Preprint
Article

Investigating Suspended-Sediment Transport in a Shallow Lake Using a Three-Dimensional Model

Altmetrics

Downloads

881

Views

746

Comments

0

This version is not peer-reviewed

Submitted:

29 May 2017

Posted:

29 May 2017

You are already at the latest version

Alerts
Abstract
A three-dimensional, unstructured grid, hydrodynamic and suspended-sediment transport model (i.e., SELFE-SED) was developed to simulate temporal and spatial variations of suspended sediment and was applied to the subtropical subalpine Tsuei-Feng Lake (TFL) of Taiwan. The model was validated with measured water level and suspended‑sediment concentration in 2009, 2010, and 2011. The overall model simulation results are in quantitative agreement with the observational data. The validated model was then applied to explore the most important parameter that affects the suspended-sediment concentration and to investigate the effect of wind stress on the mean current and suspended‑sediment distribution in this shallow lake. Modeling results of sensitivity analysis reveal that the settling velocity is a crucial parameter and erosion rate is less important in the suspended-sediment transport model. Remarkable lake circulation was found based on the strength of wind speed and wind direction. Strong wind would result in higher mean current in the top layer and suspended-sediment distribution in the top and bottom layers. This study demonstrated that the wind stress played a significant influence on mean circulation and suspended-sediment transport in a shallow lake.
Keywords: 
Subject: Environmental and Earth Sciences  -   Environmental Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated