

1 Diet, Gut Microbiome and Epigenetics: Emerging Links with Inflammatory Bowel

2 Diseases and Prospects for Management and Prevention

3 Krasimira Aleksandrova¹, Beatriz Romero², Vicent Hernandez²

4

5 ¹Nutrition, Immunity and Metabolism Start-up Lab, Department of Epidemiology, German
6 Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany;
7 ²Department of Gastroenterology. Instituto Investigación Biosanitaria Galicia Sur. Estrutura
8 Organizativa de Xestión Integrada de Vigo.

9

10 Corresponding autor:

11 Dr. Krasimira Aleksandrova, PhD, MPH
12 Nutrition, Immunity and Metabolism Start-up Lab
13 Department of Epidemiology
14 German Institute of Human Nutrition Potsdam-Rehbruecke
15 Arthur-Scheunert Allee 114-116
16 14558 Nuthetal
17 Germany
18 Phone +49 33200 88 2 712
19 Fax +49 33200 88 2 721
20 Email: krasimira.aleksandrova@dife.de

21

22

23

24

25

26

27

28

29

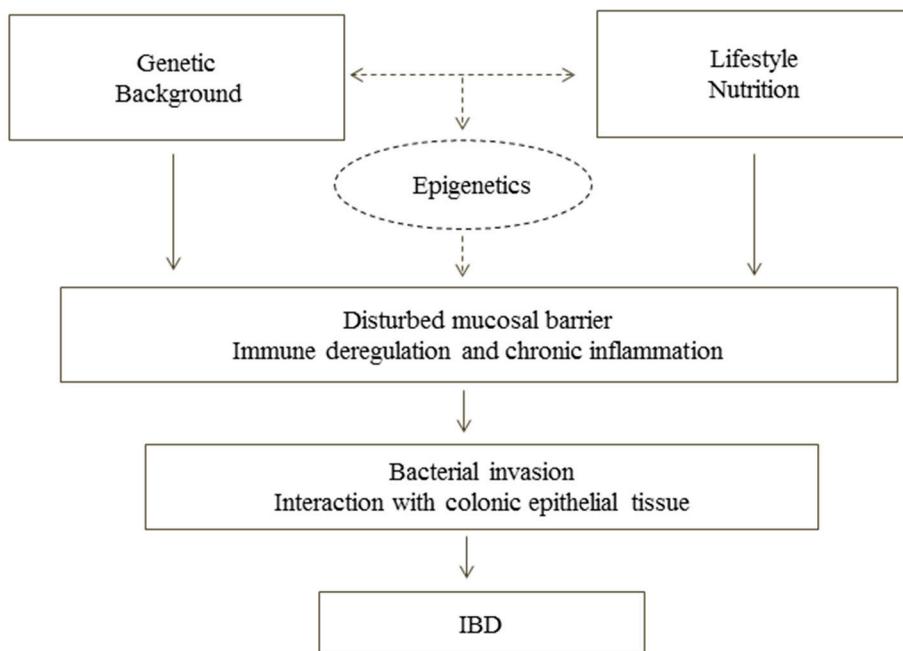
30 Abstract

31 Inflammatory bowel diseases (IBD) represent a growing public health concern due to
32 increasing incidence worldwide. The current notion on the pathogenesis of IBD is that
33 genetically susceptible individuals develop intolerance to dysregulated gut microflora
34 (dysbiosis) and chronic inflammation develops as a result of environmental triggers. Among
35 the environmental factors associated to IBD, diet plays an important role in modulating the
36 gut microbiome, influencing epigenetic changes and, therefore, could be applied as a
37 therapeutic tool to improve the disease course. Nevertheless, the current dietary
38 recommendations for disease prevention and management are scarce and of weak evidence.
39 This review summarizes the current knowledge on the complex interactions among diet,
40 microbiome and epigenetics in IBD. Whereas over-abundance of calories and some
41 macronutrients increases gut inflammation, several micronutrients have the potential to
42 modulate it. Immunonutrition has emerged as a new concept putting forward the importance
43 of vitamins such as vitamins A, C, E, D, folic acid and beta-carotene and trace elements such
44 as zinc, selenium, manganese and iron. However, when assessed in clinical trials, specific
45 micronutrients exerted a limited benefit. Beyond nutrients, anti-inflammatory dietary patterns
46 as a complex intervention approach have become popular over the recent years. Hence,
47 exclusive enteral nutrition in pediatric Crohn's disease is the only nutritional intervention
48 currently recommended as a first-line therapy. Other nutritional interventions or specific diets
49 including the Specific Carbohydrate Diet, the low fermentable oligosaccharides,
50 disaccharides, monosaccharides, and polyol diet and most recently the Mediterranean diet
51 have shown strong anti-inflammatory properties and provide a promise for improving disease
52 symptoms. Definitely, more work is required to evaluate the role of individual food
53 compounds and complex nutritional interventions with potential to decrease inflammation as
54 means for prevention and management of IBD.

55

56 Keywords

57 diet, gut microbiota, epigenetics, inflammatory bowel diseases


58

59

60 **Introduction**

61 The inflammatory bowel diseases (IBD) - Crohn's disease (CD) and ulcerative colitis (UC) -
62 are two diseases characterized by chronic relapsing inflammation of the gastrointestinal tract
63 that represent an increasing public health concern while an etiological enigma due to
64 unknown causal factors. Despite suggested differences in pathology, both diseases are
65 believed to share common etiology. The strongest IBD risk factor identified to date is the
66 family history of IBD [1]. The current notion on the pathogenesis of IBD is that genetically
67 susceptible individuals develop intolerance to dysregulated gut microflora (dysbiosis) and
68 chronic inflammation develops as a result of environmental triggers [2]. Current research in
69 the field of IBD largely focused on establishing the role of causal variants on gene expression
70 and various pathological pathways have been already uncovered [3]. However, still the
71 genetic risk loci identified to date only explain a small part of genetic variance in disease risk
72 and more factors need to be taken into account to understand the IBD multifactorial pathology
73 [4]. Impaired immune response that occurs in genetically susceptible individuals as the result
74 of a complex interaction among disturbed immune responses, impaired intestinal barrier
75 function and dysfunctional microbe-host interactions has been therefore suggested as major
76 unifying etiological background [5]. While the identification of IBD environmental risk
77 factors remains a subject of intensive research, diet remains one of the most putative
78 candidates. Diet participates in the regulation of intestinal inflammation, either directly or
79 indirectly by modifying the gut microbiota [6,7] A greater understanding of the contribution
80 of dietary factors to dysbiosis is therefore critical having the pivotal role of a healthy
81 microbiome in preventing the development of IBD and its complications [8]. Most recently,
82 the fast evolving field of epigenetics offers new explanations on the mechanisms by which
83 environmental changes induce pathological gene expression and determine cell phenotype and
84 function in IBD [9]. The pathogenic mechanisms for IBD could be largely imposed by gene-

85 environmental interactions switching on a cascade of induced effects on the microbiota, the
 86 immune system and the mucosal barrier (Figure 1). Here, we review the recent developments
 87 in understanding the role of gut microbiome, epigenetics and dietary factors in IBD that
 88 outline directions for disease management and prevention.

Figure 1. Proposed pathophysiological mechanisms for inflammatory bowel disease (IBD)

Complex interaction between genetic and lifestyle factors and the putative role of epigenetics on the interplay between microbiota, the immune system and the mucosal barrier

89

90 Epidemiology of IBD and environmental exposures

91 IBDs occur worldwide with differences in epidemiology, exposures to risk factors and
 92 phenotype between regions. The prevalence of IBD is higher in industrialized (Western
 93 Europe, United States of America, Canada, Australia and New Zealand) than in developing
 94 countries (Asia, Middle East, South America and Africa) [10]. The incidence of IBD steadily
 95 increased in industrialized countries during the 20th century and, although some studies

96 suggested that a plateau was reached in some regions during the 21st century [10], recent
97 reports point that it could be still increasing in these countries [11-13]. In developing
98 countries, traditionally considered low incidence areas, an increasing incidence is being
99 described since the beginning of the 21st century [8-10,14]. These observed increases in the
100 incidence rates could be partly accounted for by pragmatic reasons such as the media
101 coverage and increased health awareness in both developed and developing countries,
102 improved access to medical technology and health care providers, and the development of
103 sophisticated disease surveillance systems [15,16]. However, the parallel of higher incidence
104 rates with the Westernization of affected societies points to the potential important role of the
105 environment [15,16]. In that regard, environmental factors (also known as “exposome”) have
106 been thoroughly studied and many of the factors related to Westernization have been
107 associated to the risk of developing IBD . The list of putative factors includes environmental
108 pollution, medication, stress level, infections, and lifestyle. Certain differences in
109 environmental risk for CD and UC have been reported, such as that cigarette smoking was
110 shown to increase the risk of developing CD, whilst smoking is less common in those who
111 develop UC [17]. Studies of migrant populations moving from regions of low to high IBD
112 incidence point to early life as a key time for environmental triggers [18]. In these
113 populations, it is the second generation (those born in the high incidence region) with higher
114 IBD incidence rates than their parents. Early life environmental exposures have been also
115 implicated in IBD risk, but, except for having been breastfed, few factors have been shown to
116 alter the risk of developing IBD. However, an important obstacle for identifying the role of
117 environmental factors in IBD is the lack of methodological standardization among studies
118 [19].

119

120

121 **Intestinal microbiome in the pathogenesis of IBD**

122 The gut microbiome interacts with the host in a symbiotic way and performs a variety of
123 beneficial functions: digestion of substrates and production of nutrients; development,
124 maturation and regulation of the immune system (both the local and the systemic response)
125 and prevention of the growth of harmful microorganisms [20]. It has been described that
126 human microbiota can be classified into clusters of well-balanced, defined microbial
127 community compositions, known as “enterotypes” [21]. These enterotypes are stable, and
128 environmental factors (i.e. diet) can influence microbiome composition but without affecting
129 the enterotype identity [22,23]. IBD is associated with alterations in the composition of the
130 intestinal microbiota characterized by decreased diversity, reduced proportions of Firmicutes,
131 and increased proportions of Proteobacteria and Actinobacteria [6]. Some of the bacterial
132 species enriched in patients with IBD (Escherichia, Fusobacterium) may potentiate the
133 disease, and some of the species with anti-inflammatory properties (Faecalibacterium,
134 Roseburia) are reduced in IBD [6]. The microbiota of active IBD patients is different from
135 that of patients in remission, as confirmed by a recent meta-analysis: patients with active IBD
136 had lower abundance of Clostridium coccoides, Clostridium leptum, Faecalibacterium
137 prausnitzii and Bifidobacterium [24]. Prospective studies on microbiome changes during the
138 disease course are scarce. A Dutch study on 10 CD and 9 UC patients assessed in remission
139 and in subsequent relapse found patient-specific shifts in microbial composition, but could not
140 demonstrate general changes in microbial composition or diversity [25]. A Spanish study
141 followed-up 18 UC patients during 1 year; in those who remained in remission
142 Faecalibacterium prausnitzii increased steadily, while in those who relapsed it remained low
143 [26].

144 Several factors can influence the microbiome composition. The intestinal colonization begins
145 immediately after birth, and beyond genetic predisposition, is influenced very early in life by

146 the route of delivering, the infant diet (breast- or formula-feeding) and hygiene conditions.

147 Apart from environmental factors such as drugs, stress and toxics (i.e. tobacco), diet was

148 suggested to play a decisive role in modulating microbiome composition [6,20,27]. Dietary

149 composition was shown to affect the microbiota balance; therefore, it is conceivable that

150 altering the diet can impact the inflammatory response [28]. For example, diets rich in

151 saturated fats are shown to induce damage of the intestinal epithelial cell layer leading to loss

152 of barrier function. In contrast, diets high in fiber predispose short-chain fatty acids

153 production by microbiota and lead to improved energy expenditure [29]. Thus, a balanced

154 low-fat and high-fiber diet may be important in preventing dysbiosis and preserving the

155 immune system [30]. Targeting microbiota through nutritional interventions could represent a

156 promising therapeutic approach. So far, several nutritional interventions have been evaluated

157 such as dietary supplementation with prebiotics and probiotics, phosphatidylcholine and

158 use of genetically modified bacteria [31]. Among these, therapies such as prebiotics and

159 probiotics that selectively manipulate the intestinal microbiota have been evaluated as an

160 attractive therapeutic option with few side effects [32]. For example, *Clostridium coccoides*

161 and *C. leptum* have been shown to exert protective effects against IBD [30]. The multispecies

162 products VSL#3 and *E. coli* Nissle have been revealed as particularly effective in maintaining

163 remission in UC [29]. Probiotic yogurt intake was associated with significant anti-

164 inflammatory effects that paralleled the expansion of peripheral pool of putative T(reg) cells

165 in IBD patients and with few effects in controls [33]. However, any hope for long-term

166 benefits from probiotics may be limited by the need for dietary modification. Furthermore,

167 pre/probiotic administration may not be useful out of the context of an overall healthy diet.

168 Even harmful effects of probiotic supplementation holding the potential to become pathogenic

169 when exposed to an unhealthy diet was suggested in mouse models [34]. Probiotics and other

170 commercial interventions such as tea or berry extracts are unlikely to counteract unhealthy

171 nutritional behaviour. Much work remains before the understanding of the effects of dysbiosis

172 in humans reaches that of mice, however while definitive statements may be lacking, the
173 preponderance of current evidence strongly suggests that the gut microbiome is a major
174 contributor to human health and disease [30].

175 **Epigenetics and IBD**

176 Research over the recent years has largely contributed to an improved understanding of the
177 role of epigenetic modifications – i.e. non-coding RNAs and DNA methylation - in defining
178 the molecular basis of IBD [35,36]. Such research has been largely driven by observations
179 that genetics alone cannot explain onset of IBD. Thus, a meta-analysis of GWAS studies
180 estimated that susceptibility loci for UC explained only 16% of UC heritability [37]. In this
181 regard, gene-environment interactions was suggested to play an important role in IBD
182 pathogenesis and this is where epigenetics could offer new insights beyond genetic research
183 [35,38]. Epigenetic factors were therefore suggested to mediate interactions between the
184 environment and the genome, thereby providing new insights into the pathogenesis of IBD
185 [39]. Earlier studies have reported on the differential expression of specific microRNAs in the
186 colonic mucosa samples of IBD patients compared to the mucosa of control patients [36].
187 miRNAs identified in peripheral blood were additionally suggested as new biomarkers of
188 disease. More recently, DNA methylation signatures for UC and CD have been also
189 described. However, whether changes in DNA methylation systematically correlate with gene
190 expression is not clear [40]. In addition, it remains challenging to identify etiologically
191 significant epigenetic alterations since epigenetic modification of DNA may differ between
192 tissues, time of development within the same tissue and environmental influences. Initial
193 evidence arising from epigenetic research is sometimes hard to be proven in clinical practice.
194 An example is the identified role of cytokines and subsequent development of biologicals
195 which fail to prove important role in disease control. Thus, dysregulation of cytokine genes
196 and increased mRNA levels of cytokines, including Interleukin1-beta and Tumor necrosis
197 factor-alpha (TNF α) have been reported in IBD patients compared with controls in the late

198 90-s [41-43]. This has led to introducing anti-TNF α therapies in IBD patients. However,
199 achieving adequate response levels still remains elusive as stand-alone anti-TNF α therapies
200 have not been proven completely useful at predicting disease progression and drug response
201 [44]. Recently, animal models suggested that the lack of response could be related to
202 differences in gut microbiome prior to and after disease initiation. Thus, alternative strategies
203 are needed that account for the interplay between immunity, epigenetics and dietary factors.
204 Diet is known to influence epigenetic changes associated with disease and to modify gene
205 expression patterns in a state of disturbed immunity [38]. The poor dietary choices are
206 encoded into human gut, genetic make-up, and are transferred to the offspring. A number of
207 nutrients have the ability to modulate immune response and counter inflammatory processes.
208 Immune cells are rapidly dividing and have increased sensitivity to impaired DNA replication.
209 Dietary factors act differently to modulate immune response, but all appear to have the
210 potential to modulate inflammation [45]. Furthermore, active immunization against the outer
211 membrane protein of bacteria present in the gut was recently shown to enhance local and
212 systemic immune control via apoE-mediated immune-modulation [46]. Immunonutrition was
213 therefore suggested as a less invasive alternative to immunotherapy in protection against
214 chronic inflammation predisposing IBD [45].

215

216 Diet, immunity and IBD

217 Western diet is characterized by an over-consumption of refined sugars, salt, and saturated fat
218 and overall low food variability. New features of human nutrition in the modern society
219 include artificial sweeteners, gluten, and genetically modified foods. Western societies seem
220 to have dealt with micro- and macronutrient deficiencies, however over-abundance of calories
221 and the macronutrients pose the new challenges of increased inflammation, infection
222 susceptibility, and increased risk for auto-inflammatory disease such as IBD [47,48]. Several
223 micronutrients are especially important for immunonutrition among which vitamins such as

224 vitamins A, C, and E, D, folic acid and beta-carotene and trace elements such as zinc,
225 selenium, manganese and iron have gained much interest in research. Deficiencies in zinc and
226 vitamins A and D may reduce natural killer cell function, whereas supplemental zinc or
227 vitamin C may enhance their activity [49,50]. Vitamin D has been shown to play a role in
228 intestinal defense by suppressing the microbial invasion into the epithelium. Vitamin D
229 deficiency was identified in 82% of IBD patients compared to the 31% national average and
230 has been linked to defective epithelial processes. Therapy targeting vitamin D3 signaling was
231 suggested to provide new approaches for infectious and inflammatory diseases by affecting
232 both innate and adaptive immune functions. However, the impact of the vitamins on IBD is
233 still not well understood. So far, only two randomized clinical trials were conducted to
234 evaluate vitamin D supplementation on IBD outcome. In a Danish study, 94 patients were
235 randomized to receive oral vitamin D3 or placebo; patients receiving vitamin D3 had a non-
236 significant reduced risk of relapse [51]. A more recent Iranian study conducted among 108
237 IBD patients reported that oral supplementation with vitamin D3 reduced serum TNF-alpha
238 level though not substantially [52]. More studies with larger samples would be beneficial to
239 assess effects of vitamin supplementation in IBD. Trace elements represent another important
240 avenue for research in prevention and control of inflammatory diseases. Zinc is involved in
241 the control of DNA replication and transcription and controls signal transduction during T-
242 cell activation [53]. Selenium deficiency decreases antibody production, while selenium
243 supplementation enhances T-cell responses and increases antibody synthesis. It is also known
244 to also to exert antioxidative effects and to protect from deteriorating effects of reactive
245 oxygen species [54]. Iron deficiency does lead to defective Tcell proliferative response and
246 impaired cytokine production by lymphocytes. It should be noted that iron supports pathogen
247 development and iron supplementation can also result in increased susceptibility to infections
248 [55]. Of important note, dietary iron was also shown to enhance IBD and carcinogenesis by
249 augmenting oxidative and nitrosative stress. Thus in an experimental study, a twofold iron-

250 enriched diet significantly increased colorectal tumor incidence (14/16, 88%) as compared
251 with animals fed the control diet (3/16, 19%; $P < 0.001$) [56]. Despite theoretically
252 micronutrient deficiency may impact the immune system and influence onset and
253 development of IBD, more research is needed to understand optimal levels and therapeutic
254 implications [28]. Beyond micronutrients, specific food compound such as the green tea [57-
255 59] or Echinacea [60-62] have been also suggested to reduce or enhance immune stimulation
256 and potentially to be implicated in IBD prevention.

257 **Dietary patterns in IBD management and prevention**

258 The role of diet in preventing the onset of IBD is not well understood and the same refers to
259 using diet as a mode for disease control [63,64] [65]. Overall no concerted effort has been
260 made so far to provide nutritional guidelines for IBD patients and the existing guidelines
261 largely follow the principle 'If it hurts, don't do it'. Potential dietary suggestions include
262 nutritional deficiency screening, advise patients to self-monitor and avoid foods that may
263 worsen symptoms, eating smaller meals at more frequent intervals, drinking adequate fluids,
264 avoiding caffeine and alcohol, taking vitamin/mineral supplementation, eliminating dairy if
265 lactose intolerant, limiting excess fat, reducing carbohydrates and reducing high-fiber foods
266 during flares. Mixed advice exists regarding pre/probiotics. Recommendations are largely
267 different across regions/countries. For example, enteral nutrition is recommended for Crohn's
268 disease patients in Japan, which differs from practices in the USA [65]. A potential reason for
269 the lack of solid dietary recommendations is the scarcity of studies evaluating the impact of
270 diet in the disease course [66]. So far, we could identify only one study that has assessed
271 nutritional factors and their influence on disease outcome in newly diagnosed IBD [67]. In
272 this inception cohort study, high intake of caffeine was associated to an increased risk of
273 surgery, severe disease course and higher treatment step in CD patients; in UC patients, daily
274 fast food intake was associated to an increased risk of surgery and high intake of caffeine was
275 associated to higher risk of extra-intestinal manifestations and lower treatment step.

276 In an attempt to fill this gap, over the recent years more effort has been done to evaluate
277 specific diets in the management of IBD such as the Specific Carbohydrate Diet (SCD) and
278 the low fermentable oligosaccharides, disaccharides, monosaccharides, and polyol
279 (FODMAP) diet. Exclusive enteral nutrition is recommended as first-line therapy to induce
280 remission in children with active luminal CD [68]. In adults, long-term diet interventions
281 such as total parenteral nutrition or elemental diet [69] have also shown promise, however
282 their administration is more complicated to allow normal life of patients. The SCD is a dietary
283 regime aimed to induce and maintain drug-free remission in patients with IBD initially
284 developed by gastroenterologist Sidney Haas in 1951 and later popularized by biochemist
285 Elaine Gottschall in the book *Breaking the Vicious Cycle: Intestinal Health Through Diet*
286 [70]. The SCD diet is focused on avoiding complex carbohydrates that may lead to bacterial
287 overgrowth and bowel injury with increased intestinal permeability. The diet allows
288 carbohydrate foods consisting of monosaccharides only and excludes disaccharides and most
289 polysaccharides and is supplemented by yogurt free of lactose. Recommended cultures
290 include *Lactobacillus bulgaricus*, *Lactobacillus acidophilus*, and *Streptococcus thermophilus*.
291 The SCD allows almost all fruits, vegetables containing more amylose (a linear-chain
292 polysaccharide) than amylopectin (a branch-chained polysaccharide), nuts, nut-derived flours,
293 cheese, meats, eggs, butters, and oils. It excludes sucrose, maltose, isomaltose, lactose, grain-
294 derived flours and all true and pseudograins, potatoes, okra, corn, fluid milk, soy, cheeses
295 containing high amounts of lactose, as well as most food additives and preservatives [70]. So
296 far, several case-series studies have suggested an important potential of the SCD diet in the
297 control and remission maintenance in IBD [48,71-73]. The low FODMAP diet gained much
298 attention in research as means for IBD treatment. A recent meta-analysis including two
299 randomized control trials and four before-after studies with a total of 319 patients (96% in
300 remission) reported overall improvement in gastrointestinal symptoms such as diarrhea
301 response abdominal bloating fatigue and nausea [74]. Recently, plant-based dietary patterns

302 were suggested as valid means for long-term inflammation control [75]. In particular, the
303 Mediterranean diet was suggested to exert strong immunomodulatory effects and even
304 showing a potential to modulate epigenetic mechanisms. Recent data from the Predimed
305 study, a randomised, controlled, parallel trial in high cardiovascular risk volunteers, revealed
306 that over 5 years of intervention the Mediterranean diet is associated with the methylation of
307 genes related to inflammation and exerts high regulatory effects [76]. Further intervention
308 trials utilizing transcriptomics analyses revealed potential of Mediterranean to modulate gene
309 expression and to normalise microbiota in IBD patients [77]. Similarly, semi-vegetarian diet
310 was shown to exert preventive effects against IBD relapse in patients who have achieved
311 remission in a prospective, single center, 2-year clinical trial [78].

312 **On-going research activities**

313 The current evidence on specific diets in the IBD course remains to be confirmed and updated
314 by further well-designed and long-term follow-up studies, where the complex interactions
315 between nutrients and microbiota should be taken into account.

316 In this context, several research projects have been recently launched or are being launched
317 which aim to assess diet and microbiome related to IBD. These include the Food and
318 Resulting Microbial Metabolites (FARM) study by the Crohn's and Colitis Foundation of
319 America (CCFA)[79], the Study on the Genetic, Environmental and Microbial Interactions
320 that Cause IBD (GEM Project) by the Crohn's and Colitis Canada[80], the Prognostic effect
321 of Environmental factors in Crohn's and Colitis (PREdiCCt) study [81]and the Diet,
322 microbiome and inflammatory bowel disease course (microIBDiet) study. The FARM
323 study, part of the CCFA's Microbiome Initiative, is a controlled feeding experiment among
324 healthy volunteers, with the objective of examining how different diets ("Western" diet,
325 exclusive enteral nutrition and a vegan diet for 2 weeks) influence the gut microbiota and
326 fecal metabolomics. The GEM Project is recruiting healthy first degree relatives of CD
327 patients, and will assess genetic and environmental factors and gut microbiome; participants

328 will be followed up to assess the risk of developing CD and the factors associated to the
329 disease. The PREdiCCT study will recruit IBD patients in remission, and will assess diet,
330 lifestyle, genetics and microbiome; participants will be followed-up for two years to study the
331 factors associated to relapse. The microIBDiet study will recruit newly diagnosed IBD
332 patients, and will assess diet and microbiome; patients will be followed up for five years to
333 study the factors associated to an impaired outcome (personal communication from the
334 principal investigator). These projects bring promise for shedding more light on the role of
335 dietary and nutritional factors in IBD as a basis for further dietary intervention trials.

336 **Conclusion**

337 In summary, rapid technological bioscience development has opened new horizons for an
338 improved understanding of the role of gene-environment interactions on the onset and
339 development of IBD. Targeted nutrition taking into account individual genetic make-up,
340 epigenetics and microbiota composition may represent novel platform for successful
341 prevention and could offer successful strategy for disease control. Definitely, more work is
342 required to evaluate the role of individual food compounds and complex nutritional
343 interventions with potential to decrease inflammation, to modulate immune-modulatory
344 epigenetic traits and maintain intestinal microbial balance as means for prevention and
345 management of IBD.

346

347

348

349

350

351

352

353

354 Acknowledgements

355 Vicent Hernandez received the GETECCU's "V Antonio Obrador" Grant, devoted to
356 epidemiological studies in IBD, Krasimira Aleksandrova was supported by the German
357 Research Foundation (DFG) Grant AL 1784/3-1.

358 Conflict of interest

359 Krasimira Aleksandrova. None to declare.

360 Beatriz Romero-Mosquera. None to declare.

361 Vicent Hernandez received personal fees for educational activities from MSD, Abbvie,
362 Ferring, Shire, Tillotts, Otsuka and KernPharma Biologics; travel support from MSD, Abbvie,
363 Ferring, FAES Farma, Shire, Tillotts, Otsuka, Hospira Biologicals, Takeda, Jansen and
364 KernPharma Biologics; and support in the organization of a local educational workshop from
365 MSD, Abbvie, and Otsuka.

366 The founding sponsors had no role in the design of the study; in the collection, analyses, or
367 interpretation of data; in the writing of the manuscript, and in the decision to publish the
368 results.

369

370

371

372

373

374

375

376

377

378 **References**

379 1. Russell, R.K.; Satsangi, J. Ibd: A family affair. *Best practice & research. Clinical*
380 *gastroenterology* **2004**, *18*, 525-539.

381 2. Zanello, G.; Kevans, D.; Goethel, A.; Silverberg, M.; Tyler, A.; Croitoru, K. Genetics
382 and innate and adaptive immunity in ibd. *Nestle Nutrition Institute workshop series*
383 **2014**, *79*, 41-55.

384 3. Van Limbergen, J.; Radford-Smith, G.; Satsangi, J. Advances in ibd genetics. *Nature*
385 *reviews. Gastroenterology & hepatology* **2014**, *11*, 372-385.

386 4. Tamboli, C.P. How do genetics help an understanding of ibd epidemiology?
387 *Inflammatory bowel diseases* **2008**, *14 Suppl 2*, S29-30.

388 5. Danese, S.; Fiocchi, C. Etiopathogenesis of inflammatory bowel diseases. *World*
389 *journal of gastroenterology : WJG* **2006**, *12*, 4807-4812.

390 6. Kostic, A.D.; Xavier, R.J.; Gevers, D. The microbiome in inflammatory bowel
391 disease: Current status and the future ahead. *Gastroenterology* **2014**, *146*, 1489-1499.

392 7. Lee, D.; Albenberg, L.; Compher, C.; Baldassano, R.; Piccoli, D.; Lewis, J.D.; Wu,
393 G.D. Diet in the pathogenesis and treatment of inflammatory bowel diseases.
394 *Gastroenterology* **2015**, *148*, 1087-1106.

395 8. Lovasz, B.D.; Golovics, P.A.; Vegh, Z.; Lakatos, P.L. New trends in inflammatory
396 bowel disease epidemiology and disease course in eastern europe. *Digestive and Liver*
397 *Disease* **2013**, *45*, 269-276.

398 9. Malekzadeh, M.M.; Vahedi, H.; Gohari, K.; Mehdipour, P.; Sepanlou, S.G.; Daryani,
399 N.E.; Zali, M.R.; Mansour-Ghanaei, F.; Safarpour, A.R.; Aghazadeh, R., *et al.*
400 Emerging epidemic of inflammatory bowel disease in a middle income country: A
401 nation-wide study from iran. *Archives of Iranian Medicine* **2016**, *19*.

402 10. Molodecky, N.A.; Soon, I.S.; Rabi, D.M.; Ghali, W.A.; Ferris, M.; Chernoff, G.;
403 Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Barkema, H.W., *et al.* Increasing
404 incidence and prevalence of the inflammatory bowel diseases with time, based on
405 systematic review. *Gastroenterology* **2012**, *142*, 46-54.e42; quiz e30.

406 11. Fernández, A.; Hernández, V.; Martínez-Ares, D.; Sanromán, L.; de Castro, M.L.;
407 Pineda, J.R.; Carmona, A.; González-Portela, C.; Salgado, C.; Martínez-Cadilla, J., *et*
408 *al.* Incidence and phenotype at diagnosis of inflammatory bowel disease. Results in
409 spain of the epicom study. *Gastroenterología y hepatología* **2015**.

410 12. Lophaven, S.N.; Lynge, E.; Burisch, J. The incidence of inflammatory bowel disease
411 in denmark 1980-2013: A nationwide cohort study. *Alimentary pharmacology &*
412 *therapeutics* **2017**, *45*, 961-972.

413 13. Shivashankar, R.; Tremaine, W.J.; Harmsen, W.S.; Loftus, E.V. Incidence and
414 prevalence of crohn's disease and ulcerative colitis in olmsted county, minnesota from
415 1970 through 2010. *Clinical gastroenterology and hepatology : the official clinical*
416 *practice journal of the American Gastroenterological Association* **2016**.

417 14. Ng, S.C.; Tang, W.; Ching, J.Y.; Wong, M.; Chow, C.M.; Hui, A.J.; Wong, T.C.;
418 Leung, V.K.; Tsang, S.W.; Yu, H.H., *et al.* Incidence and phenotype of inflammatory
419 bowel disease based on results from the asia-pacific crohn's and colitis epidemiology
420 study. *Gastroenterology* **2013**, *145*, 158-165.e152.

421 15. Kaplan, G.G. The global burden of ibd: From 2015 to 2025. *Nature reviews. Gastroenterology & hepatology* **2015**, *12*, 720-727.

423 16. Saro Gismera, C. ¿por qué está aumentando la incidencia de la eiic? *Enfermedad Inflamatoria Intestinal Al Día* **2010**, *9*, 139-149.

