Preprint
Article

Non-Linear Stability Analysis of Real Signals from Nuclear Power Plants (Boiling Water Reactors) based on Noise Assisted Empirical Mode Decomposition Variants and the Shannon Entropy

Altmetrics

Downloads

1011

Views

726

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

26 May 2017

Posted:

29 May 2017

You are already at the latest version

Alerts
Abstract
There are currently around 78 Nuclear Power Plants (NPP) in the world based on Boiling Water Reactors (BWR). The current parameter to assess BWR instability issues is the linear Decay Ratio (DR). However, it is well known that BWRs are complex non-linear dynamical systems that may even exhibit chaotic dynamics that normally preclude the use of the DR when the BWR is working at a specific operating point during instability. In this work a novel methodology based on an adaptive Shannon Entropy estimator and on Noise Assisted Empirical Mode Decomposition variants is presented. This methodology was developed for real-time implementation of a stability monitor. This methodology was applied to a set of signals stemming from several NPPs reactors (Ringhals-Sweden, Forsmark-Sweden and Laguna Verde-Mexico) under commercial operating conditions, that experienced instabilities events, each one of a different nature
Keywords: 
Subject: Computer Science and Mathematics  -   Applied Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated