Preprint
Article

A Content-Based Remote Sensing Image Change Information Retrieval Model

Altmetrics

Downloads

743

Views

719

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

28 August 2017

Posted:

29 August 2017

You are already at the latest version

Alerts
Abstract
With the rapid development of satellite remote sensing technology, the volume of image datasets in many application areas is growing exponentially and the demand for Land-Cover and Land-Use change remote sensing data is growing rapidly. It is thus becoming hard to efficiently and intelligently retrieve the change information that users need from massive image databases. In this paper, content-based image retrieval is successfully applied to change detection and a content-based remote sensing image change information retrieval model is introduced. First, the construction of a new model framework for change information retrieval in a remote sensing database is described. Then, as the target content cannot be expressed by one kind of feature alone, a multiple-feature integrated retrieval model is proposed. Thirdly, an experimental prototype system that was set up to demonstrate the validity and practicability of the model is described. The proposed model is a new method of acquiring change detection information from remote sensing imagery and so can reduce the need for image pre-processing, deal with problems related toseasonal changes as well as other problems encountered in the field of change detection. Meanwhile, the new model has important implications for improving remote sensing image management and autonomous information retrieval.
Keywords: 
Subject: Environmental and Earth Sciences  -   Remote Sensing
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated