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Abstract: This paper deals with a generic methodology to evaluate the magnetic parameters
of contactless power transfer systems. Neumann’s integral has been used to create a matrix
method that can model the magnetics of single coils (circle, square, rectangle). The principle of
superposition has been utilised to extend the theory to multi-coil geometries such as double circular,
double rectangle and double rectangle quadrature assuming linearity of magnetics. Numerical and
experimental validation has been performed to validate the analytical models developed. A rigorous
application of the analysis has been carried out to study misalignment and hence the efficacy of
various geometries to misalignment tolerance. Comparison of single-coil and multi-coil shapes
considering coupling variation with misalignment, power transferred and maximum efficiency is
carried out.

Keywords: air-cored; contactless; coupling; inductive power transfer; magnetics; matrix; modelling;
multi-coil

1. Introduction

Inductive Power Transfer (IPT) relies on electromagnetic fields to transfer energy between
circuits that are not physically connected. Loosely coupled coils that are used in IPT systems suffer
from high leakage fields that demand reactive power, constricting large power transfer at high
efficiency. To nullify this effect, capacitive compensation is carried out such that reactive power
exchange take places between the capacitors and inductors with the source directly connected to
the load, improving power factor, power transfer and efficiency.

Inductive Power Transfer systems due to its non-contact nature allows efficient power flow to
happen with reduced maintenance, is safe, clean and reliable. Thus, applications spanning from low
power medical devices (mW) to mining (MW) have been found in literature [3]. Other applications
include consumer electronics, EVs, underwater power delivery etc [4], [5]. A number of resonant
topologies have been proposed and several coil shapes and designs have been researched in this field
[3]. However, an analytical framework that studies the impact of coil shape and misalignment in IPT
systems in a rigorous manner is found missing.

The magnetic design and its optimization is an important step in the design of IPT systems.
Typically, coil optimization and magnetic parameter estimation (L1, L2, M, k) are performed relying
on EM field solvers and/or combing with evolutionary algorithms [6,7]. In other work, numerical
techniques (solving look-up tables (book of Grover [8]), solving Bessel functions [9], solving elliptical
integrals [10] ) and PEEC solvers [11,12] are used to achieve the same. In Grover’s book, there is
available closed-form expressions for self-inductance of a number of polygonal shapes. However, all
the equations are developed for single-turns ignoring the effect of the air-gap between turns resulting
in a reduction in a reduced fill factor.

In this paper, we bridge this gap by taking into account the effect of turns (increase in perimeter
for every new turn) as well as any incipient air-gap by using a matrix manipulation. This extends to
both single and multi coil geometries and their magnetic behaviour is analysed.
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2. Neumann’s Integral

The mutual inductance between two current carrying circuits assuming uniform cross-sectional
current density and neglecting radiation can be written in terms of the differential length vector of
the two circuits ~dl1, ~dl2 separated by a distance r12 as

L12 =
λ2

i1
=

µ0

4π

∮
c1

∮
c2

~dl1. ~dl2
r12

(1)

In equation 1, contours c1 and c2 are along the middle edge of the circuits 1 and 2 (primary and
secondary) respectively. This equation is generic, order independent and can be adapted to model
self-inductance by considering the contours c1 and c2 as along the middle edge of the conductor and
the inner edge of the wire.

2.1. Circular Coils

In case of a pair of circular coils, the application of Neumann’s integral as in (1), the two contours
c1 and c2 represent the contour of current filaments assumed to be in the middle of primary and
secondary. Now, consider the case of a misaligned circular coil pair, composed of wires of circular
cross-section of radius r and with an air-gap lg between turns. Such a coil pair is indicated in Figure
1. The inner radius of the ith turn of the primary and jth turn of secondary are Ri = Rp + (i− 1)(2r +

Rn

Rk

(0,0)

(x0,y0)

Rn

Rk

(0,0)

(x0,y0)

Figure 1. A coupled circular coil system with primary having i = 1, 2..., n turns and the secondary
having j = 1, 2..., k turns, the radii of the mid current contour of the nth primary turn and kth secondary
turn are Rn and Rk.

lg), Rj = Rs + (j− 1)(2r + lg) respectively. In such a case, the partial mutual inductance is written in
terms of azimuths, φi and φj of the respective coils as

Mij =
µ0

4π
×
[∫ 2π

φi=0

∫ 2π

φj=0
Idφidφj

]
(2)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 May 2017                   doi:10.20944/preprints201705.0191.v1

Peer-reviewed version available at Energies 2017, 10, , 774; doi:10.3390/en10060774

http://dx.doi.org/10.20944/preprints201705.0191.v1
http://dx.doi.org/10.3390/en10060774


3 of 17

Where I, Ri, Rj are defined as

I =
RiRj sin φi sin φj + RiRj cos φi cos φj√(

Ri cos φi − (x0 + Rj cos φj)
)2

+
(

Ri sin φi − (y0 + Rj sin φj)
)2

(3)

The final mutual inductance can be defined for primary having ′n′ turns and secondary with ′k′

turns as

M =
n

∑
i=1

k

∑
j=1

Mij (4)

The self-inductances can be extracted similarly from (4) by defining the radius of the middle
edge and the inner edge of each turn.

2.2. Rectangular Coils

A single turn rectangular coil is shown in Figure 2. A rectangular structure can be split into four
sections (l1′ , l2′ , ..l4′ ), each of which refer to conductors in the top, bottom, left and right respectively
In such a case, (1) can be written in terms of the various sections of the coil as

Pα P 

Pδ Pγ 

,
2 2

a b 
 

 

 0,0

a

b

,
2 2

a b 
 
 

,
2 2

a b 
 

 
,

2 2

a b 
  

 

,
2 2

a b
r r

 
   

 
,

2 2

a b
r r

 
  

 

,
2 2

a b
r r

 
   

 
,

2 2

a b
r r

 
    

 

Pα' P '

Pγ'Pδ' 

dl1' 

dl2' 

dl3' 

dl4' 

dl 

Figure 2. Definition of the contour of the elementary inner edge of a single turn rectangular coil dl and
the various sections of the contour of the elementary line along the centre of the wire (dl1′ , dl2′ , ..dl4′ ).
For further evaluation, the contour of dl can be split at the top, right, bottom and left sections as
(dl1, dl2, ..dl4).

L =
µ0

4π
×
[∮

l
1′

∮
l1

d
−→
l1′ .d
−→
l1

r1′1
+
∮

l
2′

∮
l1

d
−→
l2′ .d
−→
l1

r2′1
+
∮

l
3′

∮
l1

d
−→
l3′ .d
−→
l1

r3′1
+
∮

l
4′

∮
l1

d
−→
l4′ .d
−→
l1

r4′1

]
(5)

This can be written as a matrix in the form where the rows represent the section of the conductor
that carriers the current (section of the contour of the centre) and columns represent the section on
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which the inductance contribution is considered. Each element of the matrix is a partial inductance
(self partial inductance (i = j) and mutual partial inductance (i 6= j)).

Lij =
µ0

4π
×



∮
l
1′

∮
l1

d
−→
l
1′

.d
−→
l1

r
1′ 1

∮
l
1′

∮
l2

d
−→
l
1′

.d
−→
l2

r
1′ 2

· · ·
∮

l
1′

∮
l4

d
−→
l
1′

.d
−→
l4

r
1′ 4

∮
l
2′

∮
l1

d
−→
l
2′

.d
−→
l1

r
2′ 1

∮
l
2′

∮
l2

d
−→
l
2′

.d
−→
l2

r
2′ 2

· · ·
∮

l
2′

∮
l4

d
−→
l
2′

.d
−→
l4

r
2′ 4

∮
l
3′

∮
l1

d
−→
l
3′

.d
−→
l1

r
3′ 1

∮
l
3′

∮
l2

d
−→
l
3′

.d
−→
l2

r
3′ 2

· · ·
∮

l
3′

∮
l4

d
−→
l
3′

.d
−→
l4

r
3′ 4

∮
l
4′

∮
l1

d
−→
l
4′

.d
−→
l1

r
4′ 1

∮
l
4′

∮
l2

d
−→
l
4′

.d
−→
l2

r
4′ 2

· · ·
∮

l
4′

∮
l4

d
−→
l
4′

.d
−→
l4

r
4′ 4


(6)

Self-inductance of this rectangular coil can be written as

L =
4

∑
i=1

4

∑
j=1

Lij (7)

Since the orthogonal terms in the vector dot product reduces to a zero. For eg: ( ~dl1′ .
~dl2 =

dx1 î.dyĵ = 0).

L =


L11 0 L13 0
0 L22 0 L24

L31 0 L33 0
0 L42 0 L44

 (8)

Thus, the total external self-inductance can be written in terms of La = L11 = L33, Lb = L22 =

L44, Ma = L13 = L31, Mb = L24 = L42 as

L = 2(La + Lb −Ma −Mb) (9)

Where, the self-partial inductances (La, Lb = L(a=b)) are given by

La =
µ0

4π
×
[∫ a

2−r

− a
2+r

dx1

∫ a
2

− a
2

dx2√
(x2 − x1)2 + r2

]

La = (a− r) ln

∣∣∣∣∣ a− r +
√

r2 + (a− r)2

−a + r +
√

r2 + (−a + r)2

∣∣∣∣∣+ r ln

∣∣∣∣∣−r +
√

2r
r +
√

2r

∣∣∣∣∣
+2
√

2r−
√
(r2 + (a− r)2)−

√
(r2 + (−a + r)2)

(10)

Also, the mutual partial inductances (Ma, Mb = M(a↔b)) are given as

Ma =
µ0

4π
×
[∫ a

2−r

− a
2+r

dx3

∫ a
2

− a
2

dx2√
(x2 − x3)2 + (b− r)2

]
(11)

3. Multi-Turn Charge Pads

A multi-turn coil is shown in Figure 3. Consider the per-turn inductance written as Lijlk which
represents the partial inductance contribution due to current flowing through ith turn, jth section on
the lth turn, kth section. In such a case, it is important to derive the expressions of the mutual partial
inductances considering that the dimensions of the coil change with corresponding change in number
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of turns. It is useful to list the vertices of the extremes of the contour along the center of the wire as
well as along the inner edge of the wire for the Nth winding.

2r

lg

(0,0) b

a

Pα P  

Pδ  Pγ 

2r

lg

(0,0) b

a

Pα P  

Pδ  Pγ 

Top section (1)

Left section (4) Right section (2)

Bottom section (3)

1,2,3..Nturns

Figure 3. A multi turn inductor with dimensions defined from the centre of a wire of
circular section with radius r and wound in a manner such that air gap is uniform (lg)

and the center contour of the wire has vertices Pα = (−a/2, b/2), Pβ = (a/2, b/2),
Pγ = (a/2,−b/2), Pδ = (−a/2,−b/2). The Nth turn ‘α′ vertex has its middle edge

and inner edge with vertices PNα =
[
− a

2 − (N − 1)(2r + lg), b
2 + (N − 1)(2r + lg)

]
and PNαi =[(

− a
2 + r

)
− (N − 1)(2r + lg),

(
b
2 − r

)
+ (N − 1)(2r + lg)

]
.

The partial self-inductance of the Nth turn (due to the 1st section) can be derived as

LN1N1 =
µ0

4π
×
[∫ k2

k1

dx1

∫ β

α

dx2√
(x2 − x1)2 + r2

]
(12)

Where,

k1 =
(
− a

2
+ r
)
− (N − 1)(2r + lg), k2 =

( a
2
− r
)
+ (N − 1)(2r + lg)

α = − a
2
− (N − 1)(2r + lg), β =

a
2
+ (N − 1)(2r + lg)

(13)

The result of such an integration is

µ0

4π
× [I(C = β)− I(C = α)] (14)

Where,

I(C) =
√

r2 + (C− k2)
2 −

√
r2 + (C− k1)

2 + ln

∣∣∣∣∣∣∣∣∣
(√

r2 + (C− k1)
2 + (C− k1)

)(C−k1)

(√
r2 + (C− k2)

2 + (C− k2)

)(C−k2)

∣∣∣∣∣∣∣∣∣ (15)

The self-inductance matrix can be written as
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Lijlk =
µ0

4π
×



N

∑
i=1

N

∑
l=1

Li1l1 0 −
N

∑
i=1

N

∑
l=1

Li1l3 0

0
N

∑
i=1

N

∑
l=1

Li2l2 0 −
N

∑
i=1

N

∑
l=1

Li2l4

−
N

∑
i=1

N

∑
l=1

Li3l1 0
N

∑
i=1

N

∑
l=1

Li3l3 0

0 −
N

∑
i=1

N

∑
l=1

Li4l2 0
N

∑
i=1

N

∑
l=1

Li4l4


(16)

The diagonal terms in the above matrix are the sectional partial self-inductance and the
off-diagonal terms are the sectional partial mutual inductance. Note that the signs of sectional
self-inductance are positive and sectional partial mutual inductance are negative for rectangular
structures. The summation terms can be evaluated by calculating some general matrices like
LN1k1, LN1k3. The inductance contributions of LN2k2, LN2k4 can be obtained by inverting a ↔ b in
the previous set of general expressions. The net self-inductance can then be written as

L =
N

∑
i=1

4

∑
j=1

N

∑
l=1

4

∑
k=1

Lijlk (17)

3.1. Sectional Partial Inductances

The sectional partial self-inductance is defined as the sum of the partial self and partial mutual
inductance contributions of current in a particular section on the same section on all possible turns.
The sectional partial mutual self-inductance is defined as the sum of the partial mutual inductance
contributions of current in a particular section on a different section for all combinations of possible
turns. Following the previous procedures, the partial self-inductance due to current in the Nth turn
first section on the kth turn first section is given by

LN1k1 =
µ0

4π
×

∫ k2

k1

dx1

∫ β

α

dx2√
(x2 − x1)2 +

(
r + (N − k)(2r + lg)

)2


Symbols:

k1 =
(
− a

2
+ r
)
− (k− 1)(2r + lg), k2 =

( a
2
− r
)
+ (k− 1)(2r + lg)

α = − a
2
− (N − 1)(2r + lg), β =

a
2
+ (N − 1)(2r + lg)

(18)

The result of this integration is the same as (14) with I(C) defined as

I(C) =
√
(r + (N − k)(2r + lg))

2 + (C− k2)
2

−
√
(r + (N − k)(2r + lg))

2 + (C− k1)
2

+ ln

∣∣∣∣∣∣∣∣∣
(√

(r + (N − k)(2r + lg))
2 + (C− k1)

2 + (C− k1)

)(C−k1)

(√
(r + (N − k)(2r + lg))

2 + (C− k2)
2 + (C− k2)

)(C−k2)

∣∣∣∣∣∣∣∣∣
(19)

Similarly, the partial mutual self-inductance can be written as
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LN1k3 =
µ0

4π
×

∫ k2

k1

dx1

∫ β

α

dx2√
(x2 − x1)2 +

(
(b− r) + (2r + lg)(N + k− 2)

)2


Symbols:

k1 =
(
− a

2
+ r
)
− (k− 1)(2r + lg), k2 =

( a
2
− r
)
+ (k− 1)(2r + lg)

α = − a
2
− (N − 1)(2r + lg), β =

a
2
+ (N − 1)(2r + lg)

(20)

Again, the result of this integration is the same as (14) with I(C) defined as

I(C) =
√
((N + k− 2)(2r + lg) + (b− r))2 + (C− k2)

2

−
√
((N + k− 2)(2r + lg) + (b− r))2 + (C− k1)

2

+ ln

∣∣∣∣∣∣∣∣∣
(√

((N + k− 2)(2r + lg) + (b− r))2 + (C− k1)
2 + (C− k1)

)(C−k1)

(√
((N + k− 2)(2r + lg) + (b− r))2 + (C− k2)

2 + (C− k2)

)(C−k2)

∣∣∣∣∣∣∣∣∣
(21)

