramic composite caused by the
application of heat flow. The presented formulation admits however the application of a

combined mechanical and heat flux on cracked composites.

Keywords : fiber-reinforced composites; porous materials; thermal stresses;
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There are many books, review articles and papers that are dedicated to the investigation of
the behavior of cracked solids and composites that are subjected to mechanical loadings. A
relatively few papers appeared concerning the induced thermal stresses caused by the application
of heat flow in the presence of cracks and other types of damage. Quantifying these stresses in
the presence of defects is important as they may give information about the locations of high
stress concentrations which can cause failure. It should be mentioned that in the framework of
these problems, the temperature field distribution is not constant but rather spatially dependent
should be determined according to considered boundary-value problem. The resulting heat flux
caused by the application of heat flow in a cracked homogeneous material is singular at the crack
front, and the temperature is continuous along the crack line and discontinuous across the crack
(insulated crack).

Due to the one-way thermomechanical coupling, the temperature field induces thermal stresses
in the material which are singular near the crack tip. Examples of some articles in which the
effect of heat flow in cracked materials is investigated are: Koizumi et al. (1979), Wu (1984),
Tsai (1984), Sturla and Barber (1988), Kuo (1990), Hwu (1990), Hwu (1992), Tarn and Wang
(1993), Itou (2000), Ursescu and Dascalu (2006), Zhong and Wu (2012) and references cited
there, and chapter 10 in Hwu (2010) monograph . The analysis of Ting and Yan (1992) of the
singularities at the tip of interfacial cracks in anisotropic materials subjected to heat flow forms
a generalization of the square root singularity that occurs in homogeneous materials. A recent
article in which the extended finite element method has been employed for the simulation of the
heat flux and thermal stresses in cracked solids has been presented by Duflot (2007).

The aforementioned investigations concerned with cracks in homogeneous materials or in-
terfacial cracks between two homogeneous materials. When the effect of thermal loading on
composite materials with cracks is sought, the application of these analyses necessitates the ho-
mogenization of the considered multiphase material. As a result of this homogenization, the
effect of the composite’s periodic microstructure is lost. Furthermore, when the homogenization
technique is employed in the analysis of a cracked composite with periodic microstructure, a re-

peating unit cell which represents the entire composite is considered. The introduction of a crack
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is not a realistic situation.

In the present investigation, a multiscale analysis is proposed for the establishment of the full
thermoelastic field caused by the application of remote heat flow on cracked composite materials
while taking into account their microstructure distributions. As a result of the application
of thermal loading the temperature and heat flux distributions are established by solving the
steady state heat equation. The one-way coupling with the mechanical equations induces thermal
stresses in the composite which are subsequently determined by solving these equations.

The proposed method of solution consists of a micromechanical analysis which is followed by
a macromechanical one. In the most general case of a composite subjected to remote thermo-
mechanical loading, the micromechanical analysis provides the effective thermal conductivities,
elastic moduli and coefficients of thermal expansion of the undamaged composite. This is carried
out by utilizing the high-fidelity generalized method of cells (HFGMC) which has been fully
described in Aboudi et al. (2013). In the framework of the macromechanical analysis the rep-
resentative cell method, Ryvkin and Nuller (1997), is employed. According to this method, the
composite domain is divided into several rectangular cells with respect to which the governing
and constitutive equations are formulated. This is followed by the application of the discrete
Fourier transform which reduces the multiple cells problem to the analysis of a single cell in the
transform domain. The transformed temperature and displacement vector are expanded into a
second-order polynomial, and the heat and equilibrium equations as well as the interfacial and
boundary conditions are imposed in the average (integral) sense. A discretization of the single
cell problem provides the solution in the form of a system of algebraic equations, see Aboudi et
al. (2013). The inversion of the Fourier transform provides the actual thermal and mechanical
fields at the various cells, and thus at every desired point of the composite. The effect of crack
existence is taken into account by the continuum damage mechanics considerations combined
with the localized damage analysis as described by Aboudi and Ryvkin (2012) and Ryvkin and
Aboudi (2012). It should be noted that in both these two articles the constant temperature has
been uniformly prescribed in the entire composite.

The proposed approach is verified by comparing its prediction with exact solutions for a crack

embedded in homogeneous materials that are subjected to remote heat flow. The temperature
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fiber-reinforced polymer matrix composite, porous ceramic material and periodically layered
ceramic composite, all of which are subjected to heat flow.

The present article is organized as follows. In Section 2, the constitutive and governing
equations are presented. This is followed in Section 3 by the method of solution which is presented
in the real space followed by its formulation in the Fourier transform domain. The solution in the
latter domain utilizes the methods presented in Aboudi et al. (2013). The inversion of the Fourier
transform provides the actual solution which requires iterations for convergence. In Section 4,
verifications of the proposed method are presented by comparison with exact solutions. Section 5
provide results of the application of the proposed method on three types of composites. Finally,

a Conclusion section is given for a summary and future generalizations.

2. Constitutive and Governing Equations

Consider a thermoelastic homogeneous orthotropic material. The constitutive equations are

given as follows.
c=C:e—-TIT (1)

where o, €, C and T are the stress, strain, stiffness and thermal stress tensors, respectively. In
this equation, T' is the temperature field deviation from a reference temperature. The thermal

flux vector q is related to the temperature gradient via the Fourier’s law in the form
qg=—-kVT (2)

and k is the thermal conductivity tensor.

The governing equations are given by

and
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the latter through the constitutive equation (1) (one-way thermomechanical coupling).

As discussed in Aboudi and Ryvkin (2012), the effect of the crack can be represented, in the
framework of the continuum damage mechanics, by introducing a damage parameter D which
takes the value of zero or one. In the crack region D=1 whereas D=0 otherwise. As a result Eq.

(1) and (2) are reduced to the following form
c=(1-D)C:e—(1-D)I'T (5)
and
q=—-(1-D)xk VT (6)

As discussed in the next section, Eqns. (5) and (6) are more conveniently represented as

follows
c=C:e—TT-o0° (7)
q=-kVT—q° (8)

where
oc°=D(C:e—TT) (9)
q°=—-Dr VT (10)

which play the role of eigenstress and eigen heat flux, respectively. Consequently, the damage

parameter D=1 in the crack region results into traction-free and insulated crack surfaces.

3. Method of Solution

Consider a composite material with doubly periodic microstructure. As an illustration, Fig. 1(a)
shows a composite with a hexagonal array of fibers embedded in the matrix. Also shown is a

crack of length 2a which connects two adjacent fibers. The composite is subjected to a heat

6
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periodicity of the composite is lost and consequently a repeating unit cell (a representative
volume element) does not exist. In the following we present a method of solution that is based
on the representative cell method, Ryvkin and Nuller (1997), which is capable to establish the
full temperature and thermoelastic fields. To this end, let us consider a rectangular domain
—D < X; <D, —H < Xy < H of the composite which includes the crack region. It is assumed
that this rectangular domain which is subjected to the heat flux q is sufficiently extensive such
that the temperature and thermoelastic fields at its boundaries are not influenced by the crack
existence. It should be mentioned that as long as the rectangular domain is sufficiently extensive,
the distribution of the fibers and the location of the crack is arbitrary. It is advisable however to
preserve symmetry (as illustrated by the insets of the figures that are discussed in the following) in
order to obtain symmetrical field distributions. Consequently, the boundary conditions (presently
the heat flux) that are applied on X; = +£D and Xy = +H can be referred to as the far-field
boundary conditions. This region is divided into (2M; + 1) x (2Ms + 1) cells, see Fig. 1(b) for
M, = My = 2. Every cell is labeled by (K, Ky) with Ky = —M;, ..., My and Ky = —M,, ..., Ms.
In each cell, local coordinates (X, X,) are introduced whose origins are located at its center, see

Fig. 1(c).

3.1 Formulation in the real domain
The constitutive equation (7) in cell (K7, K3) can be written as

O.(KLKz) —C 6(K1,K2) _ I\T(Kth) _ O.G(Kth) (11)
If the crack exists in the cell (K; = 0, K5 = 0) only, it follows that o®(f:%2) takes the form
geKLk2) — p (C’ : eBnke) ]_"T(Kl’KQ)) 0K1,00K5,0 (12)

where 9; ; is the Kronecker delta. It is obvious that this last expression can be generalized for
the modeling of cracks that exist in other cells (as long as it is ensured that the size of the
rectangular region is sufficiently large such the far-field at its boundaries is not affected by the

cracks existence).
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q(K1,K2) E— VT(KLKQ) _ qe(K1,K2) (13)

where
qe(KI’Kz) = —DkK VT(KI’KQ)CSKLQCSKQ’O (14)
The governing equations (3)-(4) of the materials within the cell (K, K5) take the form

V- o KK2) — (15)

V- qErie) = (16)

Ki,Ks

Next, the continuity of displacements w5152 and temperature T ) between adjacent

cells must be imposed. These imply that (the square brackets do not denote quantity jumps)

, 7 (K1,K2) , 1 (K1+1,K3)
u(d, x)| T = [u(-d. xy)| 0,
K= My, .. My—1, Ky=—M,, .., M (17)
, 7 (K1,K2) , 1 (K14+1,K>3)
[T(dv XQ)] - [T(_d7 X2)i| =Y,
K= M, .M —1, Ky=—My, ... M (18)
and
’ (K17K2) ’ (Kl,KQJrl)
ux, )] = Ju(x], )] 0,
Ky = —My, ... My, Ky=—My, ..., My—1 (19)
/ (KlyKQ) , (K1,K2+1)
T = [T, -] 0,
Klz—Ml,...,Ml, KQZ—MQ,...,MQ—l (20)

Similarly, the continuity of tractions t5%2) and the normal components of the heat flux g*1-52)

between adjacent cells are fulfilled by requiring that

Y

, 1 (K1,K2) , 1 (K14+1,K3)
td X)) [H—d X =
Kl - _Mb ceey Ml - 1, KQ = —MQ, ceey MQ (21)

8
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L™ = L™ =
K =My, M —1, Ky=—M,, ..., M (22)
and

’ (KlyKQ) / (Kl,KQ—‘rl)

[t<X1> h)] - [t(Xla _h):| = 07

K =M, ..M, Ky=—M, ..My—1 (23)
/ (K17K2) , (K17K2+1)

exin)] T = e -m) =0,

K= My, ... My, Ky=—My, ... M—1 (24)

Finally, the boundary conditions have to be imposed on the boundaries =D and +H of the
rectangle which, as stated before, must be sufficiently far away such that the effect of the crack
is negligible. The tractions and the normal components of the heat flux on opposite sufficiently

remote sides of this rectangle must be equal. Thus

/ (M,s) / (=Ma,s)
|:O'1j(d, X2)i| - |:O'1j(—d, XQ)] = 0, s = —MQ,...,MQ (25)
’ (Mlvs) / (7M175)
a(d X)) = |ar(—d, X5)] =0,  s=-M,... M, (26)
and
’ (T’M2) ’ (rv*MQ)
oo, )] = [, )| —0,  r=—M,., M, (27)
, (r,M2) , (r,—Ms>)
] = et -] =0 =My (28)

On the other hand, the displacements and temperature at these opposite sides differ. Their

differences (jumps) are defined by

uM(d X)) —uTM) (—d, X)) = T, s = —My, ..., My (29)

TS (g, X)) — TEM) (—d X)) =TT, s =—M,, ..., M, (30)
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’

wM) (X h) — " TM(X —h) = JY, r =M, .., M, (31)

TCM(X b)) — T M)(X ~h) = J),  r=—M, ..M, (32)
These jumps are the given by the far-field (which is not affected by the crack existence) as follows
Ji = 2Déyy, Jor = 2Héyy, k=1,2,3 (33)

where €1, and €y, are the average (far-field) strain of the unperturbed periodic composite. They
can be determined from the micromechanically established macroscopic (average) constitutive

law:
o=C":e-1T"T (34)

where C* and I'* are the effective stiffness and thermal stress tensors of the periodic (unper-
turbed) composite which can be determined by HFGMC micromechanical analysis, Aboudi et
al. (2013), and & are the far-field applied tractions. When the composite is subjected to a heat
flux only (i.e., in the absence of a strain loading), the average (far-field) strains € are equal to
Zero.

Similarly,
JI=2D7, JI =207 (35)

where 7, and 7, are the components of the remote temperature gradient. They can be determined

from the micromechanically established macroscopic (average) Fourier law of the composite:
q=—-K'T (36)

with k* being the effective thermal conductivity tensor that can be determined from HFGMC
analysis, Bednarcyk et al. (2017), and q is the far-field applied heat flux.

3.2 Formulation in the transform domain

The next stage in the representative cell method consists of the application of the double discrete

Fourier transform. For the displacement vector w52 (for example) this transform is defined

10
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My Mo
WX, Xy b, 0s) = Y > ulf (X X)) exp [i(Kq 6, + Kady)] (37)
Ki=—M; Ko=—M>
where
¢ 2mr 0, 41,42 .. +M,, ¢ 27s 0,41, 42, .. M.
[P r=yu, ) JERED) ) s = Sas . 10 s =V, ) JRRRY )
2M; + 1 ! 2M; + 1 2

The application of this transform to the boundary problem (11)-(32) for the rectangular domain
—-D < X, <D, —H < Xy, < H, which is divided into (2M; + 1) x (2M; + 1) cells, converts it
to the problem for the single representative cell —d < X| < d, —h < X} < h with respect to the

complex valued transforms. The resulting constitutive equations (11)-(14) take the form

6=C:¢-TIT-0° (38)
5°=D (C é— rT) (39)
G=-k VT —§° (40)
¢°=—-Dr VT (41)

The governing equations (15)-(16) reduce to

V.o

0 (42)

V.G=0 (43)

Next, the continuity conditions (17)-(28) in the transform domain are

a(d, X,) — exp(—ig,)u(—d, X,) =0, —h<X,<h (44)
T(d, X;) — exp(—i¢,)T(—d, X,) =0, —h<X;<h (45)
a(X), h) — exp(—ig)a(X,, —h) =0, —d<X{<d (46)

11
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t(d, X,) — exp(—ig,)t(—d, X)), —h<X,<h (48)
Q1 (d, X,) = exp(—ig )i (—d, Xp), —h<Xy<h (49)
t(X,, h) — exp(—igy)t(X,, —h), —d<X|<d (50)
G2(X1, h) = exp(—igs)da( X1, —h), —d < X{<d (51)

In all these equations, r =0, ..., £M;; s =0, ..., =M.
As to the displacements and temperature differences (jumps) that are given by (29)-(32),

they appear in the transform domain as follows:

w(d, X,) — exp(—i¢,)a(—d, Xy) + 00.(2Ms + 1) I exp(iy M), —h < X, <h (52)
T(d, Xy) = exp(=ign)T(~d, Xy) + 8oa (Mo + DI exp(in M), ~h< X, <h  (53)
(X, h) — exp(—ids) (X, —h) + 8o, (2M; + 1) T exp(idsMy), —d <X, <d (54)
T(X1, h) — exp(—igs )T (X7, —h) + 60, (2M; + 1) exp(iosMy), —d< X, <d  (55)

The set of equations (38)-(55) define a boundary value problem in the transform domain.
These equations can be solved by the methods that have been presented in detail in Chapter 11 of
Aboudi et al. (2013) for functionally graded materials. Thus, the representative cell domain —d <
Xi <d, —h < Xé < h is divided into several rectangular subcells, o = 1,..., N, 8 = 1,..., Ng,
see Fig. 1(c). The transformed displacement vector and temperature are expanded into second-
order polynomials, and the equilibrium and heat equations, interfacial and boundary conditions
are imposed in the average (integral) sense. This results in a system of algebraic equations the
solution of which provides the transformed thermal and mechanical fields. The actual fields

at any point within the cells (K7, K3) of the considered rectangular region —D < X; < D,

12
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displacement vector (for example) is given by:

(KuK2) (y' y'y — 1 (X X! <D [—i
u (Xl,XQ) = (2M1 T 1)(2M2 I 1) T:Z;h S:Z;/b U(X17X27¢ra¢s)e p[ Z(Kl(br + K2¢s)]<56>

e

In the application of this solution, the eigenfield vectors ¢ and ¢° to be employed in Egs.
(38) and (40) are not known. Hence an iterative solution has to be employed as follows.

1. Start by assuming that 6° = 0 and ¢° = 0 and solve the above equations in the transform
domain.

2. Apply the inverse transform formula to compute the thermal and stress fields. The field
variables in the actual space can be employed to compute the current eigenfields o®%1-%2) and
gl Ke),

3. Compute the transforms of g®%X1:52) and g°(5%2) (39) and (41), to be employed in Egs. (38)
and (40).

4. Solve again the equations in the transform domain.

This procedure should be continued until a convergence to a desired degree of accuracy is
achieved.

The computational efficiency of the present approach can be illustrated by considering the
analysis of the cracked fiber-reinforced material with the fibers forming a hexagonal array, that
will be discussed in the following. This composite region has been divided into 11 x 11 cells (i.e.,
My = M3 = 5). The representative cell has been divided in the framework of the higher-order
theory into N, = 100 and Nz = 56 subcells (which has been found to provide accurate results).
The higher-order analysis requires the solution of 16 unknowns in each subcell (i.e. 32 unknowns
in the complex transform domain). Hence, this discretization requires for each combination of
or, ¢s the solution of a sparse system of 179,200 algebraic equations. A direct numerical solution
(e.g., by a finite element procedure) with the same number of degrees of freedom would require
solving a system of 11 x 11 x 16 x 100 x 56 ~ 10 x 10° equations which is very large. Another
significant advantage of the present analysis over a direct computational approach stems from the
fact that by increasing the size of the rectangular region —D < X; < D, —H < X, < H (in order

to further diminish the crack effect) within which the computations in the transform domain are

carried out (i.e., by increasing M; and M,) the number of algebraic equations (179,200 in the

13
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increases with the increase of M; and M,.

4. Verifications

In Tarn and Wang (1993), an exact solution for the temperature and thermal stresses fields are
given for a crack of length 2a embedded within an infinite homogeneous anisotropic material.
The material is subjected to a remote heat flux q, and the crack is traction-free and insulated
such that its surface heat flux is equal to zero. With the effective heat conductivity, stiffness, and
thermal stress tensors, k*, C* and I'* that characterize a considered homogenized anisotropic
material, the solution of Tarn and Wang (1993) can be implemented to verify the field variation
as predicted by the present analysis. The exact expressions for the temperature and heat flux

are given by

T = 2Re(g'(z)) (57)

= —2Re (k119" (21)), @2 = —2Re (ursg"(z1)) (58)

where

glz) = — 4\;% [zn (zt+m) ( — 2 zf—a2>] (59)

and z; = Xy + i Xy with py = in/K}, /K5,

In addition, the thermal stresses in the cracked material can be determined from the following

expression

o1 = 2Re { [Lh], + e } k=123 (60)

2
a(Cr— ¢ ) 4v/K11K3
In these equations, (, = (zx + \/W)/a, 2, = XqupXs and g are the three roots with the
positive imaginary part of a cubic equation that is given together with L and h in Tarn and
Wang (1993).
Consider a unidirectional fiber-reinforced composites that consists of carbon T300 fibers rein-

forcing an epoxy matrix. The volume fraction of the reinforcing fibers is vy = 0.5. The properties

14
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predicted by the HFGMC micromechanical model, are given in Table 1. Let the axial direction
of this homogenized composite be oriented in the 1-direction and a crack of length 2a/(2d) = 1
is introduced along this direction, see inset in Fig. 2. The homogenized composite is subjected
to a remote heat flux ¢ = -1 W/m? in the 2-direction. Figure 2 shows a comparison between
the temperature, heat flux and the induced shear stress along the crack line as predicted by the
exact solution of Tarn and Wang (1993) and the present approach. Very good agreement can
be observed. It should be noted that only shear stress o5 exists along the crack line, whereas
092 = 0 along this line. This is in agreement with the result of Sih (1962) who showed that in
a cracked isotropic material that is subjected to a remote heat flux, only Mode II deformation
exists.

Next, let the axial direction of this homogenized transversely isotropic composite be oriented
in the out-of-the plane 3-direction, and a crack of length 2a is introduced along the 1-direction,
see inset in Fig. 3. In the present situation the plane X;-X, is a plane of isotropy. In this case,
the solution of Tarn and Wang (1993) is not applicable since out of the three roots ug, k = 1,2,3,
two of them coincide, and in addition, these two coincide with gy (i.e., g3 = o = e = 1). It is
important however to verify this situation because in the analysis of the cracked (unhomogenized)
fiber-reinforced composites and porous materials that will be considered in the next section, the
axes of symmetry are oriented in the out-of-plane 3-direction. For this case it is however possible
to verify our solution approach by utilizing the exact solution of Koizumi et al. (1979) for a crack
embedded in isotropic material that is subjected to a remote heat flux.

The closed-form solution of Koizumi et al. (1979) for the temperature is given by
ey R {z [2 i aQ] } — @Xg (61)
K K

where z = X; + iX, and k is the heat conduction. The heat flux components can be readily

determined from this relation:

. z - 2 -
Ch:@RG{Z [1_\/ﬁ}}7 Q2:—Q2R€{1—\/ﬁ}+% (62)

The induced thermal stresses are determined from the two complex potentials ¢(z) and ¥(2)

as follows.
o11 + 092 = 4Re [SOI(Z)] ) 093 — 011 + 21012 = 2 [590”(2) + w'(z)] (63)

15
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ia*(1 4+ v)aGq, z+V22—a?

= 4

#(2) 4k(1 —v) n 2a (64)
it (l+v)aGgp 1 1

d(l—v) V22 —a2z+ V22— a?

where G, v and « are the shear modulus, Poisson’s ratio and coefficient of thermal expansion of

¥(z) = —(2) (65)

the isotropic material, respectively. The constants s, G, v and « can be readily determined from
the established effective conductivity, stiffness and thermal tensors of the considered composite.

Here too, let the homogenized composite be subjected to a remote heat flux ¢ = -1 W/m? in
the 2-direction. In figure 3, comparisons between this exact solution and the present one for the
undirectional carbon/epoxy composite whose axis of symmetry is oriented in the out-of-plane
X3-direction with a transverse crack are shown. Very good agreements between the two solutions
for the temperature, heat flux and the induced shear stresses along the crack line can be well

observed.

5. Applications

In the present section, applications are given for the prediction of the temperature, field, heat
flux and induced thermal stresses in a cracked fiber-reinforced polymer matrix composite, porous
ceramic material and periodically layered ceramic composite under remote heat flow. In all
these cases, the actual effects of the microstructure of the composite are accounted to (i.e., not
homogenized). The chosen number of cells which were found to ensure sufficient remoteness from

the crack effects are My = My =5

5.1 A cracked fiber-reinforced polymer matrix composite subjected to

a remote heat flux

Consider a carbon/epoxy fiber-reinforced composite in which the carbon fibers are oriented in
the 3-direction and arranged in a hexagonal array. It is assumed that a transverse crack which

connects two adjacent fibers exists, see inset in Fig. 4. The length of the crack is 2a/(2d) =
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fiber volume ratio is vy = 0.5. The composite is subjected to a remote normal heat flux g, = -1
W /m?.

Figure 4 shows the variation along the crack line of the temperature T, normal heat flux qs
and the induced thermal shear stress oi5. The effect of the composite microstructure is clearly
observed by the variations of the various field variables. These field variations can be compared
with the corresponding one that have been shown in Fig. 3 where the carbon/epoxy composite
was homogenized, as a result of which the microstructure effects were ignored. In the latter
homogenized case, for example, the magnitude of the temperature, concentrated at the crack
surface, was about 1.4 K, whereas in the actual situation that is shown in Fig. 4 it is about 0.9
K.

In Fig. 5(a), 5(b) and 5(c) the full field distribution of the temperature, normal heat flux
and the induced normal thermal stress o9 are shown in the region —5 < X;/(2d) < 5, =3 <
Xsy/(2h) < 3 are shown. It can be observed from Fig. 5(a) that the temperature varies between +7
K whereas the full temperature field in the homogenized case (not shown) exhibits a variation
between +14 K, indicating here too the importance of accounting the microstructure effects.
Figure 5(b) shows the effect of the crack existence on the heat flux with its concentration near
its tip. The full field distribution of the shear stress o5 is not shown because the most interesting
effects exist near the crack tip which has been already shown in Fig. 4. The distribution of the
normal thermal stress oge that is shown in Fig. 5(c) indicates that in the entire vicinity of the
crack line this stress is very small (zero along it), and it exhibits an anti-symmetric behavior

with respect to this line.

5.2 A cracked porous ceramic material subjected to a remote heat flux

In the next application, a cracked porous alumina in which the porosities are distributed such that
they form a hexagonal array is considered, see inset in Fig. 6. The porous alumina is subjected
to a remote normal heat flux g = -1 W/m?. The properties of the alumina (Al,O3) are given
in Table 1, and the amount of porosity is 0.25. For this uncracked porous material the HFGMC
micromechanical model predicts the following values of the effective thermal conductivities (that

are needed in Eq. (36): k}; = k3, = 20.76 W/(mK). It is assumed that a crack which connects

17
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The variations along the crack line of the temperature, normal heat flux component ¢, and
induced shear stress o1 are shown in Fig. 6. The effect of the porous material microstructure
is well exhibited, and the values of the temperature along this line are extremely low. The full
distributions of the temperature, normal heat flux and the induced shear normal stresses are
shown in the region in Fig. 7(a), (b), (c) and (d), respectively. Here too, the temperature is
relatively quit low as compared to the resulting temperature in the fiber-reinforced composite.
The thermal shear stress oqo is antisymmetric with respect to the Xs-axis, whereas the normal
thermal stress og9 is antisymmetric with respect to the crack line (X;-axis). It is obvious that a
homogenization of the thermal and induced stress fields of the porous material will result in the

loss of all these details.

5.3 A cracked periodically layered ceramic composite subjected to a

remote heat flux

As a final application of the proposed approach, consider a periodically layered ceramic composite
that consists of alumina and zirconia layers of equal widths. The properties of these materials are
given in Table 1. A transverse crack whose length 2a/(2d)=0.5 is located in the more compliant
zirconia layer, see inset to Fig. 8. This layered composite is subjected a remote normal heat flux
g2 = -1 W/m?. For the uncracked layered composite, the HFGMC model predicts the effective
axial and transverse thermal conductivities: x};=5 W/(mK), x3,=18.9 W/(mK).

In Fig. 8, the variations along the crack line of the temperature, normal heat flux component
g2 and the induced shear stress oy, are shown The temperature along the crack surface is quite
small and it is negligibly small along its line in the other layers. The high values of the normal
heat flux and shear stress in the vicinity of the crack tip are well observed (theoretically singular
at the crack tip)

The full shear and normal stress fields that developed in the layered composite are shown in
Fig. 9 in the region —1.5 < X /(2d) < 1.5, —=1.5 < X5/(2h) < 1.5. The magnitude of the normal

stress is seen to be appreciably higher that the shear stress.
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A multiscale analysis is offered for the determination of the thermal and mechanical fields in
cracked composites that are subjected to heat flow. This analysis has been verified by comparison
with exact solutions for cracked isotopic and anisotropic thermoelastic materials (the solution
of which is far more complicated than the former). Applications are given for three types of
cracked composites, subjected to heat flow. The derived formulation however is general enough
and allows the application of remote combined thermomechanical loading.

As discussed, the present method has certain advantages over a direct numerical approach.
This stems from the fact that the applied boundary conditions (e.g. the applied heat flux) must
be located at a sufficiently remote distance from the localized effects (e.g. a crack). As a result,
the number of the resulting equations when a direct numerical procedure is adopted might be
extremely large. In the present method however, just one discretized cell in the transform domain
need to be considered. Increasing the remoteness of the applied boundary conditions does not
affect the discretized cell analysis.

Applications of the present analysis have been presented for composites that consist of a
single crack. It is however possible to apply it on composites with multiple cracks, see Baoxing
and Xiangzhou (1994) for example. The present formulation have been illustrated for a single
crack which forms a simple example of localized damage. It is however possible to consider
other types of localized damage in composites such as cavities, soft and stiff inclusions, see
Aboudi and Ryvkin (2012). In addition, the modeling of the interaction between two types of
damage in composites that are subjected heat flow (e.g., interaction between a crack and cavity)
is possible. The results in the present article were confined to the application of remote heat
flux, the method can be employed however to obtain the thermomechanical field distributions in

damaged composites that are subjected to combined mechanical and heat flow.
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4 and 5, respectively). In column 3, the effective properties of carbon/epoxy composite
(v = 0.5) are presented. Here, E4, Er, va, vr, G4, aa, ar, k4 and k7 denote the axial and
transverse Young’s moduli, axial and transverse Poisson’s ratios, axial and transverse

coefficients of thermal expansion, axial and transverse conductivities, respectively.

Property Carbon Epoxy Homogenized carbon/epoxy Alumina Zirconia

T300 vp= 0.5 Al,O4 yALO2

EA(GPa) 220 3.45 111.9 393 207
Er(GPa) 22 3.45 8.49 393 207
VA 0.3 0.35 0.32 0.27 0.32

vr 0.35 0.35 0.39 0.27 0.32
Ga(GPa) 22 1.28 3.16 154.7 78.4
as(107K1) -1.3 54 -0.42 8.4 11
ar(107° K1) 7 54 37.1 8.4 11
ka(W/(mK))  20.5 0.18 10.35 35 2.7
rkr(W/(mK)) 1.46 0.18 0.39 35 2.7
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Fig. 1: (a) A crack of length 2a embedded in a composite material. (b) A rectangular domain

Fig.

Fig.

Fig.

Fig.

Fig.

2D x 2H of the composite is divided into repeating cells. These cells are labeled by
(K1, K3) with —M; < K7 < M; and —M, < Ky < M,, and the size of every one of which
is 2d x 2h (the figure is shown for M; = M, = 2). (c) A representative cell in which
local coordinates (X}, X,) are introduced whose origin is located at the center. The cell is

divided into N, x Nz subcells.

: Homogenized carbon/epoxy unidirectional transversely isotropic composite with a trans-

verse crack, subjected to a remote normal heat flux of ¢ =-1 W/m?. The axial direction of
the homogenized composite is oriented in the 1-direction, Comparison between the exact
solution of Tarn and Wang (1993) and the present one for the temperature, normal heat

flux and shear stress along the crack line.

: Homogenized carbon/epoxy unidirectional transversely isotropic composite with a trans-

verse crack, subjected to a remote normal heat flux of ¢ =-1 W/m?. The axial direction of
the homogenized composite is oriented in the out-of-plane 3-direction, Comparison between
the exact solution of Koizumi et al. (1979) and the present one for the temperature, normal

heat flux and shear stress along the crack line.

: The variations along the crack line of the temperature, normal component of the heat

flux and induced shear stress that develop in the carbon/epoxy fiber-reinforced composite,

subjected to a remote normal heat flux of go =-1 W/m?,

: Field distributions in the region —5 < X;/(2d) < 5, =3 < X3/(2h) < 3 of the cracked

carbon/epoxy fiber-reinforced composite, (a) Temperature T (K) distribution, (b) normal

component of the heat flux (W/m?), (c) normal stress g92 (MPa).

: The variations along the crack line of the temperature, normal component of the heat flux

and shear stress that develop in the porous alumina material, subjected to a remote normal

heat flux of g, =-1 W/m?.
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Fig. 8:

Fig. 9:

porous alumina material. (a) Temperature T (K) distribution, (b) normal component of

the heat flux go (W/m?), (c) shear stress 015 (MPa), (d) normal stress g9 (MPa).

The variations along the crack line of the temperature, normal component of the heat flux
and shear stress that develop in the periodically layered alumina/zirconia, subjected to a

remote normal heat flux of o =-1 W/m?.

Field distributions in the region —1.5 < X;/(2d) < 1.5, —=1.5 < X3/(2h) < 1.5 of the
cracked layered ceramic composite. (a) shear stress o5 (MPa), (b) normal stress oo

(MPa).
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