425 17. Rogler, G.; Vavricka, S. Exposome in ibd: Recent insights in environmental factors that influence the onset and course of ibd. *Inflammatory bowel diseases* **2015**, *21*, 400-408.

428 18. Gearry, R.B. Ibd and environment: Are there differences between east and west. *Digestive diseases* **2016**, *34*, 84-89.

430 19. Molodecky, N.A.; Panaccione, R.; Ghosh, S.; Barkema, H.W.; Kaplan, G.G.; Alberta Inflammatory Bowel Disease, C. Challenges associated with identifying the environmental determinants of the inflammatory bowel diseases. *Inflammatory bowel diseases* **2011**, *17*, 1792-1799.

434 20. O 'hara, A.M.; Shanahan, F. The gut flora as a forgotten organ. *EMBO reports* **2006**, *7*, 688-693.

436 21. Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.-M., *et al.* Enterotypes of the human gut microbiome. *Nature* **2011**, *473*, 174-180.

439 22. Roager, H.M.; Licht, T.R.; Poulsen, S.K.; Larsen, T.M.; Bahl, M.I. Microbial enterotypes, inferred by the prevotella-to-bacteroides ratio, remained stable during a 6-month randomized controlled diet intervention with the new nordic diet. *Applied and Environmental Microbiology* **2014**, *80*, 1142-1149.

443 23. Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.-Y.; Keilbaugh, S.A.;
444 Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R., *et al.* Linking long-term dietary
445 patterns with gut microbial enterotypes. *Science (New York, N.Y.)* **2011**, *334*, 105-108.

446 24. Prosberg, M.; Bendtsen, F.; Vind, I.; Petersen, A.M.; Gluud, L.L. The association
447 between the gut microbiota and the inflammatory bowel disease activity: A systematic
448 review and meta-analysis. *Scandinavian Journal of Gastroenterology* **2016**, *51*, 1407-
449 1415.

450 25. Wills, E.S.; Jonkers, D.M.A.E.; Savelkoul, P.H.; Masclee, A.A.; Pierik, M.J.; Penders,
451 J. Fecal microbial composition of ulcerative colitis and crohn's disease patients in
452 remission and subsequent exacerbation. *PloS one* **2014**, *9*, e90981.

453 26. Varela, E.; Manichanh, C.; Gallart, M.; Torrejón, A.; Borruel, N.; Casellas, F.;
454 Guarner, F.; Antolin, M. Colonisation by *< i>faecalibacterium prausnitzii</i>* and
455 maintenance of clinical remission in patients with ulcerative colitis. *Alimentary
456 pharmacology & therapeutics* **2013**, *38*, 151-161.

457 27. Dominguez-Bello, M.G.; Costello, E.K.; Contreras, M.; Magris, M.; Hidalgo, G.;
458 Fierer, N.; Knight, R. Delivery mode shapes the acquisition and structure of the initial
459 microbiota across multiple body habitats in newborns. *Proceedings of the National
460 Academy of Sciences* **2010**, *107*, 11971-11975.

461 28. Malavia, D.; Crawford, A.; Wilson, D. Nutritional immunity and fungal pathogenesis:
462 The struggle for micronutrients at the host-pathogen interface. *Advances in microbial
463 physiology* **2017**, *70*, 85-103.

464 29. Brandsma, E.; Houben, T.; Fu, J.; Shiri-Sverdlov, R.; Hofker, M.H. The immunity-
465 diet-microbiota axis in the development of metabolic syndrome. *Current opinion in*
466 *lipidology* **2015**, *26*, 73-81.

467 30. Brown, K.; DeCoffe, D.; Molcan, E.; Gibson, D.L. Diet-induced dysbiosis of the
468 intestinal microbiota and the effects on immunity and disease. *Nutrients* **2012**, *4*,
469 1095-1119.

470 31. Simpson, H.L.; Campbell, B.J.; Rhodes, J.M. Ibd: Microbiota manipulation through
471 diet and modified bacteria. *Digestive diseases* **2014**, *32 Suppl 1*, 18-25.

472 32. Sinagra, E.; Tomasello, G.; Cappello, F.; Leone, A.; Cottone, M.; Bellavia, M.; Rossi,
473 F.; Facella, T.; Damiani, P.; Zeenny, M.N., *et al*. Probiotics, prebiotics and symbiotics
474 in inflammatory bowel diseases: State-of-the-art and new insights. *Journal of*
475 *biological regulators and homeostatic agents* **2013**, *27*, 919-933.

476 33. Lorea Baroja, M.; Kirjavainen, P.V.; Hekmat, S.; Reid, G. Anti-inflammatory effects
477 of probiotic yogurt in inflammatory bowel disease patients. *Clinical and experimental*
478 *immunology* **2007**, *149*, 470-479.

479 34. Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.;
480 Fu, X.; Wu, Y.; Li, L., *et al*. Intestinal microbiota metabolism of l-carnitine, a nutrient
481 in red meat, promotes atherosclerosis. *Nature medicine* **2013**, *19*, 576-585.

482 35. Scarpa, M.; Stylianou, E. Epigenetics: Concepts and relevance to ibd pathogenesis.
483 *Inflammatory bowel diseases* **2012**, *18*, 1982-1996.

484 36. Ventham, N.T.; Kennedy, N.A.; Nimmo, E.R.; Satsangi, J. Beyond gene discovery in
485 inflammatory bowel disease: The emerging role of epigenetics. *Gastroenterology*
486 2013, 145, 293-308.

487 37. Anderson, C.A.; Boucher, G.; Lees, C.W.; Franke, A.; D'Amato, M.; Taylor, K.D.;
488 Lee, J.C.; Goyette, P.; Imielinski, M.; Latiano, A., *et al.* Meta-analysis identifies 29
489 additional ulcerative colitis risk loci, increasing the number of confirmed associations
490 to 47. *Nature genetics* 2011, 43, 246-252.

491 38. Beaudet, A.L. Epigenetics and complex human disease: Is there a role in ibd? *Journal*
492 *of pediatric gastroenterology and nutrition* 2008, 46 Suppl 1, E2.

493 39. Dabritz, J.; Menheniott, T.R. Linking immunity, epigenetics, and cancer in
494 inflammatory bowel disease. *Inflammatory bowel diseases* 2014, 20, 1638-1654.

495 40. Harris, R.A.; Nagy-Szakal, D.; Pedersen, N.; Opekun, A.; Bronsky, J.; Munkholm, P.;
496 Jespersgaard, C.; Andersen, P.; Melegh, B.; Ferry, G., *et al.* Genome-wide peripheral
497 blood leukocyte DNA methylation microarrays identified a single association with
498 inflammatory bowel diseases. *Inflammatory bowel diseases* 2012, 18, 2334-2341.

499 41. Bouma, G.; Xia, B.; Crusius, J.B.; Bioque, G.; Koutroubakis, I.; Von Blomberg, B.M.;
500 Meuwissen, S.G.; Pena, A.S. Distribution of four polymorphisms in the tumour
501 necrosis factor (tnf) genes in patients with inflammatory bowel disease (ibd). *Clinical*
502 *and experimental immunology* 1996, 103, 391-396.

503 42. Dionne, S.; Hiscott, J.; D'Agata, I.; Duhaime, A.; Seidman, E.G. Quantitative pcr
504 analysis of tnf-alpha and il-1 beta mrna levels in pediatric ibd mucosal biopsies.
505 *Digestive diseases and sciences* 1997, 42, 1557-1566.

506 43. Greenberg, G.R. Bugs, tnf-alpha and ibd: More fuel for the fire. *Canadian journal of*
507 *gastroenterology = Journal canadien de gastroenterologie* **2002**, *16*, 127-128.

508 44. Tighe, D.; Hall, B.; Jeyarajah, S.K.; Smith, S.; Breslin, N.; Ryan, B.; McNamara, D.
509 One-year clinical outcomes in an ibd cohort who have previously had anti-tnfa trough
510 and antibody levels assessed. *Inflammatory bowel diseases* **2017**.

511 45. Philpott, M.; Ferguson, L.R. Immunonutrition and cancer. *Mutation research* **2004**,
512 *551*, 29-42.

513 46. Saita, D.; Ferrarese, R.; Foglieni, C.; Esposito, A.; Canu, T.; Perani, L.; Ceresola,
514 E.R.; Visconti, L.; Burioni, R.; Clementi, M., *et al*. Adaptive immunity against gut
515 microbiota enhances apoe-mediated immune regulation and reduces atherosclerosis
516 and western-diet-related inflammation. *Scientific reports* **2016**, *6*, 29353.

517 47. Myles, I.A. Fast food fever: Reviewing the impacts of the western diet on immunity.
518 *Nutrition journal* **2014**, *13*, 61.

519 48. Andersen, V.; Hansen, A.K.; Heitmann, B.L. Potential impact of diet on treatment
520 effect from anti-tnf drugs in inflammatory bowel disease. *Nutrients* **2017**, *9*.

521 49. Erickson, K.L.; Medina, E.A.; Hubbard, N.E. Micronutrients and innate immunity.
522 *The Journal of infectious diseases* **2000**, *182 Suppl 1*, S5-10.

523 50. Shaik-Dasthagirisahab, Y.B.; Varvara, G.; Murmura, G.; Saggini, A.; Caraffa, A.;
524 Antinolfi, P.; Tete, S.; Tripodi, D.; Conti, F.; Cianchetti, E., *et al*. Role of vitamins d, e
525 and c in immunity and inflammation. *Journal of biological regulators and*
526 *homeostatic agents* **2013**, *27*, 291-295.

527 51. Jorgensen, S.P.; Agnholt, J.; Glerup, H.; Lyhne, S.; Villadsen, G.E.; Hvas, C.L.;
528 Bartels, L.E.; Kelsen, J.; Christensen, L.A.; Dahlerup, J.F. Clinical trial: Vitamin d3
529 treatment in crohn's disease - a randomized double-blind placebo-controlled study.
530 *Alimentary pharmacology & therapeutics* **2010**, *32*, 377-383.

531 52. Dadaei, T.; Safapoor, M.H.; Asadzadeh Aghdaei, H.; Balaii, H.; Pourhoseingholi,
532 M.A.; Naderi, N.; Zojaji, H.; Azimzadeh, P.; Mohammadi, P.; Zali, M.R. Effect of
533 vitamin d3 supplementation on tnf-alpha serum level and disease activity index in
534 iranian ibd patients. *Gastroenterology and hepatology from bed to bench* **2015**, *8*, 49-
535 55.

536 53. Crawford, A.; Wilson, D. Essential metals at the host-pathogen interface: Nutritional
537 immunity and micronutrient assimilation by human fungal pathogens. *FEMS yeast
538 research* **2015**, *15*.

539 54. Huang, Z.; Rose, A.H.; Hoffmann, P.R. The role of selenium in inflammation and
540 immunity: From molecular mechanisms to therapeutic opportunities. *Antioxidants &
541 redox signaling* **2012**, *16*, 705-743.

542 55. Seril, D.N.; Liao, J.; West, A.B.; Yang, G.Y. High-iron diet: Foe or feat in ulcerative
543 colitis and ulcerative colitis-associated carcinogenesis. *Journal of clinical
544 gastroenterology* **2006**, *40*, 391-397.

545 56. Seril, D.N.; Liao, J.; Ho, K.L.; Warsi, A.; Yang, C.S.; Yang, G.Y. Dietary iron
546 supplementation enhances dss-induced colitis and associated colorectal carcinoma
547 development in mice. *Digestive diseases and sciences* **2002**, *47*, 1266-1278.

548 57. Bayer, J.; Gomer, A.; Demir, Y.; Amano, H.; Kish, D.D.; Fairchild, R.; Heeger, P.S.
549 Effects of green tea polyphenols on murine transplant-reactive t cell immunity.
550 *Clinical immunology* **2004**, *110*, 100-108.

551 58. Kuo, C.L.; Chen, T.S.; Liou, S.Y.; Hsieh, C.C. Immunomodulatory effects of egcg
552 fraction of green tea extract in innate and adaptive immunity via t regulatory cells in
553 murine model. *Immunopharmacology and immunotoxicology* **2014**, *36*, 364-370.

554 59. Santilli, G.; Anderson, J.; Thrasher, A.J.; Sala, A. Catechins and antitumor immunity:
555 Not mdsc's cup of tea. *Oncoimmunology* **2013**, *2*, e24443.

556 60. Balan, B.J.; Sokolnicka, I.; Skopinska-Rozewska, E.; Skopinski, P. The modulatory
557 influence of some echinacea-based remedies on antibody production and cellular
558 immunity in mice. *Central-European journal of immunology* **2016**, *41*, 12-18.

559 61. Barbour, E.K.; Assi, C.A.; Shaib, H.; Hamadeh, S.; Murtada, M.; Mahmoud, G.;
560 Yaghmoor, S.; Iyer, A.; Harakeh, S.; Kumosani, T. Evaluation of a salmonella
561 enteritidis vaccine and related elisa for respective induction and assessment of
562 acquired immunity to the vaccine and/or echinacea purpurea in awassi ewes. *Vaccine*
563 **2015**, *33*, 2228-2231.

564 62. Hall, H.; Fahlman, M.M.; Engels, H.J. Echinacea purpurea and mucosal immunity.
565 *International journal of sports medicine* **2007**, *28*, 792-797.

566 63. Yamamoto, T.; Nakahigashi, M.; Saniabadi, A.R. Review article: Diet and
567 inflammatory bowel disease--epidemiology and treatment. *Alimentary pharmacology*
568 & *therapeutics* **2009**, *30*, 99-112.

569 64. Richman, E.; Rhodes, J.M. Review article: Evidence-based dietary advice for patients
570 with inflammatory bowel disease. *Alimentary pharmacology & therapeutics* **2013**, *38*,
571 1156-1171.

572 65. Brown, A.C.; Rampertab, S.D.; Mullin, G.E. Existing dietary guidelines for crohn's
573 disease and ulcerative colitis. *Expert review of gastroenterology & hepatology* **2011**,
574 *5*, 411-425.

575 66. Spooren, C.E.; Pierik, M.J.; Zeegers, M.P.; Feskens, E.J.; Mascline, A.A.; Jonkers,
576 D.M. Review article: The association of diet with onset and relapse in patients with
577 inflammatory bowel disease. *Alimentary pharmacology & therapeutics* **2013**, *38*,
578 1172-1187.

579 67. Burisch, J.; Pedersen, N.; Cukovic-Cavka, S.; Turk, N.; Kaimakliotis, I.; Duricova, D.;
580 Bortlik, M.; Shonova, O.; Vind, I.; Avnstrom, S., *et al.* Environmental factors in a
581 population-based inception cohort of inflammatory bowel disease patients in europe--
582 an ecco-epicom study. *Journal of Crohn's & colitis* **2014**, *8*, 607-616.

583 68. Ruemmele, F.M.; Veres, G.; Kolho, K.L.; Griffiths, A.; Levine, A.; Escher, J.C.; Amil
584 Dias, J.; Barabino, A.; Braegger, C.P.; Bronsky, J., *et al.* Consensus guidelines of
585 ecco/espghan on the medical management of pediatric crohn's disease. *Journal of*
586 *Crohn's & colitis* **2014**, *8*, 1179-1207.

587 69. Jones, V.A. Comparison of total parenteral nutrition and elemental diet in induction of
588 remission of crohn's disease. Long-term maintenance of remission by personalized
589 food exclusion diets. *Digestive diseases and sciences* **1987**, *32*, 100S-107S.

590 70. Nieves, R.; Jackson, R.T. Specific carbohydrate diet in treatment of inflammatory
591 bowel disease. *Tennessee medicine : journal of the Tennessee Medical Association*
592 2004, 97, 407.

593 71. Olendzki, B.C.; Silverstein, T.D.; Persuitte, G.M.; Ma, Y.; Baldwin, K.R.; Cave, D.
594 An anti-inflammatory diet as treatment for inflammatory bowel disease: A case series
595 report. *Nutrition journal* 2014, 13, 5.

596 72. Suskind, D.L.; Wahbeh, G.; Gregory, N.; Vendettuoli, H.; Christie, D. Nutritional
597 therapy in pediatric crohn disease: The specific carbohydrate diet. *Journal of pediatric*
598 *gastroenterology and nutrition* 2014, 58, 87-91.

599 73. Kakodkar, S.; Farooqui, A.J.; Mikolaitis, S.L.; Mutlu, E.A. The specific carbohydrate
600 diet for inflammatory bowel disease: A case series. *Journal of the Academy of*
601 *Nutrition and Dietetics* 2015, 115, 1226-1232.

602 74. Zhan, Y.L.; Zhan, Y.A.; Dai, S.X. Is a low fodmap diet beneficial for patients with
603 inflammatory bowel disease? A meta-analysis and systematic review. *Clinical*
604 *nutrition* 2017.

605 75. Eichelmann, F.; Schwingshackl, L.; Fedirko, V.; Aleksandrova, K. Effect of plant-
606 based diets on obesity-related inflammatory profiles: A systematic review and meta-
607 analysis of intervention trials. *Obesity reviews : an official journal of the International*
608 *Association for the Study of Obesity* 2016, 17, 1067-1079.

609 76. Arpon, A.; Riezu-Boj, J.I.; Milagro, F.I.; Razquin, C.; Martinez-Gonzalez, M.A.;
610 Corella, D.; Estruch, R.; Casas, R.; Fito, M.; Ros, E., *et al.* Adherence to
611 mediterranean diet is associated with methylation changes in inflammation-related
612 genes in peripheral blood cells. *Journal of physiology and biochemistry* 2017.

613 77. Marlow, G.; Ellett, S.; Ferguson, I.R.; Zhu, S.; Karunasinghe, N.; Jesuthasan, A.C.;

614 Han, D.Y.; Fraser, A.G.; Ferguson, L.R. Transcriptomics to study the effect of a

615 mediterranean-inspired diet on inflammation in crohn's disease patients. *Human*

616 *genomics* **2013**, *7*, 24.

617 78. Chiba, M.; Abe, T.; Tsuda, H.; Sugawara, T.; Tsuda, S.; Tozawa, H.; Fujiwara, K.;

618 Imai, H. Lifestyle-related disease in crohn's disease: Relapse prevention by a semi-

619 vegetarian diet. *World journal of gastroenterology* **2010**, *16*, 2484-2495.

620 79. Crohn's and colitis foundation. Available online:

621 [Http://www.Crohnscolitisfoundation.Org/science-and-professionals/research/current-](http://www.Crohnscolitisfoundation.Org/science-and-professionals/research/current-)

622 [research-studies/microbiome-initiative.Html](http://www.Crohnscolitisfoundation.Org/science-and-professionals/research/current-) (accessed on 15 june 2017).

623 80. The gem project.

624 [Http://www.Webcitation.Org/query?Url=http%3a%2f%2fwww.Gemproject.Ca%2f&date=2017-06-14](http://www.Webcitation.Org/query?Url=http%3a%2f%2fwww.Gemproject.Ca%2f&date=2017-06-14) (archived on 15 june 2017).

626 81. Predicct study.

627 [Http://www.Webcitation.Org/query?Url=http%3a%2f%2fwww.Predicct.Co.Uk%2f&date=2017-06-14](http://www.Webcitation.Org/query?Url=http%3a%2f%2fwww.Predicct.Co.Uk%2f&date=2017-06-14) (archived on 15 june 2017).

629

630

631

632