4. Mutual Inductance between rectangular coils
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Figure 4. Mutual inductance between a general single turn primary and a single turn secondary.
The length and breadth of the primary are (a, b) while that of the secondary are (c, d). The vertical
displacement between the primary and secondary is h.
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A simple description of the mutual inductance scenario of a single turn primary and a single turn
secondary is depicted in Figure 4. As an extension of the theory previously developed, the mutual
inductance for a multi-turn rectangular coil can be written in terms of the contributions due to current
flowing through ith turn, jth section of the primary on the lth turn, kth section on the secondary. The
sectional mutual inductance matrix can be written as

Mijlk =
µ0

4π
×



N

∑
i=1

N

∑
l=1

Mi1l1 0 −
N

∑
i=1

N

∑
l=1

Mi1l3 0

0
N

∑
i=1

N

∑
l=1

Mi2l2 0 −
N

∑
i=1

N

∑
l=1

Mi2l4

−
N

∑
i=1

N

∑
l=1

Mi3l1 0
N

∑
i=1

N

∑
l=1

Mi3l3 0

0 −
N

∑
i=1

N

∑
l=1

Mi4l2 0
N

∑
i=1

N

∑
l=1

Mi4l4


(22)

5. Extension to MCCP

Consider a linear magnetic system excited by a pure sinusoidal (non-harmonic) voltage
consisting of a primary and pickup composed of several segmented coils as shown in Figure 5. The
coils can be individually connected serially or in parallel to compose the multi-coil charge-pad. Let the
primary be composed of ′n′ coils, (1, 2, ..n) and pickup with ′m− n′ coils, (n + 1, n + 2, ..m, (m > n)).
Consequently, the voltage matrix,

[
V
]

for all the coils can be written as a in terms of currents,
[
i
]

and

time-derivative of currents,
[

di
dt

]
[
V
]
=
[

L
]
×
[

di
dt

]
+
[

R
]
×
[
i
]

(23)

Where the matrices are defined as

[V] =



v1

v2
...

vn

vn+1

vn+2
...

vm



[
di
dt

]
=
[
i′
]
=



i′1
i′2
...

i′n
i′n+1
i′n+2

...
i′m


[i] =



i1
i2
...

in

in+1

in+2
...

im


[R] =


R1 0 0 0 0 0 0 0
0 R2 0 0 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 R8

 (24)
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Figure 5. Defining a IPT system with primary and secondary composed of multiple coils with
self-inductances as (Lij, i = j) and mutual inductances as (Lij, i 6= j).

Finally, [L] is defined as

[L] =



L11 L12 . . . L1n L1(n+1) L1(n+2) . . . L1(m)

L21 L22 . . . L2n L2(n+1) L2(n+2) . . . L2(m)
...

...
...

...
...

...
...

...
Ln1 Ln2 . . . Lnn Ln(n+1) Ln(n+2) . . . Ln(m)

L(n+1)1 L(n+1)2 . . . L(n+1)n 0 0 0 0
L(n+2)1 L(n+2)2 . . . L(n+2)n 0 0 0 0

...
...

...
... 0 0 0 0

Lm1 Lm2 . . . Lmn 0 0 0 0


(25)

The series and parallel combination can now be decomposed from this multi-coil combination.
In case of a series connected set of coils, ip = i1 = i2 · · · = in and is = in+1 = in+2 · · · = im.
Also, in case of the parallel set of coils, ip = i1 + i2 · · · + in and is = in+1 + in+2 · · · + im. After
such a transformation, it becomes easy to reduce such a system of parallel or series coils into a single
coil-pair. In such a system, for both series and parallel system of coils, it can be easy to prove that
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
n

∑
i=1

vi

m

∑
j=n+1

vj

 =


n

∑
i=1

n

∑
j=1

Lij

n

∑
i=1

m

∑
j=n+1

Lij

m

∑
j=n+1

n

∑
i=1

Lij

m

∑
j=n+1

m

∑
i=n+1

Lij

×
[

ip
′

is ′

]
+


n

∑
i=1

Ri 0

0
m

∑
j=n+1

Rj

×
[

ip

is

]
(26)

The Equation (26) indicates that it is possible to convert a linear magnetic system with multi-coil
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Figure 6. Equivalent single coil pair for a system of coils with (1, 2..n) coils in the primary and (n +

1, n + 2..m) coils in the pickup.

into a system of a single coil pair by calculating the individual contributions. Such a equivalent coil
system is shown in Figure 6. Such a transposition makes it easy to analytically model multi-coil linear
magnetic systems by using the principles of single coils already developed previously.

