The precise prediction of air contaminant dispersion is essential to the air quality monitoring and the emergency management of the contaminant gases leakage incidents in the chemical industry park. The conventional atmospheric dispersion models can seldom give precise prediction due to inaccurate input parameters. In order to improve the prediction accuracy of dispersion model, two data assimilation methods (i.e. one is merely based on the typical particle filter while the other is a combination of particle filter and expectation-maximization algorithm) are proposed to assimilate the UAV observations into the atmospheric dispersion model. Two emission cases are taken into consideration, the difference between which is the different dimensions of state variables. To test the performances of the proposed methods, experiments corresponding to the two emission cases are designed and implemented. The results show that the particle filter can effectively estimate the model parameters and improve the accuracy of model prediction when the dimension of state variables is low. In contrast, when the dimension of state variables becomes higher, the method of particle filter combining expectation-maximization algorithm performs better in the parameter estimation accuracy and warm-up time. Therefore, the data assimilation methods are able to effectively support the air quality monitoring and emergency management in chemical industry parks.
Keywords:
Subject: Engineering - Chemical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.