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Abstract

A multiscale (micro-macro) approach is proposed for the establishment of the full ther-

mal and induced stress fields in cracked composites that are subjected to heat flow. Both the

temperature and stresses distributions are determined by the solution of a boundary value

problem with one-way coupling. In the micro level and for combined thermomechanical

loading, a micromechanical analysis is employed to determine the effective moduli, coeffi-

cients of thermal expansion and thermal conductivities of the undamaged composite. In

the macro level, the representative cell method is employed according to which the periodic

damaged composite region is reduced, in conjunction with the discrete Fourier transform, to

a finite domain problem. As a result, a boundary value problem is obtained in the Fourier

transform domain which is appropriately discretized and solved. The inverse transform and

an iterative procedure provide the full thermal and stress fields. The proposed method is

verified by comparisons with exact solutions. Applications are given for the determination

of the thermal and stress fields in cracked fiber-reinforced polymeric composite, cracked

porous ceramic material and cracked periodically layered ceramic composite caused by the

application of heat flow. The presented formulation admits however the application of a

combined mechanical and heat flux on cracked composites.

Keywords : fiber-reinforced composites; porous materials; thermal stresses; 

repre-sentative cell method; high-fidelity generalized method of cells
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1. Introduction

There are many books, review articles and papers that are dedicated to the investigation of

the behavior of cracked solids and composites that are subjected to mechanical loadings. A

relatively few papers appeared concerning the induced thermal stresses caused by the application

of heat flow in the presence of cracks and other types of damage. Quantifying these stresses in

the presence of defects is important as they may give information about the locations of high

stress concentrations which can cause failure. It should be mentioned that in the framework of

these problems, the temperature field distribution is not constant but rather spatially dependent

should be determined according to considered boundary-value problem. The resulting heat flux

caused by the application of heat flow in a cracked homogeneous material is singular at the crack

front, and the temperature is continuous along the crack line and discontinuous across the crack

(insulated crack).

Due to the one-way thermomechanical coupling, the temperature field induces thermal stresses

in the material which are singular near the crack tip. Examples of some articles in which the

effect of heat flow in cracked materials is investigated are: Koizumi et al. (1979), Wu (1984),

Tsai (1984), Sturla and Barber (1988), Kuo (1990), Hwu (1990), Hwu (1992), Tarn and Wang

(1993), Itou (2000), Ursescu and Dascalu (2006), Zhong and Wu (2012) and references cited

there, and chapter 10 in Hwu (2010) monograph . The analysis of Ting and Yan (1992) of the

singularities at the tip of interfacial cracks in anisotropic materials subjected to heat flow forms

a generalization of the square root singularity that occurs in homogeneous materials. A recent

article in which the extended finite element method has been employed for the simulation of the

heat flux and thermal stresses in cracked solids has been presented by Duflot (2007).

The aforementioned investigations concerned with cracks in homogeneous materials or in-

terfacial cracks between two homogeneous materials. When the effect of thermal loading on

composite materials with cracks is sought, the application of these analyses necessitates the ho-

mogenization of the considered multiphase material. As a result of this homogenization, the

effect of the composite’s periodic microstructure is lost. Furthermore, when the homogenization

technique is employed in the analysis of a cracked composite with periodic microstructure, a re-

peating unit cell which represents the entire composite is considered. The introduction of a crack
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in the repeating unit cell implies its repeated existence in the entire composite which obviously

is not a realistic situation.

In the present investigation, a multiscale analysis is proposed for the establishment of the full

thermoelastic field caused by the application of remote heat flow on cracked composite materials

while taking into account their microstructure distributions. As a result of the application

of thermal loading the temperature and heat flux distributions are established by solving the

steady state heat equation. The one-way coupling with the mechanical equations induces thermal

stresses in the composite which are subsequently determined by solving these equations.

The proposed method of solution consists of a micromechanical analysis which is followed by

a macromechanical one. In the most general case of a composite subjected to remote thermo-

mechanical loading, the micromechanical analysis provides the effective thermal conductivities,

elastic moduli and coefficients of thermal expansion of the undamaged composite. This is carried

out by utilizing the high-fidelity generalized method of cells (HFGMC) which has been fully

described in Aboudi et al. (2013). In the framework of the macromechanical analysis the rep-

resentative cell method, Ryvkin and Nuller (1997), is employed. According to this method, the

composite domain is divided into several rectangular cells with respect to which the governing

and constitutive equations are formulated. This is followed by the application of the discrete

Fourier transform which reduces the multiple cells problem to the analysis of a single cell in the

transform domain. The transformed temperature and displacement vector are expanded into a

second-order polynomial, and the heat and equilibrium equations as well as the interfacial and

boundary conditions are imposed in the average (integral) sense. A discretization of the single

cell problem provides the solution in the form of a system of algebraic equations, see Aboudi et

al. (2013). The inversion of the Fourier transform provides the actual thermal and mechanical

fields at the various cells, and thus at every desired point of the composite. The effect of crack

existence is taken into account by the continuum damage mechanics considerations combined

with the localized damage analysis as described by Aboudi and Ryvkin (2012) and Ryvkin and

Aboudi (2012). It should be noted that in both these two articles the constant temperature has

been uniformly prescribed in the entire composite.

The proposed approach is verified by comparing its prediction with exact solutions for a crack

embedded in homogeneous materials that are subjected to remote heat flow. The temperature
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field, heat flux and the resulting induced stress distributions are shown and discussed in the cases

fiber-reinforced polymer matrix composite, porous ceramic material and periodically layered

ceramic composite, all of which are subjected to heat flow.

The present article is organized as follows. In Section 2, the constitutive and governing

equations are presented. This is followed in Section 3 by the method of solution which is presented

in the real space followed by its formulation in the Fourier transform domain. The solution in the

latter domain utilizes the methods presented in Aboudi et al. (2013). The inversion of the Fourier

transform provides the actual solution which requires iterations for convergence. In Section 4,

verifications of the proposed method are presented by comparison with exact solutions. Section 5

provide results of the application of the proposed method on three types of composites. Finally,

a Conclusion section is given for a summary and future generalizations.

2. Constitutive and Governing Equations

Consider a thermoelastic homogeneous orthotropic material. The constitutive equations are

given as follows.

σ = C : ǫ − ΓT (1)

where σ, ǫ, C and Γ are the stress, strain, stiffness and thermal stress tensors, respectively. In

this equation, T is the temperature field deviation from a reference temperature. The thermal

flux vector q is related to the temperature gradient via the Fourier’s law in the form

q = −κ ∇T (2)

and κ is the thermal conductivity tensor.

The governing equations are given by

∇ · σ = 0 (3)

and

∇ · q = 0 (4)
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It should be noted that the temperature field is uncoupled to the mechanical field, but it affects

the latter through the constitutive equation (1) (one-way thermomechanical coupling).

As discussed in Aboudi and Ryvkin (2012), the effect of the crack can be represented, in the

framework of the continuum damage mechanics, by introducing a damage parameter D which

takes the value of zero or one. In the crack region D=1 whereas D=0 otherwise. As a result Eq.

(1) and (2) are reduced to the following form

σ = (1 − D)C : ǫ − (1 − D)ΓT (5)

and

q = −(1 − D)κ ∇T (6)

As discussed in the next section, Eqns. (5) and (6) are more conveniently represented as

follows

σ = C : ǫ − ΓT − σe (7)

q = −κ ∇T − qe (8)

where

σe = D (C : ǫ − ΓT ) (9)

qe = −Dκ ∇T (10)

which play the role of eigenstress and eigen heat flux, respectively. Consequently, the damage

parameter D=1 in the crack region results into traction-free and insulated crack surfaces.

3. Method of Solution

Consider a composite material with doubly periodic microstructure. As an illustration, Fig. 1(a)

shows a composite with a hexagonal array of fibers embedded in the matrix. Also shown is a

crack of length 2a which connects two adjacent fibers. The composite is subjected to a heat
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flux q̄ = {q̄1, q̄2}t (Fig. 1(a) is shown with q̄1 = 0). As a result of the crack existence, the

periodicity of the composite is lost and consequently a repeating unit cell (a representative

volume element) does not exist. In the following we present a method of solution that is based

on the representative cell method, Ryvkin and Nuller (1997), which is capable to establish the

full temperature and thermoelastic fields. To this end, let us consider a rectangular domain

−D ≤ X1 ≤ D, −H ≤ X2 ≤ H of the composite which includes the crack region. It is assumed

that this rectangular domain which is subjected to the heat flux q̄ is sufficiently extensive such

that the temperature and thermoelastic fields at its boundaries are not influenced by the crack

existence. It should be mentioned that as long as the rectangular domain is sufficiently extensive,

the distribution of the fibers and the location of the crack is arbitrary. It is advisable however to

preserve symmetry (as illustrated by the insets of the figures that are discussed in the following) in

order to obtain symmetrical field distributions. Consequently, the boundary conditions (presently

the heat flux) that are applied on X1 = ±D and X2 = ±H can be referred to as the far-field

boundary conditions. This region is divided into (2M1 + 1) × (2M2 + 1) cells, see Fig. 1(b) for

M1 = M2 = 2. Every cell is labeled by (K1, K2) with K1 = −M1, ...,M1 and K2 = −M2, ...,M2.

In each cell, local coordinates (X
′

1, X
′

2) are introduced whose origins are located at its center, see

Fig. 1(c).

3.1 Formulation in the real domain

The constitutive equation (7) in cell (K1, K2) can be written as

σ(K1,K2) = C : ǫ(K1,K2) − ΓT (K1,K2) − σe(K1,K2) (11)

If the crack exists in the cell (K1 = 0, K2 = 0) only, it follows that σe(K1,K2) takes the form

σe(K1,K2) = D
(

C : ǫ(K1,K2) − ΓT (K1,K2)
)

δK1,0δK2,0 (12)

where δi,j is the Kronecker delta. It is obvious that this last expression can be generalized for

the modeling of cracks that exist in other cells (as long as it is ensured that the size of the

rectangular region is sufficiently large such the far-field at its boundaries is not affected by the

cracks existence).
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Similarly, constitutive equation (8) in the cell (K1, K2) can be written as

q(K1,K2) = −κ ∇T (K1,K2) − qe(K1,K2) (13)

where

qe(K1,K2) = −Dκ ∇T (K1,K2)δK1,0δK2,0 (14)

The governing equations (3)-(4) of the materials within the cell (K1, K2) take the form

∇ · σ(K1,K2) = 0 (15)

∇ · q(K1,K2) = 0 (16)

Next, the continuity of displacements u(K1,K2) and temperature T (K1,K2) between adjacent

cells must be imposed. These imply that (the square brackets do not denote quantity jumps)

[

u(d,X
′

2)
](K1,K2)

−
[

u(−d,X
′

2)
](K1+1,K2)

= 0,

K1 = −M1, ...,M1 − 1, K2 = −M2, ...,M2 (17)

[

T (d,X
′

2)
](K1,K2)

−
[

T (−d,X
′

2)
](K1+1,K2)

= 0,

K1 = −M1, ...,M1 − 1, K2 = −M2, ...,M2 (18)

and

[

u(X
′

1, h)
](K1,K2)

−
[

u(X
′

1,−h)
](K1,K2+1)

= 0,

K1 = −M1, ...,M1, K2 = −M2, ...,M2 − 1 (19)

[

T (X
′

1, h)
](K1,K2)

−
[

T (X
′

1,−h)
](K1,K2+1)

= 0,

K1 = −M1, ...,M1, K2 = −M2, ...,M2 − 1 (20)

Similarly, the continuity of tractions t(K1,K2) and the normal components of the heat flux q(K1,K2)

between adjacent cells are fulfilled by requiring that

[

t(d,X
′

2)
](K1,K2)

−
[

t(−d,X
′

2)
](K1+1,K2)

= 0,

K1 = −M1, ...,M1 − 1, K2 = −M2, ...,M2 (21)
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[

q1(d,X
′

2)
](K1,K2)

−
[

q1(−d,X
′

2)
](K1+1,K2)

= 0,

K1 = −M1, ...,M1 − 1, K2 = −M2, ...,M2 (22)

and

[

t(X
′

1, h)
](K1,K2)

−
[

t(X
′

1,−h)
](K1,K2+1)

= 0,

K1 = −M1, ...,M1, K2 = −M2, ...,M2 − 1 (23)

[

q2(X
′

1, h)
](K1,K2)

−
[

q2(X
′

1,−h)
](K1,K2+1)

= 0,

K1 = −M1, ...,M1, K2 = −M2, ...,M2 − 1 (24)

Finally, the boundary conditions have to be imposed on the boundaries ±D and ±H of the

rectangle which, as stated before, must be sufficiently far away such that the effect of the crack

is negligible. The tractions and the normal components of the heat flux on opposite sufficiently

remote sides of this rectangle must be equal. Thus

[

σ1j(d,X
′

2)
](M1,s)

−
[

σ1j(−d,X
′

2)
](−M1,s)

= 0, s = −M2, ...,M2 (25)

[

q1(d,X
′

2)
](M1,s)

−
[

q1(−d,X
′

2)
](−M1,s)

= 0, s = −M2, ...,M2 (26)

and

[

σ2j(x
′

1, h)
](r,M2)

−
[

σ2j(X
′

1,−h)
](r,−M2)

= 0, r = −M1, ...,M1 (27)

[

q2(X
′

1, h)
](r,M2)

−
[

q2(X
′

1,−h)
](r,−M2)

= 0, r = −M1, ...,M1 (28)

On the other hand, the displacements and temperature at these opposite sides differ. Their

differences (jumps) are defined by

u(M1,s)(d,X
′

2) − u(−M1,s)(−d,X
′

2) ≡ Ju
1 , s = −M2, ...,M2 (29)

T (M1,s)(d,X
′

2) − T (−M1,s)(−d,X
′

2) ≡ JT
1 , s = −M2, ...,M2 (30)

9

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 May 2017                   doi:10.20944/preprints201705.0182.v1

Peer-reviewed version available at J. Compos. Sci. 2017, 1, , 4; doi:10.3390/jcs1010004

http://dx.doi.org/10.20944/preprints201705.0182.v1
http://dx.doi.org/10.3390/jcs1010004


and

u(r,M2)(X
′

1, h) − u(r,−M2)(X
′

1,−h) ≡ Ju
2 , r = −M1, ...,M1 (31)

T (r,M2)(X
′

1, h) − T (r,−M2)(X
′

1,−h) ≡ JT
2 , r = −M1, ...,M1 (32)

These jumps are the given by the far-field (which is not affected by the crack existence) as follows

Ju
1k = 2Dǭ1k, Ju

2k = 2Hǭ2k, k = 1, 2, 3 (33)

where ǭ1k and ǭ2k are the average (far-field) strain of the unperturbed periodic composite. They

can be determined from the micromechanically established macroscopic (average) constitutive

law:

σ̄ = C∗ : ǭ − Γ∗T (34)

where C∗ and Γ∗ are the effective stiffness and thermal stress tensors of the periodic (unper-

turbed) composite which can be determined by HFGMC micromechanical analysis, Aboudi et

al. (2013), and σ̄ are the far-field applied tractions. When the composite is subjected to a heat

flux only (i.e., in the absence of a strain loading), the average (far-field) strains ǭ are equal to

zero.

Similarly,

JT
1 = 2Dτ̄1, JT

2 = 2Hτ̄2 (35)

where τ̄1 and τ̄2 are the components of the remote temperature gradient. They can be determined

from the micromechanically established macroscopic (average) Fourier law of the composite:

q̄ = −κ∗τ̄ (36)

with κ∗ being the effective thermal conductivity tensor that can be determined from HFGMC

analysis, Bednarcyk et al. (2017), and q̄ is the far-field applied heat flux.

3.2 Formulation in the transform domain

The next stage in the representative cell method consists of the application of the double discrete

Fourier transform. For the displacement vector u(K1,K2) (for example) this transform is defined
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by

û(X
′

1, X
′

2, φr, φs) =

M1
∑

K1=−M1

M2
∑

K2=−M2

u(K1,K2)(X
′

1, X
′

2) exp [i(K1φr + K2φs)] (37)

where

φr =
2πr

2M1 + 1
, r = 0,±1,±2, ...,±M1, φs =

2πs

2M2 + 1
, s = 0,±1,±2, ...,±M2,

The application of this transform to the boundary problem (11)-(32) for the rectangular domain

−D < X1 < D, −H < X2 < H, which is divided into (2M1 + 1) × (2M2 + 1) cells, converts it

to the problem for the single representative cell −d < X ′

1 < d, −h < X ′

2 < h with respect to the

complex valued transforms. The resulting constitutive equations (11)-(14) take the form

σ̂ = C : ǫ̂ − ΓT̂ − σ̂e (38)

σ̂e = D
(

C : ǫ̂ − ΓT̂
)

(39)

q̂ = −κ ∇T̂ − q̂e (40)

q̂e = −Dκ ∇T̂ (41)

The governing equations (15)-(16) reduce to

∇ · σ̂ = 0 (42)

∇ · q̂ = 0 (43)

Next, the continuity conditions (17)-(28) in the transform domain are

û(d,X
′

2) − exp(−iφr)û(−d,X
′

2) = 0, −h ≤ X ′

2 ≤ h (44)

T̂ (d,X
′

2) − exp(−iφr)T̂ (−d,X
′

2) = 0, −h ≤ X ′

2 ≤ h (45)

û(X
′

1, h) − exp(−iφs)û(X
′

1,−h) = 0, −d ≤ X ′

1 ≤ d (46)
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T̂ (X
′

1, h) − exp(−iφs)T̂ (X
′

1,−h), −d ≤ X ′

1 ≤ d (47)

t̂(d,X
′

2) − exp(−iφr)t̂(−d,X
′

2), −h ≤ X ′

2 ≤ h (48)

q̂1(d,X
′

2) − exp(−iφr)q̂1(−d,X
′

2), −h ≤ X ′

2 ≤ h (49)

t̂(X
′

1, h) − exp(−iφs)t̂(X
′

1,−h), −d ≤ X ′

1 ≤ d (50)

q̂2(X
′

1, h) − exp(−iφs)q̂2(X
′

1,−h), −d ≤ X ′

1 ≤ d (51)

In all these equations, r = 0, ...,±M1; s = 0, ...,±M2.

As to the displacements and temperature differences (jumps) that are given by (29)-(32),

they appear in the transform domain as follows:

û(d,X
′

2) − exp(−iφr)û(−d,X
′

2) + δ0,s(2M2 + 1)Ju
1 exp(iφrM1), −h ≤ X

′

2 ≤ h (52)

T̂ (d,X
′

2) − exp(−iφr)T̂ (−d,X
′

2) + δ0,s(2M2 + 1)JT
1 exp(iφrM1), −h ≤ X

′

2 ≤ h (53)

û(X
′

1, h) − exp(−iφs)û(X
′

1,−h) + δ0,r(2M1 + 1)Ju
2 exp(iφsM2), −d ≤ X

′

1 ≤ d (54)

T̂ (X
′

1, h) − exp(−iφs)T̂ (X
′

1,−h) + δ0,r(2M1 + 1)JT
2 exp(iφsM2), −d ≤ X

′

1 ≤ d (55)

The set of equations (38)-(55) define a boundary value problem in the transform domain.

These equations can be solved by the methods that have been presented in detail in Chapter 11 of

Aboudi et al. (2013) for functionally graded materials. Thus, the representative cell domain −d ≤
X

′

1 ≤ d, −h ≤ X
′

2 ≤ h is divided into several rectangular subcells, α = 1, ..., Nα, β = 1, ..., Nβ,

see Fig. 1(c). The transformed displacement vector and temperature are expanded into second-

order polynomials, and the equilibrium and heat equations, interfacial and boundary conditions

are imposed in the average (integral) sense. This results in a system of algebraic equations the

solution of which provides the transformed thermal and mechanical fields. The actual fields

at any point within the cells (K1, K2) of the considered rectangular region −D ≤ X1 ≤ D,
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−H ≤ X2 ≤ H can be determined by the application of the inverse transform which for the

displacement vector (for example) is given by:

u(K1,K2)(X
′

1, X
′

2) =
1

(2M1 + 1)(2M2 + 1)

M1
∑

r=−M1

M2
∑

s=−M2

û(X
′

1, X
′

2, φr, φs) exp [−i(K1φr + K2φs)](56)

In the application of this solution, the eigenfield vectors σ̂e and q̂e to be employed in Eqs.

(38) and (40) are not known. Hence an iterative solution has to be employed as follows.

1. Start by assuming that σ̂e = 0 and q̂e = 0 and solve the above equations in the transform

domain.

2. Apply the inverse transform formula to compute the thermal and stress fields. The field

variables in the actual space can be employed to compute the current eigenfields σe(K1,K2) and

qe(K1,K2).

3. Compute the transforms of σe(K1,K2) and qe(K1,K2), (39) and (41), to be employed in Eqs. (38)

and (40).

4. Solve again the equations in the transform domain.

This procedure should be continued until a convergence to a desired degree of accuracy is

achieved.

The computational efficiency of the present approach can be illustrated by considering the

analysis of the cracked fiber-reinforced material with the fibers forming a hexagonal array, that

will be discussed in the following. This composite region has been divided into 11× 11 cells (i.e.,

M2 = M3 = 5). The representative cell has been divided in the framework of the higher-order

theory into Nα = 100 and Nβ = 56 subcells (which has been found to provide accurate results).

The higher-order analysis requires the solution of 16 unknowns in each subcell (i.e. 32 unknowns

in the complex transform domain). Hence, this discretization requires for each combination of

φr, φs the solution of a sparse system of 179,200 algebraic equations. A direct numerical solution

(e.g., by a finite element procedure) with the same number of degrees of freedom would require

solving a system of 11 × 11 × 16 × 100 × 56 ≈ 10 × 106 equations which is very large. Another

significant advantage of the present analysis over a direct computational approach stems from the

fact that by increasing the size of the rectangular region −D ≤ X1 ≤ D, −H ≤ X2 ≤ H (in order

to further diminish the crack effect) within which the computations in the transform domain are

carried out (i.e., by increasing M1 and M2) the number of algebraic equations (179,200 in the
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discussed example) does not change. It should be noted however that the computer running time

increases with the increase of M1 and M2.

4. Verifications

In Tarn and Wang (1993), an exact solution for the temperature and thermal stresses fields are

given for a crack of length 2a embedded within an infinite homogeneous anisotropic material.

The material is subjected to a remote heat flux q̄, and the crack is traction-free and insulated

such that its surface heat flux is equal to zero. With the effective heat conductivity, stiffness, and

thermal stress tensors, κ∗, C∗ and Γ∗ that characterize a considered homogenized anisotropic

material, the solution of Tarn and Wang (1993) can be implemented to verify the field variation

as predicted by the present analysis. The exact expressions for the temperature and heat flux

are given by

T = 2Re(g′(zt)) (57)

q1 = −2Re (κ∗

11g
′′(zt)) , q2 = −2Re (µtκ

∗

22g
′′(zt)) (58)

where

g(zt) = − iq̄2a
2

4
√

κ∗

11κ
∗

22

[

ln
(

zt +
√

z2
t − a2

)

+
1

a2

(

z2
t − zt

√

z2
t − a2

)

]

(59)

and zt = X1 + µtX2 with µt = i
√

κ∗

11/κ
∗

22.

In addition, the thermal stresses in the cracked material can be determined from the following

expression

σ1k = 2Re

{

2

a(ζk − ζ−1
k )

[Lh]k +
iq̄2a

2

4
√

κ∗

11κ
∗

22

}

, k = 1, 2, 3 (60)

In these equations, ζk = (zk +
√

z2
k − a2)/a, zk = X1µkX2 and µk are the three roots with the

positive imaginary part of a cubic equation that is given together with L and h in Tarn and

Wang (1993).

Consider a unidirectional fiber-reinforced composites that consists of carbon T300 fibers rein-

forcing an epoxy matrix. The volume fraction of the reinforcing fibers is vf = 0.5. The properties
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of the constituents as well as the effective properties of the homogenized unidirectional composite,

predicted by the HFGMC micromechanical model, are given in Table 1. Let the axial direction

of this homogenized composite be oriented in the 1-direction and a crack of length 2a/(2d) = 1

is introduced along this direction, see inset in Fig. 2. The homogenized composite is subjected

to a remote heat flux q̄2 = -1 W/m2 in the 2-direction. Figure 2 shows a comparison between

the temperature, heat flux and the induced shear stress along the crack line as predicted by the

exact solution of Tarn and Wang (1993) and the present approach. Very good agreement can

be observed. It should be noted that only shear stress σ12 exists along the crack line, whereas

σ22 = 0 along this line. This is in agreement with the result of Sih (1962) who showed that in

a cracked isotropic material that is subjected to a remote heat flux, only Mode II deformation

exists.

Next, let the axial direction of this homogenized transversely isotropic composite be oriented

in the out-of-the plane 3-direction, and a crack of length 2a is introduced along the 1-direction,

see inset in Fig. 3. In the present situation the plane X1-X2 is a plane of isotropy. In this case,

the solution of Tarn and Wang (1993) is not applicable since out of the three roots µk, k = 1, 2, 3,

two of them coincide, and in addition, these two coincide with µt (i.e., µ1 = µ2 = µt = 1). It is

important however to verify this situation because in the analysis of the cracked (unhomogenized)

fiber-reinforced composites and porous materials that will be considered in the next section, the

axes of symmetry are oriented in the out-of-plane 3-direction. For this case it is however possible

to verify our solution approach by utilizing the exact solution of Koizumi et al. (1979) for a crack

embedded in isotropic material that is subjected to a remote heat flux.

The closed-form solution of Koizumi et al. (1979) for the temperature is given by

T = − q̄2

κ
Re

{

i
[

z −
√

z2 − a2
]}

− q̄2

κ
X2 (61)

where z = X1 + iX2 and κ is the heat conduction. The heat flux components can be readily

determined from this relation:

q1 = q̄2Re

{

i

[

1 − z√
z2 − a2

]}

, q2 = −q̄2Re

{

1 − z√
z2 − a2

}

+ q̄2 (62)

The induced thermal stresses are determined from the two complex potentials ϕ(z) and ψ(z)

as follows.

σ11 + σ22 = 4Re [ϕ′(z)] , σ22 − σ11 + 2iσ12 = 2 [z̄ϕ′′(z) + ψ′(z)] (63)
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The expressions of the complex potentials ϕ(z) and ψ(z) are as follows:

ϕ(z) =
ia2(1 + ν)αGq̄2

4κ(1 − ν)
ln

z +
√

z2 − a2

2a
(64)

ψ(z) = −ϕ(z) − ia4(1 + ν)αGq̄2

4κ(1 − ν)

1√
z2 − a2

1

z +
√

z2 − a2
(65)

where G, ν and α are the shear modulus, Poisson’s ratio and coefficient of thermal expansion of

the isotropic material, respectively. The constants κ, G, ν and α can be readily determined from

the established effective conductivity, stiffness and thermal tensors of the considered composite.

Here too, let the homogenized composite be subjected to a remote heat flux q̄2 = -1 W/m2 in

the 2-direction. In figure 3, comparisons between this exact solution and the present one for the

undirectional carbon/epoxy composite whose axis of symmetry is oriented in the out-of-plane

X3-direction with a transverse crack are shown. Very good agreements between the two solutions

for the temperature, heat flux and the induced shear stresses along the crack line can be well

observed.

5. Applications

In the present section, applications are given for the prediction of the temperature, field, heat

flux and induced thermal stresses in a cracked fiber-reinforced polymer matrix composite, porous

ceramic material and periodically layered ceramic composite under remote heat flow. In all

these cases, the actual effects of the microstructure of the composite are accounted to (i.e., not

homogenized). The chosen number of cells which were found to ensure sufficient remoteness from

the crack effects are M1 = M2 = 5

5.1 A cracked fiber-reinforced polymer matrix composite subjected to

a remote heat flux

Consider a carbon/epoxy fiber-reinforced composite in which the carbon fibers are oriented in

the 3-direction and arranged in a hexagonal array. It is assumed that a transverse crack which

connects two adjacent fibers exists, see inset in Fig. 4. The length of the crack is 2a/(2d) =
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0.56. The properties of the carbon T300 fibers and epoxy matrix are given in Table 1, and the

fiber volume ratio is vf = 0.5. The composite is subjected to a remote normal heat flux q̄2 = -1

W/m2.

Figure 4 shows the variation along the crack line of the temperature T, normal heat flux q2

and the induced thermal shear stress σ12. The effect of the composite microstructure is clearly

observed by the variations of the various field variables. These field variations can be compared

with the corresponding one that have been shown in Fig. 3 where the carbon/epoxy composite

was homogenized, as a result of which the microstructure effects were ignored. In the latter

homogenized case, for example, the magnitude of the temperature, concentrated at the crack

surface, was about 1.4 K, whereas in the actual situation that is shown in Fig. 4 it is about 0.9

K.

In Fig. 5(a), 5(b) and 5(c) the full field distribution of the temperature, normal heat flux

and the induced normal thermal stress σ22 are shown in the region −5 ≤ X1/(2d) ≤ 5, −3 ≤
X2/(2h) ≤ 3 are shown. It can be observed from Fig. 5(a) that the temperature varies between ±7

K whereas the full temperature field in the homogenized case (not shown) exhibits a variation

between ±14 K, indicating here too the importance of accounting the microstructure effects.

Figure 5(b) shows the effect of the crack existence on the heat flux with its concentration near

its tip. The full field distribution of the shear stress σ12 is not shown because the most interesting

effects exist near the crack tip which has been already shown in Fig. 4. The distribution of the

normal thermal stress σ22 that is shown in Fig. 5(c) indicates that in the entire vicinity of the

crack line this stress is very small (zero along it), and it exhibits an anti-symmetric behavior

with respect to this line.

5.2 A cracked porous ceramic material subjected to a remote heat flux

In the next application, a cracked porous alumina in which the porosities are distributed such that

they form a hexagonal array is considered, see inset in Fig. 6. The porous alumina is subjected

to a remote normal heat flux q̄2 = -1 W/m2. The properties of the alumina (Al2O3) are given

in Table 1, and the amount of porosity is 0.25. For this uncracked porous material the HFGMC

micromechanical model predicts the following values of the effective thermal conductivities (that

are needed in Eq. (36): κ∗

11 = κ∗

22 = 20.76 W/(mK). It is assumed that a crack which connects
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two adjacent pores exists. It length is 2a/(2d) = 0.7.

The variations along the crack line of the temperature, normal heat flux component q2 and

induced shear stress σ12 are shown in Fig. 6. The effect of the porous material microstructure

is well exhibited, and the values of the temperature along this line are extremely low. The full

distributions of the temperature, normal heat flux and the induced shear normal stresses are

shown in the region in Fig. 7(a), (b), (c) and (d), respectively. Here too, the temperature is

relatively quit low as compared to the resulting temperature in the fiber-reinforced composite.

The thermal shear stress σ12 is antisymmetric with respect to the X2-axis, whereas the normal

thermal stress σ22 is antisymmetric with respect to the crack line (X1-axis). It is obvious that a

homogenization of the thermal and induced stress fields of the porous material will result in the

loss of all these details.

5.3 A cracked periodically layered ceramic composite subjected to a

remote heat flux

As a final application of the proposed approach, consider a periodically layered ceramic composite

that consists of alumina and zirconia layers of equal widths. The properties of these materials are

given in Table 1. A transverse crack whose length 2a/(2d)=0.5 is located in the more compliant

zirconia layer, see inset to Fig. 8. This layered composite is subjected a remote normal heat flux

q̄2 = -1 W/m2. For the uncracked layered composite, the HFGMC model predicts the effective

axial and transverse thermal conductivities: κ∗

11=5 W/(mK), κ∗

22=18.9 W/(mK).

In Fig. 8, the variations along the crack line of the temperature, normal heat flux component

q2 and the induced shear stress σ12 are shown The temperature along the crack surface is quite

small and it is negligibly small along its line in the other layers. The high values of the normal

heat flux and shear stress in the vicinity of the crack tip are well observed (theoretically singular

at the crack tip)

The full shear and normal stress fields that developed in the layered composite are shown in

Fig. 9 in the region −1.5 ≤ X1/(2d) ≤ 1.5, −1.5 ≤ X2/(2h) ≤ 1.5. The magnitude of the normal

stress is seen to be appreciably higher that the shear stress.

18

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 May 2017                   doi:10.20944/preprints201705.0182.v1

Peer-reviewed version available at J. Compos. Sci. 2017, 1, , 4; doi:10.3390/jcs1010004

http://dx.doi.org/10.20944/preprints201705.0182.v1
http://dx.doi.org/10.3390/jcs1010004


6. Conclusions

A multiscale analysis is offered for the determination of the thermal and mechanical fields in

cracked composites that are subjected to heat flow. This analysis has been verified by comparison

with exact solutions for cracked isotopic and anisotropic thermoelastic materials (the solution

of which is far more complicated than the former). Applications are given for three types of

cracked composites, subjected to heat flow. The derived formulation however is general enough

and allows the application of remote combined thermomechanical loading.

As discussed, the present method has certain advantages over a direct numerical approach.

This stems from the fact that the applied boundary conditions (e.g. the applied heat flux) must

be located at a sufficiently remote distance from the localized effects (e.g. a crack). As a result,

the number of the resulting equations when a direct numerical procedure is adopted might be

extremely large. In the present method however, just one discretized cell in the transform domain

need to be considered. Increasing the remoteness of the applied boundary conditions does not

affect the discretized cell analysis.

Applications of the present analysis have been presented for composites that consist of a

single crack. It is however possible to apply it on composites with multiple cracks, see Baoxing

and Xiangzhou (1994) for example. The present formulation have been illustrated for a single

crack which forms a simple example of localized damage. It is however possible to consider

other types of localized damage in composites such as cavities, soft and stiff inclusions, see

Aboudi and Ryvkin (2012). In addition, the modeling of the interaction between two types of

damage in composites that are subjected heat flow (e.g., interaction between a crack and cavity)

is possible. The results in the present article were confined to the application of remote heat

flux, the method can be employed however to obtain the thermomechanical field distributions in

damaged composites that are subjected to combined mechanical and heat flow.
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Table 1. Material properties of carbon, epoxy, alumina and zirconia constituents (columns 1, 2,

4 and 5, respectively). In column 3, the effective properties of carbon/epoxy composite

(vf = 0.5) are presented. Here, EA, ET , νA, νT , GA, αA, αT , κA and κT denote the axial and

transverse Young’s moduli, axial and transverse Poisson’s ratios, axial and transverse

coefficients of thermal expansion, axial and transverse conductivities, respectively.

Property Carbon Epoxy Homogenized carbon/epoxy Alumina Zirconia

T300 vf= 0.5 Al2O3 ZrO2

EA(GPa) 220 3.45 111.9 393 207

ET (GPa) 22 3.45 8.49 393 207

νA 0.3 0.35 0.32 0.27 0.32

νT 0.35 0.35 0.39 0.27 0.32

GA(GPa) 22 1.28 3.16 154.7 78.4

αA(10−6K−1) -1.3 54 -0.42 8.4 11

αT (10−6K−1) 7 54 37.1 8.4 11

κA(W/(mK)) 20.5 0.18 10.35 35 2.7

κT (W/(mK)) 1.46 0.18 0.39 35 2.7
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Figure Captions

Fig. 1: (a) A crack of length 2a embedded in a composite material. (b) A rectangular domain

2D × 2H of the composite is divided into repeating cells. These cells are labeled by

(K1, K2) with −M1 ≤ K1 ≤ M1 and −M2 ≤ K2 ≤ M2, and the size of every one of which

is 2d × 2h (the figure is shown for M1 = M2 = 2). (c) A representative cell in which

local coordinates (X
′

1, X
′

2) are introduced whose origin is located at the center. The cell is

divided into Nα × Nβ subcells.

Fig. 2: Homogenized carbon/epoxy unidirectional transversely isotropic composite with a trans-

verse crack, subjected to a remote normal heat flux of q̄2 =-1 W/m2. The axial direction of

the homogenized composite is oriented in the 1-direction, Comparison between the exact

solution of Tarn and Wang (1993) and the present one for the temperature, normal heat

flux and shear stress along the crack line.

Fig. 3: Homogenized carbon/epoxy unidirectional transversely isotropic composite with a trans-

verse crack, subjected to a remote normal heat flux of q̄2 =-1 W/m2. The axial direction of

the homogenized composite is oriented in the out-of-plane 3-direction, Comparison between

the exact solution of Koizumi et al. (1979) and the present one for the temperature, normal

heat flux and shear stress along the crack line.

Fig. 4: The variations along the crack line of the temperature, normal component of the heat

flux and induced shear stress that develop in the carbon/epoxy fiber-reinforced composite,

subjected to a remote normal heat flux of q̄2 =-1 W/m2.

Fig. 5: Field distributions in the region −5 ≤ X1/(2d) ≤ 5, −3 ≤ X2/(2h) ≤ 3 of the cracked

carbon/epoxy fiber-reinforced composite, (a) Temperature T (K) distribution, (b) normal

component of the heat flux (W/m2), (c) normal stress σ22 (MPa).

Fig. 6: The variations along the crack line of the temperature, normal component of the heat flux

and shear stress that develop in the porous alumina material, subjected to a remote normal

heat flux of q̄2 =-1 W/m2.
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Fig. 7: Field distributions in the region −5 ≤ X1/(2d) ≤ 5, −3 ≤ X2/(2h) ≤ 3 of the cracked

porous alumina material. (a) Temperature T (K) distribution, (b) normal component of

the heat flux q2 (W/m2), (c) shear stress σ12 (MPa), (d) normal stress σ22 (MPa).

Fig. 8: The variations along the crack line of the temperature, normal component of the heat flux

and shear stress that develop in the periodically layered alumina/zirconia, subjected to a

remote normal heat flux of q̄2 =-1 W/m2.

Fig. 9: Field distributions in the region −1.5 ≤ X1/(2d) ≤ 1.5, −1.5 ≤ X2/(2h) ≤ 1.5 of the

cracked layered ceramic composite. (a) shear stress σ12 (MPa), (b) normal stress σ22

(MPa).
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