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Abstract 30 

Inflammatory bowel diseases (IBD) represent a growing public health concern due to 31 

increasing incidence worldwide. The current notion on the pathogenesis of IBD is that 32 

genetically susceptible individuals develop intolerance to dysregulated gut microflora 33 

(dysbiosis) and chronic inflammation develops as a result of environmental triggers. Among 34 

the environmental factors associated to IBD, diet plays an important role in modulating the 35 

gut microbiome, influencing epigenetic changes and, therefore, could be applied as a 36 

therapeutic tool to improve the disease course. Nevertheless, the current dietary 37 

recommendations for disease prevention and management are scarce and of weak evidence. 38 

This review summarizes the current knowledge on the complex interactions among diet, 39 

microbiome and epigenetics in IBD. Whereas over-abundance of calories and some 40 

macronutrients increases gut inflammation, several micronutrients have the potential to 41 

modulate it. Immunonutrition has emerged as a new concept putting forward the importance 42 

of vitamins such as vitamins A, C, E, D, folic acid and beta-carotene and trace elements such 43 

as zinc, selenium, manganese and iron. However, when assessed in clinical trials, specific 44 

micronutrients exerted a limited benefit. Beyond nutrients, anti-inflammatory dietary patterns 45 

as a complex intervention approach have become popular over the recent years. Hence, 46 

exclusive enteral nutrition in pediatric Crohn’s disease is the only nutritional intervention 47 

currently recommended as a first-line therapy. Other nutritional interventions or specific diets 48 

including the Specific Carbohydrate Diet, the low fermentable oligosaccharides, 49 

disaccharides, monosaccharides, and polyol diet and most recently the Mediterranean diet 50 

have shown strong anti-inflammatory properties and provide a promise for improving disease 51 

symptoms. Definitely, more work is required to evaluate the role of individual food 52 

compounds and complex nutritional interventions with potential to decrease inflammation as 53 

means for prevention and management of IBD.  54 
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Introduction 60 

The inflammatory bowel diseases (IBD) - Crohn’s disease (CD) and ulcerative colitis (UC) -61 

are two diseases characterized by chronic relapsing inflammation of the gastrointestinal tract 62 

that represent an increasing public health concern while an etiological enigma due to 63 

unknown causal factors. Despite suggested differences in pathology, both diseases are 64 

believed to share common etiology. The strongest IBD risk factor identified to date is the 65 

family history of IBD [1]. The current notion on the pathogenesis of IBD is that genetically 66 

susceptible individuals develop intolerance to dysregulated gut microflora (dysbiosis) and 67 

chronic inflammation develops as a result of environmental triggers [2]. Current research in 68 

the field of IBD largely focused on establishing the role of causal variants on gene expression 69 

and various pathological pathways have been already uncovered [3]. However, still the 70 

genetic risk loci identified to date only explain a small part of genetic variance in disease risk 71 

and more factors need to be taken into account to understand the IBD multifactorial pathology 72 

[4]. Impaired immune response that occurs in genetically susceptible individuals as the result 73 

of a complex interaction among disturbed immune responses, impaired intestinal barrier 74 

function and dysfunctional microbe-host interactions has been therefore suggested as major 75 

unifying etiological background [5]. While the identification of IBD environmental risk 76 

factors remains a subject of intensive research, diet remains one of the most putative 77 

candidates. Diet participates in the regulation of intestinal inflammation, either directly or 78 

indirectly by modifying the gut microbiota [6,7] A greater understanding of the contribution 79 

of dietary factors to dysbiosis is therefore critical having the pivotal role of a healthy 80 

microbiome in preventing the development of IBD and its complications [8]. Most recently, 81 

the fast evolving field of epigenetics offers new explanations on the mechanisms by which 82 

environmental changes induce pathological gene expression and determine cell phenotype and 83 

function in IBD [9]. The pathogenic mechanisms for IBD could be largely imposed by gene-84 
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environmental interactions switching on a cascade of induced effects on the microbiota, the 85 

immune system and the mucosal barrier (Figure 1). Here, we review the recent developments 86 

in understanding the role of gut microbiome, epigenetics and dietary factors in IBD that 87 

outline directions for disease management and prevention. 88 

 89 

Epidemiology of IBD and environmental exposures 90 

IBDs occur worldwide with differences in epidemiology, exposures to risk factors and 91 

phenotype between regions. The prevalence of IBD is higher in industrialized (Western 92 

Europe, United States of America, Canada, Australia and New Zealand) than in developing 93 

countries (Asia, Middle East, South America and Africa) [10]. The incidence of IBD steadily 94 

increased in industrialized countries during the 20th century and, although some studies 95 
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suggested that a plateau was reached in some regions during the 21st century [10], recent 96 

reports point that it could be still increasing in these countries [11-13]. In developing 97 

countries, traditionally considered low incidence areas, an increasing incidence is being 98 

described since the beginning of the 21st century [8-10,14]. These observed increases in the 99 

incidence rates could be partly accounted for by pragmatic reasons such as the media 100 

coverage and increased health awareness in both developed and developing countries, 101 

improved access to medical technology and health care providers, and the development of 102 

sophisticated disease surveillance systems [15,16]. However, the parallel of higher incidence 103 

rates with the Westernization of affected societies points to the potential important role of the 104 

environment [15,16]. In that regard, environmental factors (also known as “exposome”) have 105 

been thoroughly studied and many of the factors related to Westernization have been 106 

associated to the risk of developing IBD . The list of putative factors includes environmental 107 

pollution, medication, stress level, infections, and lifestyle. Certain differences in 108 

environmental risk for CD and UC have been reported, such as that cigarette smoking was 109 

shown to increase the risk of developing CD, whilst smoking is less common in those who 110 

develop UC [17]. Studies of migrant populations moving from regions of low to high IBD 111 

incidence point to early life as a key time for environmental triggers [18]. In these 112 

populations, it is the second generation (those born in the high incidence region) with higher 113 

IBD incidence rates than their parents. Early life environmental exposures have been also 114 

implicated in IBD risk, but, except for having been breastfed, few factors have been shown to 115 

alter the risk of developing IBD. However, an important obstacle for identifying the role of 116 

environmental factors in IBD is the lack of methodological standardization among studies 117 

[19].  118 

 119 

 120 
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Intestinal microbiome in the pathogenesis of IBD 121 

The gut microbiome interacts with the host in a symbiotic way and performs a variety of 122 

beneficial functions: digestion of substrates and production of nutrients; development, 123 

maturation and regulation of the immune system (both the local and the systemic response) 124 

and prevention of the growth of harmful microorganisms [20]. It has been described that 125 

human microbiota can be classified into clusters of well-balanced, defined microbial 126 

community compositions, known as “enterotypes” [21]. These enterotypes are stable, and 127 

environmental factors (i.e. diet) can influence microbiome composition but without affecting 128 

the enterotype identity  [22,23]. IBD is associated with alterations in the composition of the 129 

intestinal microbiota characterized by decreased diversity, reduced proportions of Firmicutes, 130 

and increased proportions of Proteobacteria and Actinobacteria [6]. Some of the bacterial 131 

species enriched in patients with IBD (Escherichia, Fusobacterium) may potentiate the 132 

disease, and some of the species with anti-inflammatory properties (Faecalibacterium, 133 

Roseburia) are reduced in IBD [6]. The microbiota of active IBD patients is different from 134 

that of patients in remission, as confirmed by a recent meta-analysis: patients with active IBD 135 

had lower abundance of Clostridium coccoides, Clostridium leptum, Faecalibacterium 136 

prausnitzii and Bifidobacterium [24]. Prospective studies on microbiome changes during the 137 

disease course are scarce. A Dutch study on 10 CD and 9 UC patients assessed in remission 138 

and in subsequent relapse found patient-specific shifts in microbial composition, but could not 139 

demonstrate general changes in microbial composition or diversity [25] A Spanish study 140 

followed-up 18 UC patients during 1 year; in those who remained in remission 141 

Faecalibacterium prausnitzii increased steadily, while in those who relapsed it remained low 142 

[26].  143 

Several factors can influence the microbiome composition. The intestinal colonization begins 144 

immediately after birth, and beyond genetic predisposition, is influenced very early in life by 145 
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the route of delivering, the infant diet (breast- or formula-feeding) and hygiene conditions. 146 

Apart from environmental factors such as drugs, stress and toxics (i.e. tobacco), diet was 147 

suggested to play a decisive role in modulating microbiome composition [6,20,27]. Dietary 148 

composition was shown to affect the microbiota balance; therefore, it is conceivable that 149 

altering the diet can impact the inflammatory response [28]. For example, diets rich in 150 

saturated fats are shown to induce damage of the intestinal epithelial cell layer leading to loss 151 

of barrier function. In contrast, diets high in fiber predispose short-chain fatty acids 152 

production by microbiota and lead to improved energy expenditure [29]. Thus, a balanced 153 

low-fat and high-fiber diet may be important in preventing dysbiosis and preserving the 154 

immune system [30]. Targeting microbiota through nutritional interventions could represent a 155 

promising therapeutic approach. So far, several nutritional interventions have been evaluated 156 

such as dietary supplementation with prebiotics and contrabiotics, phosphatidylcholine and 157 

use of genetically modified bacteria [31]. Among these, therapies such as prebiotics and 158 

probiotics that selectively manipulate the intestinal microbiota have been evaluated as an 159 

attractive therapeutic option with few side effects [32]. For example, Clostridium coccodies 160 

and C. leptum have been shown to exert  protective effects against IBD [30]. The multispecies 161 

products VSL#3 and E. coli Nissle have been revealed as particularly effective in maintaining 162 

remission in UC [29]. Probiotic yogurt intake was associated with significant anti-163 

inflammatory effects that paralleled the expansion of peripheral pool of putative T(reg) cells 164 

in IBD patients and with few effects in controls [33]. However, any hope for long-term 165 

benefits from probiotics may be limited by the need for dietary modification. Furthermore, 166 

pre/probiotic administration may not be useful out of the context of an overall healthy diet. 167 

Even harmful effects of probiotic supplementation holding the potential to become pathogenic 168 

when exposed to an unhealthy diet was suggested in mouse models [34]. Probiotics and other 169 

commercial interventions such as tea or berry extracts are unlikely to counteract unhealthy 170 

nutritional behaviour. Much work remains before the understanding of the effects of dysbiosis 171 
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in humans reaches that of mice, however while definitive statements may be lacking, the 172 

preponderance of current evidence strongly suggests that the gut microbiome is a major 173 

contributor to human health and disease [30].  174 

Epigenetics and IBD 175 

Research over the recent years has largely contributed to an improved understanding of the 176 

role of epigenetic modifications – i.e. non-coding RNAs and DNA methylation - in defining 177 

the molecular basis of IBD [35,36]. Such research has been largely driven by observations 178 

that genetics alone cannot explain onset of IBD. Thus, a meta-analysis of GWAS studies 179 

estimated that susceptibility loci for UC explained only 16% of UC heritability [37]. In this 180 

regard, gene-environment interactions was suggested to play an important role in IBD 181 

pathogenesis and this is where epigenetics could offer new insights beyond genetic research 182 

[35,38]. Epigenetic factors were therefore suggested to mediate interactions between the 183 

environment and the genome, thereby providing new insights into the pathogenesis of IBD 184 

[39]. Earlier studies have reported on the differential expression of specific microRNAs in the 185 

colonic mucosa samples of IBD patients compared to the mucosa of control patients [36]. 186 

miRNAs identified in peripheral blood were additionally suggested as new biomarkers of 187 

disease. More recently, DNA methylation signatures for UC and CD have been also 188 

described. However, whether changes in DNA methylation systematically correlate with gene 189 

expression is not clear [40]. In addition, it remains challenging to identify etiologically 190 

significant epigenetic alterations since epigenetic modification of DNA may differ between 191 

tissues, time of development within the same tissue and environmental influences. Initial 192 

evidence arising from epigenetic research is sometimes hard to be proven in clinical practice. 193 

An example is the identified role of cytokines and subsequent development of biologicals 194 

which fail to prove important role in disease control. Thus, dysregulation of cytokine genes 195 

and increased mRNA levels of cytokines, including Interleukin1-beta and Tumor necrosis 196 

factor-ɑlpha (TNFα) have been reported in IBD patients compared with controls in the late 197 
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90-s [41-43]. This has led to introducing anti-TNFɑ therapies in IBD patients. However, 198 

achieving adequate response levels still remains elusive as stand-alone anti-TNFα therapies 199 

have not been proven completely useful at predicting disease progression and drug response 200 

[44]. Recently, animal models suggested that the lack of response could be related to 201 

differences in  gut microbiome prior to and after disease initiation. Thus, alternative strategies 202 

are needed that account for the interplay between immunity, epigenetics and dietary factors. 203 

Diet is known to influence epigenetic changes associated with disease and to modify gene 204 

expression patterns in a state of disturbed immunity [38]. The poor dietary choices are 205 

encoded into human gut, genetic make-up, and are transferred to the offspring. A number of 206 

nutrients have the ability to modulate immune response and counter inflammatory processes. 207 

Immune cells are rapidly dividing and have increased sensitivity to impaired DNA replication. 208 

Dietary factors act differently to modulate immune response, but all appear to have the 209 

potential to modulate inflammation [45]. Furthermore, active immunization against the outer 210 

membrane protein of bacteria present in the gut was recently shown to enhance local and 211 

systemic immune control via apoE-mediated immune-modulation [46]. Immunonutrition was 212 

therefore suggested as a less invasive alternative to immunotherapy in protection against 213 

chronic inflammation predisposing IBD [45].  214 

 215 

Diet, immunity and IBD 216 

Western diet is characterized by an over-consumption of refined sugars, salt, and saturated fat 217 

and overall low food variability. New features of human nutrition in the modern society 218 

include artificial sweeteners, gluten, and genetically modified foods. Western societies seem 219 

to have dealt with micro- and macronutrient deficiencies, however over-abundance of calories 220 

and the macronutrients pose the new challenges of increased inflammation, infection 221 

susceptibility, and increased risk for auto-inflammatory disease such as IBD [47,48]. Several 222 

micronutrients are especially important for immunonutrition among which vitamins such as 223 
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vitamins A, C, and E, D, folic acid and beta-carotene and trace elements such as zinc, 224 

selenium, manganese and iron have gained much interest in research. Deficiencies in zinc and 225 

vitamins A and D may reduce natural killer cell function, whereas supplemental zinc or 226 

vitamin C may enhance their activity [49,50]. Vitamin D has been shown to play a role in 227 

intestinal defense by suppressing the microbial invasion into the epithelium. Vitamin D 228 

deficiency was identified in 82% of IBD patients compared to the 31% national average and 229 

has been linked to defective epithelial processes. Therapy targeting vitamin D3 signaling was 230 

suggested to provide new approaches for infectious and inflammatory diseases by affecting 231 

both innate and adaptive immune functions. However, the impact of the vitamins on IBD is 232 

still not well understood. So far, only two randomized clinical trials were conducted to 233 

evaluate vitamin D supplementation on IBD outcome. In a Danish study, 94 patients were 234 

randomized to receive oral vitamin D3 or placebo; patients receiving vitamin D3 had a non-235 

significant reduced risk of relapse [51]. A more recent Iranian study conducted among 108 236 

IBD patients reported that oral supplementation with vitamin D3 reduced serum TNF-alpha 237 

level though not substantially [52]. More studies with larger samples would be beneficial to 238 

assess effects of vitamin supplementation in IBD. Trace elements represent another important 239 

avenue for research in prevention and control of inflammatory diseases. Zinc is involved in 240 

the control of DNA replication and transcription and controls signal transduction during T-241 

cell activation [53]. Selenium deficiency decreases antibody production, while selenium 242 

supplementation enhances T-cell responses and increases antibody synthesis. It is also known 243 

to also to exert antioxidative effects and to protect from deteriorating effects of reactive 244 

oxygen species [54]. Iron deficiency does lead to defective Tcell proliferative response and 245 

impaired cytokine production by lymphocytes. It should be noted that iron supports pathogen 246 

development and iron supplementation can also result in increased susceptibility to infections 247 

[55]. Of important note, dietary iron was also shown to enhance IBD and carcinogenesis by 248 

augmenting oxidative and nitrosative stress. Thus in an experimental study, a twofold iron-249 
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enriched diet significantly increased colorectal tumor incidence (14/16, 88%) as compared 250 

with animals fed the control diet (3/16, 19%; P < 0.001) [56]. Despite theoretically 251 

micronutrient deficiency may impact the immune system and influence onset and 252 

development of IBD, more research is needed to understand optimal levels and therapeutic 253 

implications [28]. Beyond micronutrients, specific food compound such as the green tea [57-254 

59] or Echinacea [60-62] have been also suggested to reduce or enhance immune stimulation 255 

and potentially to be implicated in IBD prevention.  256 

Dietary patterns in IBD management and prevention 257 

The role of diet in preventing the onset of IBD is not well understood and the same refers to 258 

using diet as a mode for disease control [63,64] [65]. Overall no concerted effort has been 259 

made so far to provide nutritional guidelines for IBD patients and the existing guidelines 260 

largely follow the principle ‘If it hurts, don’t do it”. Potential dietary suggestions include 261 

nutritional deficiency screening, advise patients to self-monitor and avoid foods that may 262 

worsen symptoms, eating smaller meals at more frequent intervals, drinking adequate fluids, 263 

avoiding caffeine and alcohol, taking vitamin/mineral supplementation, eliminating dairy if 264 

lactose intolerant, limiting excess fat, reducing carbohydrates and reducing high-fiber foods 265 

during flares. Mixed advice exists regarding pre/probiotics. Recommendations are largely 266 

different across regions/countries. For example, enteral nutrition is recommended for Crohn's 267 

disease patients in Japan, which differs from practices in the USA [65]. A potential reason for 268 

the lack of solid dietary recommendations is the scarcity of studies evaluating the impact of 269 

diet in the disease course [66] . So far, we could identify only one study that has assessed 270 

nutritional factors and their influence on disease outcome in newly diagnosed IBD  [67]. In 271 

this inception cohort study, high intake of caffeine was associated to an increased risk of 272 

surgery, severe disease course and higher treatment step in CD patients; in UC patients, daily 273 

fast food intake was associated to an increased risk of surgery and high intake of caffeine was 274 

associated to higher risk of extra-intestinal manifestations and lower treatment step. 275 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 July 2017                   doi:10.20944/preprints201707.0039.v1

http://dx.doi.org/10.20944/preprints201707.0039.v1


12 
 

In an attempt to fill this gap, over the recent years more effort has been done to evaluate 276 

specific diets in the management of IBD such as the Specific Carbohydrate Diet (SCD) and 277 

the low fermentable oligosaccharides, disaccharides, monosaccharides, and polyol 278 

(FODMAP) diet. Exclusive enteral nutrition is recommended as first-line therapy to induce 279 

remission in children with active luminal CD [68]. In adults,  long-term diet interventions 280 

such as total parenteral nutrition or elemental diet [69] have also shown promise, however 281 

their administration is more complicated to allow normal life of patients. The SCD is a dietary 282 

regime aimed to induce and maintain drug-free remission in patients with IBD initially 283 

developed by gastroenterologist Sidney Haas in 1951 and later popularized by biochemist 284 

Elaine Gottschall in the book Breaking the Vicious Cycle: Intestinal Health Through Diet 285 

[70]. The SCD diet is focused on avoiding complex carbohydrates that may lead to bacterial 286 

overgrowth and bowel injury with increased intestinal permeability. The diet allows 287 

carbohydrate foods consisting of monosaccharides only and excludes disaccharides and most 288 

polysaccharides and is supplemented by yogurt free of lactose. Recommended cultures 289 

include Lactobacillus bulgaricus, Lactobacillus acidophilus, and Streptococcus thermophilus. 290 

The SCD allows almost all fruits, vegetables containing more amylose (a linear-chain 291 

polysaccharide) than amylopectin (a branch-chained polysaccharide), nuts, nut-derived flours, 292 

cheese, meats, eggs, butters, and oils. It excludes sucrose, maltose, isomaltose, lactose, grain-293 

derived flours and all true and pseudograins, potatoes, okra, corn, fluid milk, soy, cheeses 294 

containing high amounts of lactose, as well as most food additives and preservatives [70]. So 295 

far, several case-series studies have suggested an important potential of the SCD diet in the 296 

control and remission maintenance in IBD [48,71-73]. The low FODMAP diet gained much 297 

attention in research as means for IBD treatment. A recent meta-analysis including two 298 

randomized control trials and four before-after studies with a total of 319 patients (96% in 299 

remission) reported overall improvement in gastrointestinal symptoms such as diarrhea 300 

response abdominal bloating fatigue and nausea [74]. Recently, plant-based dietary patterns 301 
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were suggested as valid means for long-term inflammation control [75]. In particular, the 302 

Mediterranean diet was suggested to exert strong immunomodulatory effects and even 303 

showing a potential to modulate epigenetic mechanisms. Recent data from the Predimed 304 

study, a randomised, controlled, parallel trial in high cardiovascular risk volunteers, revealed 305 

that over 5 years of intervention the Mediterranean diet is associated with the methylation of 306 

genes related to inflammation and exerts high regulatory effects [76]. Further intervention 307 

trials utilizing transcriptomics analyses revealed potential of Mediterranean to modulate gene 308 

expression and to normalise microbiota in IBD patients [77]. Similarly, semi-vegetarian diet  309 

was shown to exert preventive effects against IBD relapse in patients who have achieved 310 

remission in a prospective, single center, 2-year clinical trial [78]. 311 

On-going research activities  312 

The current evidence on specific diets in the IBD course remains to be confirmed and updated 313 

by further well-designed and long-term follow-up studies, where the complex interactions 314 

between nutrients and microbiota should be taken into account. 315 

In this context, several research projects have been recently launched or are being launched 316 

which aim to assess diet and microbiome related to IBD. These include the Food and 317 

Resulting Microbial Metabolites (FARMM) study by the Crohn’s and Colitis Foundation of 318 

America (CCFA)[79], the Study on the Genetic, Environmental and Microbial Interactions 319 

that Cause IBD (GEM Project) by the Crohn’s and Colitis Canada[80], the Prognostic effect 320 

of Environmental factors in Crohn’s and Colitis (PREdiCCt) study [81]and the Diet, 321 

microbiome and inflammatory bowel disease course (microIBDiet) study. The FARMM 322 

study, part of the CCFA’s Microbiome Initiative, is a controlled feeding experiment among 323 

healthy volunteers, with the objective of examining how different diets (“Western” diet, 324 

exclusive enteral nutrition and a vegan diet for 2 weeks) influence the gut microbiota and 325 

fecal metabolomics. The GEM Project is recruiting healthy first degree relatives of CD 326 

patients, and will assess genetic and environmental factors and gut microbiome; participants 327 
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will be followed up to assess the risk of developing CD and the factors associated to the 328 

disease. The PREdiCCT study will recruit IBD patients in remission, and will assess diet, 329 

lifestyle, genetics and microbiome; participants will be followed-up for two years to study the 330 

factors associated to relapse. The microIBDiet study will recruit newly diagnosed IBD 331 

patients, and will assess diet and microbiome; patients will be followed up for five years to 332 

study the factors associated to an impaired outcome (personal communication from the 333 

principal investigator). These projects bring promise for shedding more light on the role of 334 

dietary and nutritional factors in IBD as a basis for further dietary intervention trials.  335 

Conclusion 336 

In summary, rapid technological bioscience development has opened new horizons for an 337 

improved understanding of the role of gene-environment interactions on the onset and 338 

development of IBD. Targeted nutrition taking into account individual genetic make-up, 339 

epigenetics and microbiota composition may represent novel platform for successful 340 

prevention and could offer successful strategy for disease control. Definitely, more work is 341 

required to evaluate the role of individual food compounds and complex nutritional 342 

interventions with potential to decrease inflammation, to modulate immune-modulatory 343 

epigenetic traits and maintain intestinal microbial balance as means for prevention and 344 

management of IBD.  345 

 346 

 347 

 348 

 349 

 350 

 351 

 352 

 353 
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