6. Validation of Analytical Model

To validate the analytical models that are developed in previous sections, FEM simulation
and experimentation are carried out. Circular and rectangular shapes are compared. The physical
properties of the coils are tabulated in Table 1. To show the efficacy of analytical expressions, a
reduced fill factor was employed for rectangular coils by maintaining an air-gap of 0.6 cm between
the turns.

Table 1. Properties of the compared circular and rectangular coils

Type of coil a (cm) b (cm) lg (cm) N (turns)
Rectangular (R1) 4 2 0.6 9
Rectangular (R2) 6 4 0.6 15

Circular (C) inner diameter = 5.5 cm 14
litz wire used 600× 0.071 mm, 2.1 mm dia overall

The constructed coils are shown in Figure 7. The measurements, analysis and simulations are
carried out at variable z-gaps between the coils and also at several misaligned positions. The z-gaps
are simulated at 3, 5, 7 and 9 cms of coil displacements in the z-direction, taking vertical misalignment
in consideration. In case of lateral misalignment, perfect alignment, 75%, 50% and 25% alignments
are chosen along x-axis. The results along y-axis for symmetrical shapes follows the same trend as
the x-axis and hence are not considered.

Measurements are made by using Agilent 4294A impedance analyser. The mutual inductances
are extracted from self-inductances by carrying out a constructive and destructive flux measurement
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Figure 7. Experimental comparison of rectangular and circular coils with parameters as tabulated in
Table 1.

by connecting the coils serially from one end to the other and then swapping one of the ends (Lconst,
Ldes). The expressions used for extracting the mutual inductance and coupling are

M =
Lconst − Ldes

4

k =
M√
L1L2

(27)

The analytical expressions for circular coils are calculated from Equations (1) − (4). Also, for
rectangular coils, Equations (12) − (22) are computed. MATLAB scripts are written separately for
each of the computation and a software tool for self, mutual and coupling computations is developed
for air-cored coils. A comparison of coupling obtained analytically and by making measurements for
circular coils is presented in Figure 8.
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Figure 8. The analytical and experimental comparison of coupling coefficient of circular coils with
Z-gaps of 3, 5,7 and 9 cms with coils of parameters as tabulated in Table 1.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 May 2017                   doi:10.20944/preprints201705.0191.v1

Peer-reviewed version available at Energies 2017, 10, , 774; doi:10.3390/en10060774

http://dx.doi.org/10.20944/preprints201705.0191.v1
http://dx.doi.org/10.3390/en10060774


12 of 17

The results show a large degree of agreement between the analytical expressions and the
measured results. Mismatch in the results are due to the use of litz wire in the experiments (unlike
a solid conductor used in the analysis) and eddy currents (proximity effects) in the coils that are
not considered in the analytical expressions. Some instrumental accuracy limitations also add to this
error. However, most observations are within 1% accuracy except for an odd set in the neighbourhood
of 6%. These accuracy measures are acceptable for magnetic analysis.

FEM models were created and simulated so as to perform numerical evaluation of the coils
considered. The FEM models developed are presented in Figure 9.

 

 

Figure 9. FEM simulation models of the rectangular coil (top-left), circular coil (top-right) and the
rectangular coil (bottom) couple. The rectangular coils are modelled in a 3d domain while the circular
coils due to their rotational symmetry are modelled in the 2d domain.

The coupling and self-inductances of circular and rectangular coils are compared analytically,
using FEM simulations and experimentation. The results are presented in Figure 10, the coupling
being recorded at perfect alignment and variable z-gaps while self-inductances measured for all
variable shapes. All measurements show the same trend and there is a close match between analytical
observations, FEM simulations and measurements.
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Figure 10. Coupling coefficient and self-inductances of air-cored charge pads of various shapes. The
coupling is measured at various z-gaps at the best aligned point. The parameters of the coils are as
presented in Table 1.
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7. Shape and Performance of Air Couplers

The effect of shapes in IPT systems can be analysed for air-cored couplers based on the
mathematical analysis that has been derived previously. To make such a comparison, a few
performance parameters are considered. They are the open circuit voltage voc, short circuit current isc,
maximum output power, smax and maximum efficiency, ηmax. Open circuit voltage is the maximum
voltage that the IPT system can source and short circuit current is the maximum current that the same
can deliver.

For a coupled charge-pad, if L1 and L2 are the self-inductances of the two couplers with ‘M′ as
the mutual inductance and operated at angular frequency ω, creating current i1 through the primary,
the open-circuit voltage is defined as voc = jωMi1 and during short-circuit if isc is the current flowing

in the pickup, isc =
voc

jωL2
=

Mi1
L2

. Now, the maximum output power is defined in terms of loaded

quality factor of pickup, Q2L = (ω × L2)/(RL + R2), where RL is the load resistance and R2 is the
ac-resistance of the pickup charge-pad as

smax = voc × isc =
(i21 M2Q(2,L)ω)

L2
(28)

The above equation quantifies the maximum output power that such an air-cored coupler
can source. Also, the maximum efficiency of IPT systems have been derived independent of
compensation applied and load present in terms of native quality factors of the primary (Q1) and
pickup (Q2) as [13]

ηmax =
k
√

Q1Q2

2 + k
√

Q1Q2
(29)

These parameters have been used to compare a number of differently shaped air-cored
charge-pads. All shapes considered have been analysed keeping area conserved. This way,
generalizations of the behaviour of fields and hence coupling, power transferred and other
parameters are possible. Several analysis were also carried out keeping perimeter conserved and
multi-turns with similar results. In addition, these results also correspond and can be generalized to
charge-pads with flux-enhancing materials such as ferrite. This as enhanced coupling is obtained by
placing ferrites along the natural direction of flux lines. Hence, the basic tendency of the shape in
terms of coupling and its gradient is similar in all IPT applications. The compared shapes are listed
in Table 2. All considered shapes have been simulated with a one turn coil and a z-gap of 1 cm. This
so that the effect of shapes are more enhanced.

Table 2. Physical parameters of various coil shapes used in the air-cored coupler.

Considered Shape Parameters

Rectangle dim.(mm) 650× 400
Square dim.(mm) 509.9× 509.9
Circle rad.(mm) 287.6

Double Circle (DC) dim.(mm) 203.4
Double Rectangle (DR) symmetric dim.(mm) 459.6× 282.8

Double Rectangle + Quadrature symmetric dim.(mm) (DR+Q) 375.3× 230.9
Area (m2) 0.2600

The multi-coil shapes are composed of multiple symmetric coils that are placed close to each
other with the coils carrying currents in opposite direction. The mutual inductance and coupling of
these charge-pads are obtained by analysing (26) and using the mathematical analysis of single coils.
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A study of coupling by misaligning the coils along x-direction (lateral displacement) is presented in
Figure 11.
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Figure 11. Coupling coefficients of single and multi-coil shapes with x-directional misalignment of
coils in Table 2.

It can be inferred that circle and four sided shapes differ in the tolerance to coupling variations
when subjected to lateral misalignment. The coupling of rectangular and square coils tend to decay
gradually, while the circular shape sees a more sharper drop with misalignment. Circular shape due
to the fact that it has the highest area for a given perimeter among closed shapes, has the highest
coupling at the best aligned point. The double coils also share the same feature but with a larger
extension of the power profile. It is important to note that in this analysis, since area is kept conserved,
the perimeter varies between the shapes and hence it is important to keep trends in mind, rather
than absolute values. Null-coupling points in DR and DC coils, occur at positions where a pick-up
coil is confronted with opposing flux of equal magnitude from the primary charge-pad. Among the
double coils, the DC geometry has greater best-aligned coupling than that of DR geometry. However,
the misalignment profile for DR coils is broader than that of DC coils and hence it is well suited to
applications where larger misalignment behaviour is expected, for eg: EVs. When such an analysis
was broadened to include the behaviour of a DR primary and a DRQ pick-up, the Q picking up
flux emanating from a DR primary behaves best at the misaligned points, while is the worst at the
best-aligned point. On the contrary, the DR pick-up behaves complementary to the Q pick-up with a
DR primary.

Power transferred to the pick-up is evaluated from Equation (28). The uncompensated power
calculated when subjected to lateral misalignment is shown in Figure 12. Among single coils, the
circular coil has a sharp misalignment band while the four sided shapes have greater tolerance.
The double shapes follow the features of their single equivalents, with the difference that there is
a misalignment point when a single coil among both the primary and pick-up receives power. This
creates two more zones of power transfer apart from the best aligned point. In these points, the
power is reduced to < 25% as the pick-up voltage is reduced to half, which in turn halves the pick-up
current. However, these double shapes suffer from a no-power zone created at the null coupling
points. These null power points can be eliminated by using a quadrature coil, the coupling of which is
complementary to the main coils and hence an addition of power from the quadrature coils removes
these null zones. It is important to note that in an actual implementation, the magnitudes of these
curves will depend on the number of turns of each coil, materials present, the source characteristic -
voltage/current, resonant behaviour etc.
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Figure 12. Uncompensated power analysed on the basis of a unit current flowing through various
shapes of single turn and equal area as indicated in Table 2. The misalignment is considered along
x-direction.

The maximum efficiency as presented in Equation (29) has dependence on quality factor which
in-turn depend on the ac resistances of the coils. The ac-resistances for the litz wire used is extracted
from a tabulation technique as presented in [14]. The calculated ac resistance factor including both

skin and proximity effects for litz wire indicated in Table 1 is
Rac

Rdc
= 1.029. The result of maximum

efficiency computation when subjected to variable coupling during misalignment is shown in Figure
13. This plot represents the theoretical maximum efficiency that can be expected at various misaligned
points for various shapes. The efficiency values floor at the power null points as expected.
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Figure 13. Maximum efficiency profile tracking with x-directional misalignment of coils in Table 2.

8. Discussion

In this paper, a generic analytical tool that is useful to model the magnetics of single and multi
coil geometries is developed. The analytical equations developed can be extended to polygonal
shapes and can be used to model n-multi coil geometries as well. This is a first step in magnetic
design, wherein the fundamental magnetics can be evaluated. A detailed numerical optimization
based on the inputs from this study so as to optimize ferrite, aluminium and other materials that may
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be present in charge-pads is the next step. Such a FEM optimisation for a 1kW DR system is presented
in [15]. Some useful results obtained from the analysis are:

1. The analysis, compared with FEM and experiments have a good match. Almost all observations
have an error less than 10%. This is acceptable for magnetic analysis.

2. The coupling of single coils are such that circular coils have the best coupling at the well-aligned
point and the four shaped coils have a larger misalignment tolerant band. Thus, rectangular
coils can be used for more misalignment tolerant designs and circular for well-aligned
applications.

3. The coupling behaviour of multi-coil geometries follow the trend of single-coil shapes but have
null-coupling points. By designing a Q coil located between the mid points of the single-coils,
flux can be captured at the null-coupling points.

4. The Q and DR pickup have complementary coupling-misalignment behaviour. At the best
aligned point, the Q picks up no flux and at the misalignment point of null-coupling of DD
pickup, the Q picks up maximum flux.

5. The DR and DC shapes can effectively extend the range of power transfer to larger misaligned
positions. The addition of Q to the pickup can remove null-coupling points from the power
profile.

6. Rectangular coils also perform well with the same enclosed area as multi-coil geometries, with
a lesser zone of power transfer.

7. The total enclosed area of the shapes has been kept constant to make a fair comparison.
However, it is possible to influence the turns in the Q coils in DRQ and this impacts the
peaks obtained in the misalignment points. For designing IPT systems that are adapted to
misalignment as in EVs during motion, dynamic power transfer, a DR charge pad on the
roadway would be a good solution optimizing the excess material costs involved in building
DRQ pads. Also, EVs travelling along the regions of power null for a long time is limited.
However, for stationary charging, misalignment tolerant DRQ charge pad for both primary and
secondary is a good choice for good power transfer. Also, interoperability is possible between
these pads thus making it possible to have the same vehicle pads for both modes of operation.
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