Preprint
Article

Modeling of the Stepping Process of Negative Lightning Stepped Leaders

Altmetrics

Downloads

699

Views

569

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

22 August 2017

Posted:

22 August 2017

You are already at the latest version

Alerts
Abstract
A physical model based on the mechanism observed in experimental investigations is introduced to describe the formation of negative leader steps. Starting with a small length of a space leader located at the periphery of the negative streamer system of the stepped leader the model simulates the growth and the subsequent formation of the leader step. Based on the model, the average step length, the average step forming time and the average stepped leader propagation speed is estimated as a function of prospective return stroke peak current. The results show that the average step length and the average leader speed increases with increasing prospective return stroke current. The results also show that the speed of the stepped leader increases as it approaches the ground. For a 30 kA prospective return stroke current the average leader speed obtained is about 5 x 105 m/s and the average step length was about 10 m. The results obtained are in reasonable agreement with the experimental observations.
Keywords: 
Subject: Environmental and Earth Sciences  -   Atmospheric Science and Meteorology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated