

Article

Extended Dynamical Equations of the Period Vectors of Crystals under Constant External Stress to Many-body Interactions

Gang Liu

Centre for Advanced Computing, Queen's University, 99 University Ave., Kingston, Ontario, Canada K7L 3N6

* Correspondence: gang.liu@queensu.ca; gl.cell@outlook.com; Tel.: +1-613-572-6537

Abstract: Since crystals are made of periodic structures in space, predicting their three period vectors starting from any values based on the inside interactions is a basic theoretical physics problem. For the general situation where crystals are under constant external stress, we derived dynamical equations of the period vectors in the framework of Newtonian dynamics, for pair potentials recently (doi:/10.1139/cjp-2014-0518). The derived dynamical equations show that the period vectors are driven by the imbalance between the internal and external stresses. This presents a physical process where when the external stress changes, the crystal structure changes accordingly, since the original internal stress can not balance the external stress. The internal stress has both a full kinetic energy term and a full interaction term. It is extended to many-body interactions in this paper. As a result, all conclusions in the pair-potential case also apply for many-body potentials.

Keywords: dynamical equation; crystal; period vectors; periodic structure; period dynamics; pressure; stress; many-body interaction; molecular dynamics; periodic boundary conditions

PACS: 61.50.Ah, 62.50.-p, 45.05.+x, 45.20.D-

1. Introduction

The spacial periodicity of the crystal structures is presented in almost all solid state physics books[1-3]. Then a basic and general theory of predicting crystal structures under external pressure/stress is very desired. In 1980, by extending Andersen's idea[4], Parrinello and Rahman proposed their theory of such for the first time in science history[5,6], when they met the same problem in molecular dynamics (MD) simulations with the periodic boundary condition being applied[7-9]. Then many more efforts have been devoted to this fundamental physics problem [10-30]. While all the rest of them were based on Lagrangian/Hamiltonian dynamics or minimizing (Gibbs) energy or enthalpy of the system, our recent effort[30] followed Newtonian dynamics.

According to the Born-Oppenheimer approximation, electrons and ions of crystals are treated separately. Assuming the motion of the electrons is always solved by applying quantum mechanics with respect to any given configuration of the ions, let us focus on the motion of the ions only, which is usually described in the framework of classical physics. In other words, electrons are regarded as a solvable media of interactions among the ions, and in this paper all forces by the electrons are assumed effectively included in the empirical many-body interactions among ions. Then a crystal structure is reduced to a periodic arrangement of exactly the same cells of ions in three-dimensional space. As usually done in MD simulations, the spacial periodicity of the system structure is always assumed throughout this paper, however the ions move and the size and shape of the cells change.

32 Using MD terms, the cell at the center of the crystal is called the MD cell and the ions in the MD cell
 33 are called the MD ions. Then the position vectors of the MD ions and the period vectors form the
 34 complete degrees of freedom of the crystal. The period vectors are also the edge vectors of a cell, which
 35 determine the size and shape of cells. The period vectors may also be called basic vectors or primitive
 36 translation vectors in solid state physics. Since crystals are formed based on the interactions of the
 37 ions, their structures should be predictable/determinable by dynamics. No doubt, the dynamics of
 38 the MD ions is given by Newton's second law, then the only task left is to derive the dynamics of the
 39 three independent period vectors for crystals under external stress. All the dynamics should drive the
 40 system from a state of any positions of the MD ions and any size and shape of the MD cell towards an
 41 equilibrium state, where the structure is usually measured in experiments.

42 In our recent work[30], while Newton's second law on the MD ions was strictly preserved, the
 43 dynamical equations of the period vectors were derived into the form where the period vectors are
 44 driven by the imbalance between the internal and external stresses, by repeatedly applying Newton's
 45 laws. This means that when a crystal achieves an equilibrium state, the internal and external stresses
 46 must balance each other. It also presents a physical process where when the external stress changes, the
 47 crystal structure changes accordingly, because the original internal stress can not balance the external
 48 stress. Especially, the derived internal stress has both the full kinetic energy term and the full interaction
 49 term. Since it was done for pair-potential only and many-body interactions are widely used[31], let us
 50 extend it to many-body interactions here. As a result, all conclusions in the pair-potential case also
 51 apply for many-body potentials.

52 This paper is organized as follows, reflecting our three major steps. After a description
 53 of our model in Sec.2, Newton's second law is applied on half systems to get instantaneous
 54 dynamical equations of the period vectors in Sec.3. Statistics of the above dynamical equations
 55 over indistinguishable translated states is carried out to improve them in Sec.4. Forces associated with
 56 momentum transportation and statistics over ions' moving directions are further implemented in the
 57 dynamical equations in Sec.5. Sec.6 is devoted to summary and discussion.

58 2. Model

59 The limited macroscopic bulk of a crystal with an "unlimited" inside microscopic periodic
 60 structure is taken as the model. We use \mathbf{a} , \mathbf{b} , and \mathbf{c} as the three independent period vectors, forming
 61 a right-handed triad. Then each cell can be denoted by the corresponding lattice translation vector
 62 $\mathbf{T} = T_a \mathbf{a} + T_b \mathbf{b} + T_c \mathbf{c}$, with integers T_a , T_b , T_c ranging from negative infinity to positive infinity. As
 63 mentioned above, the specific cell of $\mathbf{T} = 0$ in the center is the MD cell, and the ions in it are the MD
 64 ions. Since we study the properties of the inner part of the bulk around the MD cell, far-away surface
 65 effects are neglected.

The external action on the surface is expressed by the constant external stress tensor (or dyad) $\boldsymbol{\Gamma}$. The corresponding external forces are modeled as applied by the surrounding external walls contacting the surface of the bulk. For the case of constant external pressure p , $\boldsymbol{\Gamma} = p\mathbf{I}$, where \mathbf{I} is an identity tensor or unit matrix, and the positive direction is defined from inside to outside of the bulk. By definition, the external force acting on an infinitesimal surface area vector $d\mathbf{s}$ of the bulk is $d\mathbf{F} = \boldsymbol{\Gamma} \cdot d\mathbf{s}$. The net external force on the bulk is

$$\mathbf{F} = \oint_{sf} \boldsymbol{\Gamma} \cdot d\mathbf{s} = \boldsymbol{\Gamma} \cdot \oint_{sf} d\mathbf{s} = 0, \quad (1)$$

66 where the integral is over all the surface of the bulk, and therefore the bulk has no acceleration. The
 67 external stress $\boldsymbol{\Gamma}$ is assumed to be symmetric, i.e., for all of its components $\Gamma_{i,j} = \Gamma_{j,i}$. This assumption
 68 ensures that the net external torque on the bulk is zero.

As said previously, the dynamics for the MD ions is always Newton's second law

$$m_i \ddot{\mathbf{r}}_i = \mathbf{F}_i \quad (i = 1, 2, \dots, n), \quad (2)$$

69 where \mathbf{r}_i is the position vector of the i th MD ion with mass m_i , \mathbf{F}_i is the net force acting on MD ion
 70 i from all other ions of any cell (but no external force on MD ions due to distance from the crystal
 71 surface), and n is the total number of MD ions. Then we will derive the dynamical equations for the
 72 period vectors in the following.

For general purposes, consider 2-body, 3-body, \dots , up to M -body interactions among any group of ions in any possible configurations. Since these many-body interactions are independent on each other, forces and potentials can be written as a summation of individual m -body contributions. For example, the net force on MD ion i can be expanded as

$$\mathbf{F}_i = \sum_{m=2}^M \mathbf{F}_i^{(m)}, \quad (3)$$

73 where $\mathbf{F}_i^{(m)}$ is the contribution of m -body interactions.

For identifying an ion in the many-body interactions across the whole crystal effectively, a simplified form of index I_k was used for it, so that its position vector can be expressed as

$$\mathbf{r}_{I_k} = I_{k,\mathbf{a}} \mathbf{a} + I_{k,\mathbf{b}} \mathbf{b} + I_{k,\mathbf{c}} \mathbf{c} + \mathbf{r}_{i_k}, \quad (4)$$

where $I_{k,\mathbf{a}}$, $I_{k,\mathbf{b}}$, and $I_{k,\mathbf{c}}$ are any values of integers representing the cell in which it resides, and i_k , ranging from 1 to n , refers to its corresponding image ion in the MD cell. This means that I_k represents the total four independent integer variables of $(I_{k,\mathbf{a}}, I_{k,\mathbf{b}}, I_{k,\mathbf{c}}, i_k)$. A summation over I_k means the nested summations over the four corresponding integers. As there are m distinct ions participating in any m -body interaction, the subscript k in I_k is used to index the ions from 1 to m in such an interaction. Since no pair of ions can occupy the same physical location, for any pair of indexes I_k and $I_{k'}$, the expression

$$(I_{k,\mathbf{a}} - I_{k',\mathbf{a}})^2 + (I_{k,\mathbf{b}} - I_{k',\mathbf{b}})^2 + (I_{k,\mathbf{c}} - I_{k',\mathbf{c}})^2 + (i_k - i_{k'})^2 \neq 0 \quad (5)$$

74 is always assumed inside any m -body interaction throughout this article. This also means that for
 75 MD ion $i_{k'}$ and any other ion I_k , the expression $(I_{k,\mathbf{a}})^2 + (I_{k,\mathbf{b}})^2 + (I_{k,\mathbf{c}})^2 + (i_k - i_{k'})^2 \neq 0$ is always true,
 76 and that for any two MD ions i_k and $i_{k'}$, the mutual exclusive relationship $i_k \neq i_{k'}$ is always true inside
 77 any m -body interaction.

Based on Newton's third law, the net force of the m -body interaction in any given m -ion configuration should be zero

$$\sum_{k=1}^m \mathbf{f}_{I_k}^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}) = 0, \quad (6)$$

where $\mathbf{f}_{I_k}^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m})$ is the force acting on ion I_k by all the rest total $m - 1$ ions. Further considering the periodicity of the system, the net m -body force acting on all MD ions should also be zero:

$$\sum_{i_1=1}^n \mathbf{F}_{i_1}^{(m)} = 0, \quad (7)$$

where

$$\mathbf{F}_{i_1}^{(m)} = \frac{1}{(m-1)!} \sum_{\{I_2, I_3, \dots, I_m\}} \mathbf{f}_{i_1}^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}). \quad (8)$$

Equation (7) means no internal force can push the system as a whole to accelerate. With Eqs. (3) and (7) combined, it follows that the net of all forces acting on all MD ions is zero, i.e.

$$\sum_{i=1}^n m_i \ddot{\mathbf{r}}_i = \sum_{i=1}^n \mathbf{F}_i = 0, \quad (9)$$

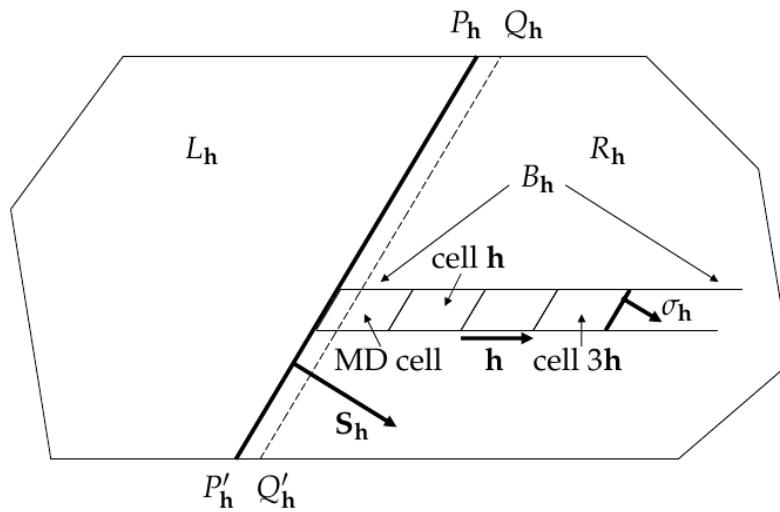


Figure 1. A sketch for the bulk of a crystal being cut by plane $P_h P'_h$, with a cross section area vector S_h . Plane $P_h P'_h$ is chosen such that for a given period vector $\mathbf{h} = \mathbf{a}, \mathbf{b}$, or \mathbf{c} , the right (R_h) part contains all $\mathbf{T} = T_a \mathbf{a} + T_b \mathbf{b} + T_c \mathbf{c}$ cells with $T_h \geq 0$, and the left (L_h) part contains all the rest \mathbf{T} cells with $T_h < 0$. The “half-line-cell” bar B_h is composed of the MD cell and cells $\mathbf{h}, 2\mathbf{h}, 3\mathbf{h}, 4\mathbf{h}$, etc., till the surface. Newton’s second law is applied to the R_h part for the dynamical equations of the period vectors. (This figure was copied from [30].)

78 where the summation indexes i and i_1 are identical. Employing the centre-of-mass coordinate system
 79 of the MD cell for all the work throughout this paper, the total momentum of the MD cell is zero.

80 As the period vectors may change with time, the volume $\Omega = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ and shape of the MD
 81 cell and those of the bulk should also change accordingly.

82 3. Instantaneous Dynamics

83 In order to find the dynamical equations for the period vectors, imagine a plane $P_h P'_h$ that cuts
 84 the model bulk into a right part and a left part, with S_h as the area vector of the cross section between
 85 the two parts in the direction of pointing to the right part, as shown in Fig.1. Plane $P_h P'_h$ is chosen such
 86 that, for a given period vector $\mathbf{h} = \mathbf{a}, \mathbf{b}$, or \mathbf{c} , the right (R_h) part contains all $\mathbf{T} = T_a \mathbf{a} + T_b \mathbf{b} + T_c \mathbf{c}$ cells
 87 with $T_h \geq 0$, and the left (L_h) part contains all the rest \mathbf{T} cells with $T_h < 0$.

Apply Newton’s second law to a “snapshot” of the right (R_h) part. Then, the net external force
 acting on the R_h part is

$$F_{E,R} = \int_{R_h,sf} \Gamma \cdot d\mathbf{s} = \Gamma \cdot \int_{R_h,sf} d\mathbf{s} = \Gamma \cdot S_h, \quad (10)$$

where the integral is over the surface of the bulk in the R_h part. Let $F_{L \rightarrow R}$ be the net force acting on the
 R_h part by the L_h part. Then the dynamical equation of the R_h part is

$$M_R \ddot{\mathbf{r}}_{RC} = F_{L \rightarrow R} + \Gamma \cdot S_h, \quad (11)$$

88 where M_R is the total mass of the R_h part and $\ddot{\mathbf{r}}_{RC}$ is the acceleration of the centre of mass of the R_h
 89 part.

Since surface effects are neglected, $F_{L \rightarrow R}$ should be uniformly distributed cell by cell across the
 section S_h between the two parts. Dividing Eq. (11) by

$$N_h = |S_h| / |\sigma_h|, \quad (12)$$

where: $\sigma_{\mathbf{h}} = \partial\Omega/\partial\mathbf{h}$ is the (right) surface area vector of a cell with respect to the period \mathbf{h} , then

$$\frac{1}{N_{\mathbf{h}}} M_R \ddot{\mathbf{r}}_{RC} = \mathbf{F}_{\mathbf{h}} + \boldsymbol{\Gamma} \cdot \sigma_{\mathbf{h}}, \quad (13)$$

where

$$\mathbf{F}_{\mathbf{h}} = \frac{1}{N_{\mathbf{h}}} \mathbf{F}_{L \rightarrow R}, \quad (14)$$

which is the net force, by the $L_{\mathbf{h}}$ part, acting on the "half-line-cell" bar $B_{\mathbf{h}}$ composed of the MD cell and cells \mathbf{h} , $2\mathbf{h}$, $3\mathbf{h}$, $4\mathbf{h}$, etc., till the surface, as shown in Fig.1.

Using Eq. (9), the left hand side of Eq. (13) becomes

$$\frac{1}{N_{\mathbf{h}}} M_R \ddot{\mathbf{r}}_{RC} = \frac{1}{N_{\mathbf{h}}} \sum_{\mathbf{T} \in R_{\mathbf{h}}} \sum_{i=1}^n m_i (\ddot{\mathbf{r}}_i + \ddot{\mathbf{T}}) = \frac{M_{cell}}{N_{\mathbf{h}}} \sum_{\mathbf{T} \in R_{\mathbf{h}}} \ddot{\mathbf{T}}, \quad (15)$$

where the total cell mass is $M_{cell} = \sum_{i=1}^n m_i$ and the nested summations of $\sum_{\mathbf{T} \in R_{\mathbf{h}}} \sum_{i=1}^n$ mean all ions in the $R_{\mathbf{h}}$ part are counted. Noticing that $\ddot{\mathbf{T}} = T_{\mathbf{a}} \ddot{\mathbf{a}} + T_{\mathbf{b}} \ddot{\mathbf{b}} + T_{\mathbf{c}} \ddot{\mathbf{c}}$, Eq. (15) may be written as:

$$\frac{1}{N_{\mathbf{h}}} M_R \ddot{\mathbf{r}}_{RC} = \alpha_{\mathbf{h},\mathbf{a}} \ddot{\mathbf{a}} + \alpha_{\mathbf{h},\mathbf{b}} \ddot{\mathbf{b}} + \alpha_{\mathbf{h},\mathbf{c}} \ddot{\mathbf{c}}, \quad (16)$$

where

$$\alpha_{\mathbf{h},\mathbf{h}'} = \frac{M_{cell}}{N_{\mathbf{h}}} \sum_{\mathbf{T} \in R_{\mathbf{h}}} T_{\mathbf{h}'} \quad (\mathbf{h}' = \mathbf{a}, \mathbf{b}, \mathbf{c}). \quad (17)$$

In the $R_{\mathbf{h}}$ part, $T_{\mathbf{h}}$ is always non-negative, but for any $T_{\mathbf{h}' \neq \mathbf{h}}$, it is assumed there exists another $-T_{\mathbf{h}'}$ that cancels it in the above summation. Therefore, all non-diagonal terms $\alpha_{\mathbf{h},\mathbf{h}' \neq \mathbf{h}}$ are neglected. Then Eq. (13) becomes

$$\alpha_{\mathbf{h},\mathbf{h}} \ddot{\mathbf{h}} = \mathbf{F}_{\mathbf{h}} + \boldsymbol{\Gamma} \cdot \sigma_{\mathbf{h}}. \quad (18)$$

Considering all many-body interactions, the net force $\mathbf{F}_{\mathbf{h}}$ in Eq. (18) can be written as:

$$\mathbf{F}_{\mathbf{h}} = \sum_{m=2}^M \mathbf{F}_{\mathbf{h}}^{(m)}, \quad (19)$$

where $\mathbf{F}_{\mathbf{h}}^{(m)}$ is the contribution of m -body interactions.

The m -body interaction between the right and left part of the crystal means that the participating ions must be distributed in both parts, namely that not all participating ions are in the same part. Then $\mathbf{F}_{\mathbf{h}}^{(m)}$ is the net force on ions in the right part of all such possible configurations divided by $N_{\mathbf{h}}$. For total t ions ($m > t \geq 1$) in the right part (the rest of the ions are in the left part at the same time), the corresponding net force for all possibilities is

$$\begin{aligned} \mathbf{F}_{t,\mathbf{h}}^{(m)} &= \frac{1}{N_{\mathbf{h}}} \frac{1}{t! (m-t)!} \sum_{\{I_1, I_2, \dots, I_t\}}^{\left(I_{1,\mathbf{h}}, I_{2,\mathbf{h}}, \dots, I_{t,\mathbf{h}} \geq 0\right)} \sum_{\{I_{t+1}, I_{t+2}, \dots, I_m\}}^{\left(I_{t+1,\mathbf{h}}, I_{t+2,\mathbf{h}}, \dots, I_{m,\mathbf{h}} < 0\right)} \sum_{\mu=1}^t \mathbf{f}_{I_{\mu}}^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \dots, \mathbf{r}_{I_m}) \\ &= \frac{1}{N_{\mathbf{h}}} \frac{1}{t! (m-t)!} \sum_{\{I_1, I_2, \dots, I_t\}}^{\left(I_{1,\mathbf{h}}, I_{2,\mathbf{h}}, \dots, I_{t,\mathbf{h}} \geq 0\right)} \sum_{\{I_{t+1}, I_{t+2}, \dots, I_m\}}^{\left(I_{t+1,\mathbf{h}}, I_{t+2,\mathbf{h}}, \dots, I_{m,\mathbf{h}} < 0\right)} t \mathbf{f}_{I_1}^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \dots, \mathbf{r}_{I_m}) \\ &= \frac{1}{N_{\mathbf{h}}} \frac{1}{(t-1)! (m-t)!} \sum_{\{I_1, I_2, \dots, I_t\}}^{\left(I_{1,\mathbf{h}}, I_{2,\mathbf{h}}, \dots, I_{t,\mathbf{h}} \geq 0\right)} \sum_{\{I_{t+1}, I_{t+2}, \dots, I_m\}}^{\left(I_{t+1,\mathbf{h}}, I_{t+2,\mathbf{h}}, \dots, I_{m,\mathbf{h}} < 0\right)} \mathbf{f}_{I_1}^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \dots, \mathbf{r}_{I_m}), \end{aligned} \quad (20)$$

where $\sum_{\{\dots\}}^{(\dots)}$ denotes the nested summations over indexes in $\{\dots\}$ with conditions in (\dots) , and commutability among ions in each part is considered. If there are indexes listed in the condition (\dots) expression, the condition applies to all of them, otherwise applies to all the corresponding indexes listed in $\{\dots\}$. For example, $\sum_{\{i,j,k\}}^{(i,j<0)}$ restricts $i < 0$ and $j < 0$, while $\sum_{\{i,j,k\}}^{(\text{positive})}$ requires $i > 0, j > 0$, and $k > 0$. If there is only one index in the condition expression, the brackets may be omitted. Throughout this article, all layers of nested summations should be realized into reasonable forms even for special situations. For example, for $k = 1$:

$$\sum_{\{I_2, I_3, \dots, I_k\}}^{(I_2, h, I_3, h, \dots, I_k, h = 0)} \sum_{\{I_{k+1}, I_{k+2}, \dots, I_m\}}^{(I_{k+1}, h, I_{k+2}, h, \dots, I_m, h > 0)} (\dots) = \sum_{\{I_{k+1}, I_{k+2}, \dots, I_m\}}^{(I_{k+1}, h, I_{k+2}, h, \dots, I_m, h > 0)} (\dots); \quad (21)$$

while for $k = m$:

$$\sum_{\{I_2, I_3, \dots, I_k\}}^{(I_2, h, I_3, h, \dots, I_k, h = 0)} \sum_{\{I_{k+1}, I_{k+2}, \dots, I_m\}}^{(I_{k+1}, h, I_{k+2}, h, \dots, I_m, h > 0)} (\dots) = \sum_{\{I_2, I_3, \dots, I_k\}}^{(I_2, h, I_3, h, \dots, I_k, h = 0)} (\dots). \quad (22)$$

Remembering that

$$\sum_{I_1}^{I_{1,h} \geq 0} (\dots) = \sum_{I_{1,h}}^{I_{1,h} \geq 0} \sum_{I_{1,h'}} \sum_{I_{1,h''}} \sum_{i_1=1}^n (\dots), \quad (23)$$

where $\mathbf{h}', \mathbf{h}''$ are also period vectors with possible values $(\mathbf{h}, \mathbf{h}', \mathbf{h}'') = (\mathbf{a}, \mathbf{b}, \mathbf{c})$, or $(\mathbf{b}, \mathbf{c}, \mathbf{a})$, or $(\mathbf{c}, \mathbf{a}, \mathbf{b})$ only, considering the crystal translatability, employing $N_{\mathbf{h}} = \sum_{I_{1,h}} \sum_{I_{1,h''}} 1$, and setting $I_{1,h'} = I_{1,h''} = 0$, Eq. (20) becomes

$$\mathbf{F}_{t,\mathbf{h}}^{(m)} = \frac{1}{(t-1)! (m-t)!} \sum_{I_{1,h}=0}^{+\infty} \sum_{i_1=1}^n \sum_{\{I_2, I_3, \dots, I_t\}}^{(I_2, h, I_3, h, \dots, I_t, h \geq 0)} \sum_{\{I_{t+1}, I_{t+2}, \dots, I_m\}}^{(I_{t+1}, h, I_{t+2}, h, \dots, I_m, h < 0)} \mathbf{f}_{I_1}^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}). \quad (24)$$

Translating the system so that the cell containing ion I_1 , which is $I_{1,h} = 0\mathbf{h}, 1\mathbf{h}, 2\mathbf{h}, 3\mathbf{h}, \dots$, becomes the MD cell, Eq. (24) can be further written as:

$$\mathbf{F}_{t,\mathbf{h}}^{(m)} = \frac{1}{(t-1)! (m-t)!} \sum_{l=0}^{-\infty} \sum_{i_1=1}^n \sum_{\{I_2, I_3, \dots, I_t\}}^{(I_2, h, I_3, h, \dots, I_t, h \geq l)} \sum_{\{I_{t+1}, I_{t+2}, \dots, I_m\}}^{(I_{t+1}, h, I_{t+2}, h, \dots, I_m, h < l)} \mathbf{f}_{i_1}^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}), \quad (25)$$

and Eq. (19) becomes:

$$\begin{aligned} \mathbf{F}_{\mathbf{h}} &= \sum_{m=2}^M \sum_{t=1}^{m-1} \mathbf{F}_{t,\mathbf{h}}^{(m)} \\ &= \sum_{m=2}^M \sum_{t=1}^{m-1} \frac{1}{(t-1)! (m-t)!} \sum_{l=0}^{-\infty} \sum_{i_1=1}^n \sum_{\{I_2, I_3, \dots, I_t\}}^{(I_2, h, I_3, h, \dots, I_t, h \geq l)} \sum_{\{I_{t+1}, I_{t+2}, \dots, I_m\}}^{(I_{t+1}, h, I_{t+2}, h, \dots, I_m, h < l)} \mathbf{f}_{i_1}^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}). \end{aligned} \quad (26)$$

Considering m -body potential $\varphi^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \dots, \mathbf{r}_{I_m})$, and supposing only s ($m \geq s \geq 1$) of the m ions are in the MD cell (all other ions are outside), where only a fraction s/m of the potential belongs to the cell, the sum of all such potential belonging to the cell is:

$$E_{p,cell,s}^{(m)} = \frac{s}{m} \frac{1}{s!(m-s)!} \sum_{\{i_1, i_2, \dots, i_s\}} \sum_{\{I_{s+1}, I_{s+2}, \dots, I_m\}}^{(\text{inside the cell}) (\text{outside the cell})} \varphi^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{i_2}, \dots, \mathbf{r}_{i_s}, \mathbf{r}_{I_{s+1}}, \mathbf{r}_{I_{s+2}}, \dots, \mathbf{r}_{I_m}). \quad (27)$$

105 Since the set of values $s' = s - 1 = 0, 1, 2, \dots, m - 1$ means all possible situations where all ions, except
 106 ion i_1 (kept inside the cell), are placed inside or outside of the cell, one has:

$$\begin{aligned} & \frac{1}{(m-1)!} \sum_{i_1}^{\text{(inside the cell)}} \sum_{\{I_2, I_3, \dots, I_m\}} \varphi^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}) \\ &= \sum_{s'=0}^{m-1} \frac{1}{s'!(m-1-s')!} \sum_{\{i_1, I_2, \dots, I_s\}}^{\text{(inside the cell)}} \sum_{\{I_{s+1}, I_{s+2}, \dots, I_m\}}^{\text{(outside the cell)}} \varphi^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \dots, \mathbf{r}_{I_s}, \mathbf{r}_{I_{s+1}}, \mathbf{r}_{I_{s+2}}, \dots, \mathbf{r}_{I_m}). \quad (28) \end{aligned}$$

107 Then the m -body cell potential energy becomes:

$$E_{p,cell}^{(m)} = \sum_{s=1}^m E_{p,cell,s}^{(m)} = \frac{1}{m!} \sum_{i_1=1}^n \sum_{\{I_2, I_3, \dots, I_m\}} \varphi^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}). \quad (29)$$

108 As a result, the total up to M -body cell potential energy is:

$$E_{p,cell} = \sum_{m=2}^M E_{p,cell}^{(m)} = \sum_{m=2}^M \frac{1}{m!} \sum_{i_1=1}^n \sum_{\{I_2, I_3, \dots, I_m\}} \varphi^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}). \quad (30)$$

109 Making use of Eq. (4), take the derivative:

$$\begin{aligned} -\frac{\partial}{\partial \mathbf{h}} E_{p,cell}^{(m)} &= \frac{1}{m!} \sum_{i_1=1}^n \sum_{\{I_2, I_3, \dots, I_m\}} \sum_{k=2}^m I_{k,\mathbf{h}} \mathbf{f}_{I_k}^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}) \\ &= \frac{1}{m!} \sum_{i_1=1}^n \sum_{\{I_2, I_3, \dots, I_m\}} (m-1) I_{m,\mathbf{h}} \mathbf{f}_{I_m}^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}) \\ &= \frac{1}{m(m-2)!} \sum_{i_1=1}^n \sum_{\{I_2, I_3, \dots, I_m\}} I_{m,\mathbf{h}} \mathbf{f}_{I_m}^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}), \quad (31) \end{aligned}$$

with the force:

$$\mathbf{f}_{I_k}^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \dots, \mathbf{r}_{I_m}) = -\frac{\partial}{\partial \mathbf{r}_{I_k}} \varphi^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \dots, \mathbf{r}_{I_m}). \quad (32)$$

The right side of Eq. (31) can be split into two terms based on the sign of $I_{m,\mathbf{h}}$, so that:

$$-\frac{\partial}{\partial \mathbf{h}} E_{p,cell}^{(m)} = \mathbf{F}_{\mathbf{h},+}^{(m)} + \mathbf{F}_{\mathbf{h},-}^{(m)}, \quad (33)$$

110 where:

$$\begin{aligned} \mathbf{F}_{\mathbf{h},+}^{(m)} &= \frac{1}{m(m-2)!} \sum_{i_1=1}^n \sum_{\{I_2, I_3, \dots, I_m\}}^{I_{m,\mathbf{h}} > 0} I_{m,\mathbf{h}} \mathbf{f}_{I_m}^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}) \\ &= \frac{1}{m(m-2)!} \sum_{l=0}^{+\infty} \sum_{i_1=1}^n \sum_{\{I_2, I_3, \dots, I_m\}}^{I_{m,\mathbf{h}} > l} \mathbf{f}_{I_m}^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}), \quad (34) \end{aligned}$$

111 and

$$\begin{aligned} \mathbf{F}_{\mathbf{h},-}^{(m)} &= \frac{1}{m(m-2)!} \sum_{i_1=1}^n \sum_{\{I_2, I_3, \dots, I_m\}}^{I_{m,\mathbf{h}} < 0} I_{m,\mathbf{h}} \mathbf{f}_{I_m}^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}) \\ &= \frac{-1}{m(m-2)!} \sum_{l=0}^{-\infty} \sum_{i_1=1}^n \sum_{\{I_2, I_3, \dots, I_m\}}^{I_{m,\mathbf{h}} < l} \mathbf{f}_{I_m}^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}). \quad (35) \end{aligned}$$

112 By making use of the translatability to move the system so that the cell $I_{m,\mathbf{h}}\mathbf{h} + I_{m,\mathbf{h}'}\mathbf{h}' + I_{m,\mathbf{h}''}\mathbf{h}''$,
 113 in which ion I_m resides, is translated to the MD cell, Eq. (34) becomes

$$\begin{aligned}\mathbf{F}_{\mathbf{h},+}^{(m)} &= \frac{1}{m(m-2)!} \sum_{l=0}^{+\infty} \sum_{I_1}^{I_{1,\mathbf{h}} < -l} \sum_{\{I_2, I_3, \dots, I_{m-1}\}} \sum_{i_m=1}^n \mathbf{f}_{i_m}^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{i_m}) \\ &= \frac{1}{m(m-2)!} \sum_{l=0}^{-\infty} \sum_{I_1}^{I_{1,\mathbf{h}} < l} \sum_{\{I_2, I_3, \dots, I_{m-1}\}} \sum_{i_m=1}^n \mathbf{f}_{i_m}^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{i_m}).\end{aligned}\quad (36)$$

114 Renaming ion i_m as ion I_1 and ion I_1 as ion i_m , then

$$\mathbf{F}_{\mathbf{h},+}^{(m)} = \frac{1}{m(m-2)!} \sum_{l=0}^{-\infty} \sum_{i_1=1}^n \sum_{\{I_2, I_3, \dots, I_{m-1}\}} \sum_{I_m}^{I_{m,\mathbf{h}} < l} \mathbf{f}_{i_1}^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}).\quad (37)$$

115 Expand it with respect to t' , the number of ions distributed in the part of the crystal defined by $I_{k,\mathbf{h}} \geq l$,
 116 of total $m-2$ ions indexed from I_2 to I_{m-1} , then

$$\begin{aligned}\mathbf{F}_{\mathbf{h},+}^{(m)} &= \frac{1}{m} \sum_{t'=0}^{m-2} \sum_{l=0}^{-\infty} \sum_{i_1=1}^n \sum_{\{I_2, I_3, \dots, I_{t'+1}\}}^{(I_{2,\mathbf{h}}, I_{3,\mathbf{h}}, \dots, I_{t'+1,\mathbf{h}} \geq l)} \sum_{\{I_{t'+2}, I_{t'+3}, \dots, I_{m-1}\}}^{(I_{t'+2,\mathbf{h}}, I_{t'+3,\mathbf{h}}, \dots, I_{m-1,\mathbf{h}} < l)} \sum_{I_m}^{I_{m,\mathbf{h}} < l} \frac{\mathbf{f}_{i_1}^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m})}{t'! (m-2-t')!} \\ &= \sum_{t=1}^{m-1} \frac{m-t}{m} \mathbf{F}_{t,\mathbf{h}}^{(m)},\end{aligned}\quad (38)$$

117 where t is actually equal to $t' + 1$.

118 Now let us make use of the translatability to move the system so that cell $I_{m,\mathbf{h}}\mathbf{h} + I_{m,\mathbf{h}'}\mathbf{h}' + I_{m,\mathbf{h}''}\mathbf{h}''$,
 119 in which ion I_m resides, is translated to the MD cell, then Eq. (35) becomes

$$\begin{aligned}\mathbf{F}_{\mathbf{h},-}^{(m)} &= \frac{-1}{m(m-2)!} \sum_{l=0}^{-\infty} \sum_{I_1}^{I_{1,\mathbf{h}} > -l} \sum_{\{I_2, I_3, \dots, I_{m-1}\}} \sum_{i_m=1}^n \mathbf{f}_{i_m}^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{i_m}) \\ &= \frac{-1}{m(m-2)!} \sum_{l=0}^{+\infty} \sum_{I_1}^{I_{1,\mathbf{h}} > l} \sum_{\{I_2, I_3, \dots, I_{m-1}\}} \sum_{i_m=1}^n \mathbf{f}_{i_m}^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{i_m}).\end{aligned}\quad (39)$$

120 Expand the above equation with respect to $t' = t - 1$, the number of ions distributed in the part of the
 121 crystal defined by $I_{k,\mathbf{h}} > l$, of total $m-2$ ions indexed from I_2 to I_{m-1} , then it changes into

$$\mathbf{F}_{\mathbf{h},-}^{(m)} = \frac{-1}{m} \sum_{t'=0}^{m-2} \sum_{l=0}^{+\infty} \sum_{\{I_1, I_2, \dots, I_t\}}^{(I_{1,\mathbf{h}}, I_{2,\mathbf{h}}, \dots, I_{t,\mathbf{h}} > l)} \sum_{\{I_{t+1}, I_{t+2}, \dots, I_{m-1}\}}^{(I_{t+1,\mathbf{h}}, I_{t+2,\mathbf{h}}, \dots, I_{m-1,\mathbf{h}} \leq l)} \sum_{i_m=1}^n \frac{\mathbf{f}_{i_m}^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{i_m})}{t'! (m-2-t')!}.\quad (40)$$

122 Meanwhile, employing Eq. (6), the first line of Eq. (20) can also be written as

$$\begin{aligned}
 \mathbf{F}_{t,\mathbf{h}}^{(m)} &= \frac{-1}{N_{\mathbf{h}} t! (m-t)!} \sum_{\{I_1, I_2, \dots, I_t\}}^{\left(I_{1,\mathbf{h}}, I_{2,\mathbf{h}}, \dots, I_{t,\mathbf{h}} \geq 0\right)} \sum_{\{I_{t+1}, I_{t+2}, \dots, I_m\}}^{\left(I_{t+1,\mathbf{h}}, I_{t+2,\mathbf{h}}, \dots, I_{m,\mathbf{h}} < 0\right)} \sum_{\mu=t+1}^m \mathbf{f}_{I_\mu}^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \dots, \mathbf{r}_{I_m}) \\
 &= \frac{-1}{N_{\mathbf{h}} t! (m-t)!} \sum_{\{I_1, I_2, \dots, I_t\}}^{\left(I_{1,\mathbf{h}}, I_{2,\mathbf{h}}, \dots, I_{t,\mathbf{h}} \geq 0\right)} \sum_{\{I_{t+1}, I_{t+2}, \dots, I_m\}}^{\left(I_{t+1,\mathbf{h}}, I_{t+2,\mathbf{h}}, \dots, I_{m,\mathbf{h}} < 0\right)} (m-t) \mathbf{f}_{I_m}^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \dots, \mathbf{r}_{I_m}) \\
 &= \frac{-1}{N_{\mathbf{h}} t! (m-t-1)!} \sum_{\{I_1, I_2, \dots, I_t\}}^{\left(I_{1,\mathbf{h}}, I_{2,\mathbf{h}}, \dots, I_{t,\mathbf{h}} \geq 0\right)} \sum_{\{I_{t+1}, I_{t+2}, \dots, I_m\}}^{\left(I_{t+1,\mathbf{h}}, I_{t+2,\mathbf{h}}, \dots, I_{m,\mathbf{h}} < 0\right)} \mathbf{f}_{I_m}^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \dots, \mathbf{r}_{I_m}) \\
 &= \frac{-1}{t! (m-t-1)!} \sum_{\{I_1, I_2, \dots, I_t\}}^{\left(I_{1,\mathbf{h}}, I_{2,\mathbf{h}}, \dots, I_{t,\mathbf{h}} \geq 0\right)} \sum_{\{I_{t+1}, I_{t+2}, \dots, I_{m-1}\}}^{\left(I_{t+1,\mathbf{h}}, I_{t+2,\mathbf{h}}, \dots, I_{m-1,\mathbf{h}} < 0\right)} \sum_{I_{m,\mathbf{h}} < 0}^{\left(I_{m,\mathbf{h}} < 0\right)} \sum_{i_m=1}^n \mathbf{f}_{I_m}^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \dots, \mathbf{r}_{I_m}),
 \end{aligned} \tag{41}$$

where in the last line, $I_{m,\mathbf{h}'} = I_{m,\mathbf{h}''} = 0$, which means the cell containing ion I_m can be and only be $I_{m,\mathbf{h}} \mathbf{h} = -1\mathbf{h}, -2\mathbf{h}, -3\mathbf{h}, \dots$. Translating the system so that the cell containing ion I_m becomes the MD cell, Eq. (41) becomes:

$$\mathbf{F}_{t,\mathbf{h}}^{(m)} = \frac{-1}{t! (m-t-1)!} \sum_{l=0}^{+\infty} \sum_{\{I_1, I_2, \dots, I_t\}}^{\left(I_{1,\mathbf{h}}, I_{2,\mathbf{h}}, \dots, I_{t,\mathbf{h}} > l\right)} \sum_{\{I_{t+1}, I_{t+2}, \dots, I_{m-1}\}}^{\left(I_{t+1,\mathbf{h}}, I_{t+2,\mathbf{h}}, \dots, I_{m-1,\mathbf{h}} \leq l\right)} \sum_{i_m=1}^n \mathbf{f}_{i_m}^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{i_m}). \tag{42}$$

Combining Eqs. (40) and Eq. (42), then

$$\mathbf{F}_{\mathbf{h},-}^{(m)} = \sum_{t=1}^{m-1} \frac{t}{m} \mathbf{F}_{t,\mathbf{h}}^{(m)}. \tag{43}$$

As a result

$$\mathbf{F}_{\mathbf{h}} = \sum_{m=2}^M \sum_{t=1}^{m-1} \mathbf{F}_{t,\mathbf{h}}^{(m)} = \sum_{m=2}^M \left(\mathbf{F}_{\mathbf{h},+}^{(m)} + \mathbf{F}_{\mathbf{h},-}^{(m)} \right) = \sum_{m=2}^M -\frac{\partial}{\partial \mathbf{h}} E_{p,cell}^{(m)} = -\frac{\partial}{\partial \mathbf{h}} E_{p,cell}. \tag{44}$$

Let us define the main interaction tensor for up to M -body interactions as

$$\mathbf{\Lambda}_{main} = \frac{-1}{\Omega} \left[\left(\frac{\partial E_{p,cell}}{\partial \mathbf{a}} \right) \otimes \mathbf{a} + \left(\frac{\partial E_{p,cell}}{\partial \mathbf{b}} \right) \otimes \mathbf{b} + \left(\frac{\partial E_{p,cell}}{\partial \mathbf{c}} \right) \otimes \mathbf{c} \right] = \sum_{m=2}^M \mathbf{\Lambda}_{main}^{(m)} \tag{45}$$

with

$$\mathbf{\Lambda}_{main}^{(m)} = \frac{-1}{\Omega} \left[\left(\frac{\partial E_{p,cell}^{(m)}}{\partial \mathbf{a}} \right) \otimes \mathbf{a} + \left(\frac{\partial E_{p,cell}^{(m)}}{\partial \mathbf{b}} \right) \otimes \mathbf{b} + \left(\frac{\partial E_{p,cell}^{(m)}}{\partial \mathbf{c}} \right) \otimes \mathbf{c} \right], \tag{46}$$

then

$$\mathbf{F}_{\mathbf{h}} = \mathbf{\Lambda}_{main} \cdot \sigma_{\mathbf{h}}, \tag{47}$$

123 where $\mathbf{h} \cdot \sigma_{\mathbf{h}} = \Omega$ and $\mathbf{h}' \cdot \sigma_{\mathbf{h}} = \mathbf{h}'' \cdot \sigma_{\mathbf{h}} = 0$ are used.

Then Eq. (18) becomes

$$\alpha_{\mathbf{h},\mathbf{h}} \ddot{\mathbf{h}} = (\mathbf{\Lambda}_{main} + \Gamma) \cdot \sigma_{\mathbf{h}} \quad (\mathbf{h} = \mathbf{a}, \mathbf{b}, \mathbf{c}). \tag{48}$$

124 The dynamical equation Eq. (48) is essentially the same as in previous work[27], for only constant
125 external pressure being considered.

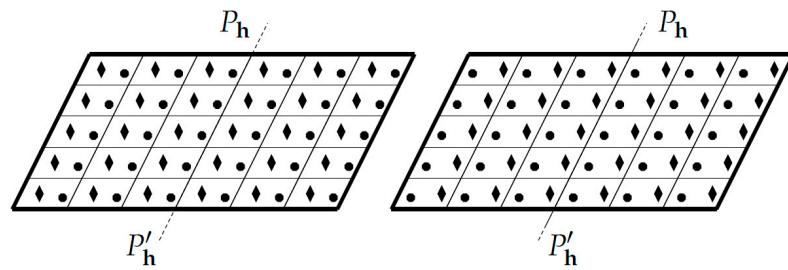


Figure 2. A sketch for two distinct states of the system which are exactly the same in all microscopic details except being translated slightly relative to each other. As a set of image ions, the black diamonds are on the right side in each cell of the right state, but on the left side in each cell of the left state. The black disks as another set of image ions are on the other sides in the states. In these states all right parts from plane $P_h P'_h$ have the same number of cells. (This figure was copied from [30].)

126 4. Microscopic Translated States

127 As seen in Fig. 2, the two distinct states of the system are exactly the same in all microscopic
 128 details except being translated relative to each other. In these states all right parts from plane $P_h P'_h$
 129 have the same number of cells conceptually. Since they cannot be distinguished from a macroscopic
 130 point of view, an unweighted average of Eq. (48) or Eq. (18) over all such configurations should be
 131 taken. Among these, Eq. (18) is the same except the net force F_h , acting on the half-line-cell bar B_h by
 132 the L_h part, as in Fig. 1. Equivalently, this means that the net force F_h in Eq. (18) is replaced by the
 133 unweighted average of it over all possible parallel locations of cutting planes $P_h P'_h$ that pass through
 134 the MD cell in Fig. 1. For clarity, $P_h P'_h$ was used in its original meaning (i.e., with fixed position),
 135 but $Q_h Q'_h$ was employed for such a plane running from left to right. For simplicity, R_h from Fig.
 136 1 was separated into two parts: $T_h = 0$ slab made of all cell of $T = T_a \mathbf{a} + T_b \mathbf{b} + T_c \mathbf{c}$ with $T_h = 0$,
 137 and R'_h part made of the rest of the cells. As an example, for $\mathbf{h} = \mathbf{a}$, $T_h = 0$ slab includes all cells of
 138 $T = 0\mathbf{a} + T_b \mathbf{b} + T_c \mathbf{c}$ with T_b and T_c being any integers. Since it makes a difference only if $Q_h Q'_h$ meets
 139 some ion(s) when it runs, we will only consider the situation where there are $s \geq 1$ ion(s) in the $T_h = 0$
 140 slab participating in the interactions. We will consider the following three cases in sequence.

The first case is that there are other $t \geq 1$ ion(s) participating in the m -body interaction appearing in the L_h part. When the plane $Q_h Q'_h$ runs from left to right passing through the MD cell, the probability for MD ion i_k appearing on the left side of $Q_h Q'_h$ is

$$\eta_{i_k, \mathbf{h}} = \frac{(\mathbf{h} - (\mathbf{r}_{i_k} - \mathbf{r}_0)) \cdot \sigma_{\mathbf{h}}}{\Omega} = \frac{(\mathbf{h}_0 - \mathbf{r}_{i_k}) \cdot \sigma_{\mathbf{h}}}{\Omega}, \quad (49)$$

141 where \mathbf{r}_0 is the position vector of the left-bottom and far-away vertex of the MD cell and $\mathbf{h}_0 = \mathbf{h} + \mathbf{r}_0$.
 142 The following averaged net force acting on the s ions by the rest ions

$$\begin{aligned} \mathbf{F}_{c1,s,t,\mathbf{h}}^{(m)} &= \frac{1}{N_{\mathbf{h}}} \frac{1}{s!t!(m-t-s)!} \sum_{\{I_1, I_2, \dots, I_s\}} \sum_{\{I_{s+1}, I_{s+2}, \dots, I_{s+t}\}} \times \\ &\quad \left(\begin{array}{c} (I_{1,\mathbf{h}}, I_{2,\mathbf{h}}, \dots, I_{s,\mathbf{h}}=0) \\ (I_{s+1,\mathbf{h}}, I_{s+2,\mathbf{h}}, \dots, I_{s+t,\mathbf{h}}<0) \end{array} \right) \\ &\quad \sum_{\{I_{s+t+1}, I_{s+t+2}, \dots, I_m\}} \sum_{\mu=1}^s \eta_{i_\mu, \mathbf{h}} \mathbf{f}_{I_\mu}^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}) \\ &= \frac{1}{N_{\mathbf{h}}} \frac{1}{s!t!(m-t-s)!} \sum_{\{I_1, I_2, \dots, I_s\}} \sum_{\{I_{s+1}, I_{s+2}, \dots, I_{s+t}\}} \times \\ &\quad \left(\begin{array}{c} (I_{1,\mathbf{h}}, I_{2,\mathbf{h}}, \dots, I_{s,\mathbf{h}}=0) \\ (I_{s+1,\mathbf{h}}, I_{s+2,\mathbf{h}}, \dots, I_{s+t,\mathbf{h}}<0) \end{array} \right) \\ &\quad \sum_{\{I_{s+t+1}, I_{s+t+2}, \dots, I_m\}} s \eta_{i_1, \mathbf{h}} \mathbf{f}_{I_1}^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}), \end{aligned} \quad (50)$$

143 should be excluded from $\mathbf{F}_{\mathbf{h}}$, as it was unconditionally included in the $\mathbf{F}_{\mathbf{h}}$ previously. The above
 144 equation can be simplified by translating the cell where ion I_1 resides, in the $T_{\mathbf{h}} = 0$ slab, to the MD
 145 cell (then I_1 becomes i_1 and $N_{\mathbf{h}}$ can be reduced to 1 by removing summations over $I_{1,\mathbf{h}'}$ and $I_{1,\mathbf{h}''}$)

$$\begin{aligned} \mathbf{F}_{c1,s,t,\mathbf{h}}^{(m)} &= \frac{s}{s!t!(m-t-s)!} \sum_{i_1=1}^n \sum_{\{I_2, I_3, \dots, I_s\}} \sum_{\{I_{s+1}, I_{s+2}, \dots, I_{s+t}\}} \times \\ &\quad \left(\begin{array}{c} (I_{2,\mathbf{h}}, I_{3,\mathbf{h}}, \dots, I_{s,\mathbf{h}}=0) \\ (I_{s+1,\mathbf{h}}, I_{s+2,\mathbf{h}}, \dots, I_{s+t,\mathbf{h}}<0) \end{array} \right) \\ &\quad \sum_{\{I_{s+t+1}, I_{s+t+2}, \dots, I_m\}} \eta_{i_1, \mathbf{h}} \mathbf{f}_{i_1}^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}) \\ &= \frac{s}{s!t!(m-t-s)!} \sum_{i_1=1}^n \sum_{\{I_2, I_3, \dots, I_{t+1}\}} \sum_{\{I_{t+2}, I_{t+3}, \dots, I_{t+s}\}} \times \\ &\quad \left(\begin{array}{c} (I_{2,\mathbf{h}}, I_{3,\mathbf{h}}, \dots, I_{t+1,\mathbf{h}}<0) \\ (I_{t+2,\mathbf{h}}, I_{t+3,\mathbf{h}}, \dots, I_{t+s,\mathbf{h}}=0) \end{array} \right) \\ &\quad \sum_{\{I_{s+t+1}, I_{s+t+2}, \dots, I_m\}} \eta_{i_1, \mathbf{h}} \mathbf{f}_{i_1}^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}), \end{aligned} \quad (51)$$

146 where ion index numbers were re-assigned. In the above expression, there are $t \geq 1$ ion(s) in the $L_{\mathbf{h}}$
 147 part. The situation with $t = 0$ ion(s) in the $L_{\mathbf{h}}$ part is considered in the other two cases. There are $s \geq 1$
 148 ion(s) in the $T_{\mathbf{h}} = 0$ slab. As ion i_1 is in the MD cell, there are additional $s - 1$ ion(s) in the $T_{\mathbf{h}} = 0$ slab.
 149 Actually the above expression is valid for all situations with $s' = s - 1 = 0, 1, 2, \dots, m - t - 1$ ions
 150 running anywhere in the $T_{\mathbf{h}} = 0$ slab (except \mathbf{r}_{i_1} position), and accordingly $m - t - 1 - s'$ ions running
 151 anywhere in the $R'_{\mathbf{h}}$ part. From total $m - t - 1$ ions numbered $t + 2, t + 3, \dots, m$ running anywhere in
 152 the $R_{\mathbf{h}}$ part except \mathbf{r}_{i_1} position, considering all the possible situations placing s' ions into the $T_{\mathbf{h}} = 0$
 153 slab and putting all the rest ions in the $R'_{\mathbf{h}}$ part, the following equality emerges

$$\begin{aligned} &\frac{1}{(m-t-1)!} \sum_{\{I_{t+2}, I_{t+3}, \dots, I_m\}} \eta_{i_1, \mathbf{h}} \mathbf{f}_{i_1}^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}) \\ &= \sum_{s'=0}^{m-t-1} \frac{\eta_{i_1, \mathbf{h}}}{s'! (m-t-1-s')!} \sum_{\{I_{t+2}, I_{t+3}, \dots, I_{t+s}\}} \sum_{\{I_{t+s+1}, I_{t+s+2}, \dots, I_m\}} \mathbf{f}_{i_1}^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}). \end{aligned} \quad (52)$$

154 Combining Eq. (51) and Eq. (52),

$$\begin{aligned}
 \mathbf{F}_{c1,t,h}^{(m)} &= \sum_{s'=0}^{m-t-1} \mathbf{F}_{c1,s,t,h}^{(m)} \\
 &= \sum_{i_1=1}^n \frac{\eta_{i_1,h}}{t! (m-t-1)!} \sum_{\{I_2, I_3, \dots, I_{t+1}\}}^{\{I_{2,h}, I_{3,h}, \dots, I_{t+1,h} < 0\}} \sum_{\{I_{t+2}, I_{t+3}, \dots, I_m\}}^{\{I_{t+2,h}, I_{t+3,h}, \dots, I_{m,h} \geq 0\}} \mathbf{f}_{i_1}^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}).
 \end{aligned} \tag{53}$$

155 The second case is that all ions participating in the m -body interaction reside in R_h part, thus
 156 there is no ion in the L_h part, and there must be at least one ion in the $T_h = 0$ slab and at least one ion
 157 in the R'_h part. The situation with no ion in the R'_h part will be considered in the last case. Consider
 158 $s \geq 1$ ion(s) in the $T_h = 0$ slab and the remaining total $m - s \geq 1$ ion(s) in the R'_h part. For a given
 159 plane $Q_h Q'_h$ cutting the MD cell, the net force acting on the ions on the right side of $Q_h Q'_h$ by those on
 160 the left side should be added to \mathbf{F}_h . Recalling Eq. (6), equivalently the net force acting on the ions on
 161 the left side of $Q_h Q'_h$ by those on the right side should be subtracted from \mathbf{F}_h . With ion probabilities
 162 appearing on the left side of $Q_h Q'_h$ considered, the averaged net force on them can be written as

$$\begin{aligned}
 \mathbf{F}_{c2,s,h}^{(m)} &= \frac{1}{N_h} \frac{1}{s! (m-s)!} \sum_{\{I_1, I_2, \dots, I_s\}}^{\{I_{1,h}, I_{2,h}, \dots, I_{s,h} = 0\}} \sum_{\{I_{s+1}, I_{s+2}, \dots, I_m\}}^{\{I_{s+1,h}, I_{s+2,h}, \dots, I_{m,h} > 0\}} \sum_{\mu=1}^s \eta_{i_\mu, h} \mathbf{f}_{I_\mu}^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}) \\
 &= \frac{1}{N_h} \frac{1}{s! (m-s)!} \sum_{\{I_1, I_2, \dots, I_s\}}^{\{I_{1,h}, I_{2,h}, \dots, I_{s,h} = 0\}} \sum_{\{I_{s+1}, I_{s+2}, \dots, I_m\}}^{\{I_{s+1,h}, I_{s+2,h}, \dots, I_{m,h} > 0\}} s \eta_{i_1, h} \mathbf{f}_{I_1}^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}) \\
 &= \frac{1}{(s-1)! (m-s)!} \sum_{i_1=1}^n \sum_{\{I_2, I_3, \dots, I_s\}}^{\{I_{2,h}, I_{3,h}, \dots, I_{s,h} = 0\}} \sum_{\{I_{s+1}, I_{s+2}, \dots, I_m\}}^{\{I_{s+1,h}, I_{s+2,h}, \dots, I_{m,h} > 0\}} \eta_{i_1, h} \mathbf{f}_{i_1}^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}).
 \end{aligned} \tag{54}$$

163 The last case is that all ions participating in the m -body interaction are in the $T_h = 0$ slab. For a
 164 given plane $Q_h Q'_h$ cutting the MD cell, the net force acting on the ions on the right side of $Q_h Q'_h$ by
 165 those on the left side should be added to \mathbf{F}_h . Based on Eq. (6), equivalently the net force acting on the
 166 ions on the left side of $Q_h Q'_h$ by those on the right side should be subtracted from \mathbf{F}_h . As a matter of
 167 fact, only when ions are distributed on both sides of plane $Q_h Q'_h$, such forces should be considered.
 168 For a given configuration of the m ions, assuming ion I_m is the last one to be crossed by plane $Q_h Q'_h$
 169 when it runs from left to right, the probability for ion I_k appearing on the left side of plane $Q_h Q'_h$ and
 170 ion I_m on the right side is $(\mathbf{r}_{i_m} - \mathbf{r}_{i_k}) \cdot \sigma_h / \Omega$, then the averaged net force of the given configuration to
 171 be subtracted from \mathbf{F}_h is

$$\begin{aligned}
 \mathbf{f}_{c3,h}^{(m)} &= \sum_{\mu=1}^m \frac{(\mathbf{r}_{i_m} - \mathbf{r}_{i_\mu}) \cdot \sigma_h}{\Omega} \mathbf{f}_{I_\mu}^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}) \\
 &= \sum_{\mu=1}^m \frac{((\mathbf{h}_0 - \mathbf{r}_{i_\mu}) - (\mathbf{h}_0 - \mathbf{r}_{i_m})) \cdot \sigma_h}{\Omega} \mathbf{f}_{I_\mu}^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}) \\
 &= \sum_{\mu=1}^m \eta_{i_\mu, h} \mathbf{f}_{I_\mu}^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}) - \eta_{i_m, h} \sum_{\mu=1}^m \mathbf{f}_{I_\mu}^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}).
 \end{aligned} \tag{55}$$

172 Applying Eq. (6), the last term in the last equation becomes zero, then the averaged net force of all
 173 such configurations is

$$\begin{aligned}
 \mathbf{F}_{c3,\mathbf{h}}^{(m)} &= \frac{1}{N_{\mathbf{h}}} \frac{1}{m!} \sum_{\{I_1, I_2, \dots, I_m\}}^{(I_{1,\mathbf{h}}, I_{2,\mathbf{h}}, \dots, I_{m,\mathbf{h}}=0)} \mathbf{f}_{c3,\mathbf{h}}^{(m)} \\
 &= \frac{1}{N_{\mathbf{h}}} \frac{1}{m!} \sum_{\{I_1, I_2, \dots, I_m\}}^{(I_{1,\mathbf{h}}, I_{2,\mathbf{h}}, \dots, I_{m,\mathbf{h}}=0)} \sum_{\mu=1}^m \eta_{i_\mu, \mathbf{h}} \mathbf{f}_{I_\mu}^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}) \\
 &= \frac{1}{N_{\mathbf{h}}} \frac{1}{m!} \sum_{\{I_1, I_2, \dots, I_m\}}^{(I_{1,\mathbf{h}}, I_{2,\mathbf{h}}, \dots, I_{m,\mathbf{h}}=0)} m \eta_{i_1, \mathbf{h}} \mathbf{f}_{I_1}^{(m)}(\mathbf{r}_{I_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}) \\
 &= \frac{1}{(m-1)!} \sum_{i_1=1}^n \sum_{\{I_2, I_3, \dots, I_m\}}^{(I_{2,\mathbf{h}}, I_{3,\mathbf{h}}, \dots, I_{m,\mathbf{h}}=0)} \eta_{i_1, \mathbf{h}} \mathbf{f}_{i_1}^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}). \tag{56}
 \end{aligned}$$

Equation (54) is valid for $s' = s - 1 = 0, 1, 2, \dots, m - 2$ in the above case, while Eq. (56) is essentially the situation with $s' = s - 1 = m - 1$, namely

$$\mathbf{F}_{c3,\mathbf{h}}^{(m)} = \mathbf{F}_{c2,s=m,\mathbf{h}}^{(m)}. \tag{57}$$

174 For fixed \mathbf{r}_{i_1} , only $s' = 0, 1, 2, \dots, m - 1$ of the remaining $m - 1$ ions in the $R_{\mathbf{h}}$ part can appear in the
 175 $T_{\mathbf{h}} = 0$ slab and the remaining ion(s) in the $R'_{\mathbf{h}}$ part, then:

$$\begin{aligned}
 &\frac{1}{(m-1)!} \sum_{\{I_2, I_3, \dots, I_m\}}^{(I_{2,\mathbf{h}}, I_{3,\mathbf{h}}, \dots, I_{m,\mathbf{h}} \geq 0)} \mathbf{f}_{i_1}^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}) \\
 &= \sum_{s'=0}^{m-1} \frac{1}{(s-1)! (m-s)!} \sum_{\{I_2, I_3, \dots, I_s\}}^{(I_{2,\mathbf{h}}, I_{3,\mathbf{h}}, \dots, I_{s,\mathbf{h}}=0)} \sum_{\{I_{s+1}, I_{s+2}, \dots, I_m\}}^{(I_{s+1,\mathbf{h}}, I_{s+2,\mathbf{h}}, \dots, I_{m,\mathbf{h}} > 0)} \mathbf{f}_{i_1}^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}). \tag{58}
 \end{aligned}$$

176 Furthermore

$$\begin{aligned}
 \mathbf{F}_{c2+c3,\mathbf{h}}^{(m)} &= \mathbf{F}_{c3,\mathbf{h}}^{(m)} + \sum_{s'=0}^{m-2} \mathbf{F}_{c2,s,\mathbf{h}}^{(m)} = \sum_{s'=0}^{m-1} \mathbf{F}_{c2,s,\mathbf{h}}^{(m)} \\
 &= \sum_{s'=0}^{m-1} \sum_{i_1=1}^n \frac{\eta_{i_1, \mathbf{h}}}{(s-1)! (m-s)!} \sum_{\{I_2, I_3, \dots, I_s\}}^{(I_{2,\mathbf{h}}, I_{3,\mathbf{h}}, \dots, I_{s,\mathbf{h}}=0)} \sum_{\{I_{s+1}, I_{s+2}, \dots, I_m\}}^{(I_{s+1,\mathbf{h}}, I_{s+2,\mathbf{h}}, \dots, I_{m,\mathbf{h}} > 0)} \mathbf{f}_{i_1}^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}) \\
 &= \sum_{i_1=1}^n \frac{\eta_{i_1, \mathbf{h}}}{(m-1)!} \sum_{\{I_2, I_3, \dots, I_m\}}^{(I_{2,\mathbf{h}}, I_{3,\mathbf{h}}, \dots, I_{m,\mathbf{h}} \geq 0)} \mathbf{f}_{i_1}^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}). \tag{59}
 \end{aligned}$$

Similarly, Eq. (53) is valid for $t = 1, 2, \dots, m - 1$ in the first case, while Eq. (59) is essentially the situation with $t = 0$, namely

$$\mathbf{F}_{c2+c3,\mathbf{h}}^{(m)} = \mathbf{F}_{c1,t=0,\mathbf{h}}^{(m)}. \tag{60}$$

177 For fixed \mathbf{r}_{i_1} , only $t = 0, 1, 2, \dots, m - 1$ of the remaining $m - 1$ ions can appear in the $L_{\mathbf{h}}$ part with the
 178 remaining ion(s) in the $R_{\mathbf{h}}$ part at the same time, then

$$\begin{aligned}
 & \frac{1}{(m-1)!} \sum_{\{I_2, I_3, \dots, I_m\}} \mathbf{f}_{i_1}^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}) \\
 &= \sum_{t=0}^{m-1} \frac{1}{t! (m-t-1)!} \sum_{\{I_2, I_3, \dots, I_{t+1}\}}^{\{I_2, \mathbf{h}, I_3, \mathbf{h}, \dots, I_{t+1}, \mathbf{h} < 0\}} \sum_{\{I_{t+2}, I_{t+3}, \dots, I_m\}}^{\{I_{t+2}, \mathbf{h}, I_{t+3}, \mathbf{h}, \dots, I_m, \mathbf{h} \geq 0\}} \mathbf{f}_{i_1}^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}).
 \end{aligned} \tag{61}$$

179 As a result,

$$\begin{aligned}
 \mathbf{F}_{c1+c2+c3,\mathbf{h}}^{(m)} &= \mathbf{F}_{c2+c3,\mathbf{h}}^{(m)} + \sum_{t=1}^{m-1} \mathbf{F}_{c1,t,\mathbf{h}}^{(m)} = \sum_{t=0}^{m-1} \mathbf{F}_{c1,t,\mathbf{h}}^{(m)} \\
 &= \sum_{t=0}^{m-1} \sum_{i_1=1}^n \frac{\eta_{i_1, \mathbf{h}}}{t! (m-t-1)!} \sum_{\{I_2, I_3, \dots, I_{t+1}\}}^{\{I_2, \mathbf{h}, I_3, \mathbf{h}, \dots, I_{t+1}, \mathbf{h} < 0\}} \sum_{\{I_{t+2}, I_{t+3}, \dots, I_m\}}^{\{I_{t+2}, \mathbf{h}, I_{t+3}, \mathbf{h}, \dots, I_m, \mathbf{h} \geq 0\}} \mathbf{f}_{i_1}^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}) \\
 &= \sum_{i_1=1}^n \frac{\eta_{i_1, \mathbf{h}}}{(m-1)!} \sum_{\{I_2, I_3, \dots, I_m\}} \mathbf{f}_{i_1}^{(m)}(\mathbf{r}_{i_1}, \mathbf{r}_{I_2}, \mathbf{r}_{I_3}, \dots, \mathbf{r}_{I_m}) \\
 &= \sum_{i_1=1}^n \frac{(\mathbf{h}_0 - \mathbf{r}_{i_1}) \cdot \sigma_{\mathbf{h}}}{\Omega} \mathbf{F}_{i_1}^{(m)},
 \end{aligned} \tag{62}$$

180 where as defined in Eq. (8), $\mathbf{F}_{i_1}^{(m)}$ is the net m -body force acting on MD ion i_1 by all other $m - 1$ ions in
 181 all possible configurations.

By using Eq. (7), Eq. (62) can be reduced as

$$\mathbf{F}_{c1+c2+c3,\mathbf{h}}^{(m)} = \sum_{i_1=1}^n \frac{(-\mathbf{r}_{i_1}) \cdot \sigma_{\mathbf{h}}}{\Omega} \mathbf{F}_{i_1}^{(m)} = -\frac{1}{\Omega} \sum_{i_1=1}^n (\mathbf{F}_{i_1}^{(m)} \otimes \mathbf{r}_{i_1}) \cdot \sigma_{\mathbf{h}}. \tag{63}$$

Then the averaged net force acting on the half-line-cell bar $B_{\mathbf{h}}$ by the $L_{\mathbf{h}}$ part in Fig. 1 is

$$\bar{\mathbf{F}}'_{\mathbf{h}} = \mathbf{F}_{\mathbf{h}} - \sum_{m=2}^M \mathbf{F}_{c1+c2+c3,\mathbf{h}}^{(m)} = \mathbf{F}_{\mathbf{h}} + \frac{1}{\Omega} \sum_{i_1=1}^n (\mathbf{F}_{i_1}^{(m)} \otimes \mathbf{r}_{i_1}) \cdot \sigma_{\mathbf{h}}, \tag{64}$$

where Eq. (3) is used. Now, let us introduce another tensor

$$\Lambda_p = \frac{1}{\Omega} \sum_{i_1=1}^n \mathbf{F}_{i_1} \otimes \mathbf{r}_{i_1}, \tag{65}$$

which is zero when an equilibrium state is reached. This provides

$$\bar{\mathbf{F}}'_{\mathbf{h}} = \mathbf{F}_{\mathbf{h}} + \Lambda_p \cdot \sigma_{\mathbf{h}} = (\Lambda_{main} + \Lambda_p) \cdot \sigma_{\mathbf{h}} = \Lambda \cdot \sigma_{\mathbf{h}}, \tag{66}$$

where the full interaction term of the internal stress is

$$\Lambda = \Lambda_{main} + \Lambda_p. \tag{67}$$

It can also be written as

$$\Lambda = -\frac{1}{\Omega} \sum_{\mathbf{z} \in \text{DOF}} \left(\frac{\partial E_{p,cell}}{\partial \mathbf{z}} \right) \otimes \mathbf{z}, \tag{68}$$

where DOF refers to all degrees of freedom of the system including the three period vectors \mathbf{a} , \mathbf{b} , \mathbf{c} , and all MD ion position vectors $\mathbf{r}_1, \mathbf{r}_2, \dots$, and \mathbf{r}_n . Then the period dynamics Eq. (48) can be updated into

$$\alpha_{\mathbf{h},\mathbf{h}} \ddot{\mathbf{h}} = (\mathbf{\Lambda} + \mathbf{\Gamma}) \cdot \sigma_{\mathbf{h}} \quad (\mathbf{h} = \mathbf{a}, \mathbf{b}, \mathbf{c}). \quad (69)$$

182 5. Momentum Transportation

183 Consider an ideal gas in a fixed and closed container in an equilibrium state from a macroscopic
 184 point of view and imagine to cut it into a left half and a right half. Gas particles carrying their
 185 momentum can freely run between the two halves. Then we have two choices to study it.

186 One choice is to employ a material-based system. In such a system definition, the gas particles
 187 always belong to the same half system, which they belong to at the very beginning. Then at the very
 188 beginning, we have very clear half systems of gas particles. However very soon, some gas particles
 189 in one half may move into the other half, but still belong to the original half system. Then the half
 190 systems would no longer have a clear boundary. Definitely, Newton's second law still applies to the
 191 half systems, but not easy to use.

192 The other choice is to employ a space-based system definition[32], in which at any time, a particle
 193 belongs to the system if it is inside the corresponding space with a fixed and close geometric boundary,
 194 otherwise it is not. Then each half system is actually defined by the corresponding fixed half space
 195 inside the container, then always has a clear boundary. When a gas particle moves from one half into
 196 the other half, it leaves from the former system and joins the later system. The later system gets its
 197 momentum and the former system gets its momentum as well but in the opposite direction. For the
 198 dynamical process of each space-based half system, the total regular force we see is the net external
 199 force acting on the gas particles by the container during collisions between them, which is not zero
 200 at non-zero absolute temperature. However, the total momentum of each half system is always zero.
 201 Then the net momentum transported into and out of the half system per unit time, due to gas particles'
 202 crossing the boundary between the two halves, should also be considered as an external force acting
 203 on the half system in order to satisfy Newton's second law. As a matter of fact, these two forces balance
 204 each other. Let us call the later as the force associated with momentum transportation. Since a specific
 205 momentum transported from space-based system S_A to its neighbour space-based system S_B per unit
 206 time should be regarded as an external force acting on system S_B by system S_A , its opposite direction
 207 momentum movement rate from S_B to S_A should be regarded as another external force acting on
 208 system S_A by system S_B . They are actually action and re-action forces satisfying Newton's third law.

209 Similarly, if a material-based system is used to study each half part of the crystal above, when an
 210 ion "runs from one part into the other part of the crystal", it still belongs to the original part, then the
 211 motion of every individual ion must be traced all the time. Furthermore the corresponding components
 212 of the external stress $\mathbf{\Gamma}$, acting on the surface of one part of the crystal, should also be identified acting
 213 on the ions, which belong to the other part. If a space-based system is employed, these are not needed,
 214 but the force associated with momentum transportation should be considered as an external force on
 215 the system.

As in our previous work[30], for the $L_{\mathbf{h}}$ and $R_{\mathbf{h}}$ parts in Fig. 1, both as space-based systems, consider the above statistics over the indistinguishable translated states with the help of plane $Q_{\mathbf{h}}Q'_{\mathbf{h}}$ again, but of the force associated with momentum transportation. If the total amount of such indistinguishable translated states is assumed as the cell volume Ω , the amount of those where MD ion i can cross plane $Q_{\mathbf{h}}Q'_{\mathbf{h}}$ during a unit time is $|\dot{\mathbf{r}}_i \cdot \sigma_{\mathbf{h}}|$, with momentum $m_i \dot{\mathbf{r}}_i$ being carried each. Then the additional averaged force associated with momentum transportation on $R_{\mathbf{h}}$ part

$$\mathbf{f}_{\mathbf{h},tm} = \frac{1}{\Omega} \sum_{i=1}^n (\dot{\mathbf{r}}_i \cdot \sigma_{\mathbf{h}}) m_i \dot{\mathbf{r}}_i = \frac{1}{\Omega} \sum_{i=1}^n m_i (\dot{\mathbf{r}}_i \otimes \dot{\mathbf{r}}_i) \cdot \sigma_{\mathbf{h}} \quad (70)$$

should be added to $\bar{\mathbf{F}}'_h$. As a result, Eq. (66) is updated to

$$\bar{\mathbf{F}}_h = \bar{\mathbf{F}}'_h + \mathbf{f}_{h,tm} = (\Lambda + \Delta') \cdot \sigma_h, \quad (71)$$

where the instantaneous kinetic-energy term of the internal stress is

$$\Delta' = \frac{1}{\Omega} \sum_{i=1}^n m_i \dot{\mathbf{r}}_i \otimes \dot{\mathbf{r}}_i. \quad (72)$$

Defining the instantaneous internal stress as

$$\Pi' = \Lambda + \Delta', \quad (73)$$

the period dynamics Eq. (69) becomes

$$\alpha_{h,h} \ddot{\mathbf{h}} = (\Pi' + \Gamma) \cdot \sigma_h \quad (h = \mathbf{a}, \mathbf{b}, \mathbf{c}). \quad (74)$$

The observable period vectors showing fixed values under certain external conditions (e.g. constant external pressure and temperature) should not depend on the directions of ions' motions. A further unweighted average of Eq. (74) was performed over all moving directions of the MD ions. For this, the averaged Eq. (72) becomes:

$$\bar{\Delta}' = \frac{1}{3\Omega} \sum_{i=1}^n m_i |\dot{\mathbf{r}}_i|^2 \mathbf{I} = \frac{2}{3\Omega} E_{k,MD,ion} \mathbf{I}, \quad (75)$$

where $E_{k,MD,ion}$ is the total kinetic-energy of the MD ions. Also considering the motion of the valence electrons the same way, the averaged kinetic-energy term of internal stress should be:

$$\Delta = \bar{\Delta}' + \frac{2}{3\Omega} E_{k,MD,ve} \mathbf{I} = \frac{2}{3\Omega} (E_{k,MD,ion} + E_{k,MD,ve}) \mathbf{I}, \quad (76)$$

where $E_{k,MD,ve}$ is the total kinetic-energy of the valence electrons in the MD cell. The forces corresponding to this part of the internal stress should be balanced by the part of the external forces involved in collisions between the ions in the bulk surface and the surrounding external walls, as in the above example of an ideal gas. Accordingly, the averaged internal stress from Eq. (73) is

$$\Pi = \Lambda + \Delta. \quad (77)$$

Then the period dynamics Eq. (74) changes into

$$\alpha_{h,h} \ddot{\mathbf{h}} = (\Pi + \Gamma) \cdot \sigma_h \quad (h = \mathbf{a}, \mathbf{b}, \mathbf{c}). \quad (78)$$

216 6. Summary and Discussion

217 Keeping Newton's second law for MD ions and applying it to macroscopic half-systems with
 218 additional statistics over indistinguishable translated states and forces associated with momentum
 219 transportation applied, we arrived at the coupled dynamical equations, Eq. (2) for MD ions and
 220 Eq. (78) for the period vectors, of crystals of many-body interactions under constant external stress.
 221 Equation (78) shows that the system period vectors are driven by the imbalance between the internal
 222 and external stresses. Then when the system reaches an equilibrium state, the internal and external
 223 stresses balance each other. The internal stress has both full kinetic-energy and full interaction terms.
 224 As a result, the dynamical equations and associated formulas in this article for many-body interactions
 225 share the same form of those in our last work[30] for pair-potential only.

226 The kinetic-energy term was obtained from the statistics of forces associated with momentum
227 transportation when the two halves of the system are recognized as space-based ones. Since the full
228 interaction term of the internal stress Eq. (68) is valid for any-body interactions, it should also be valid
229 for forces from electrons but calculated based on quantum mechanics involved. In such a situation,
230 the effective interactions among ions through electrons are many-body ones, as the calculated state of
231 electrons depends on the positions of all ions.

232 As a matter of fact, the external stress is required as a constant only in deriving Eqs. (1) and (10)
233 and this requirement only means that it is constant over the surface of the crystal throughout this
234 paper. Then for such external stress but changing with real time, one can solve the crystal with Eqs. (2)
235 and (78) to reach an equilibrium state iteratively for the given external stress at a given real time, then
236 the next real time, ..., till end.

237 In the MD world, simulations are usually classified into various ensembles, based on applicable
238 combinations of fixed volume, constant external pressure, and constant external temperature. For
239 ensembles of fixed volume, Eq. (78) shows that an external stress balancing the internal stress should
240 always be supplied or assumed. For ensembles of constant external pressure/stress, Eq. (78) can
241 be used. Additionally, the straightforward ion speed rescaling method can always be a choice, for
242 constant external temperature simulations.

243 **Acknowledgments:** The author wishes to thank Prof. Ding-Sheng Wang, Institute of Physics, Prof. Si-Yuan
244 Zhang, Changchun Institute of Applied Chemistry, Prof. S. S. Wu, Jilin University, Prof. En-Ge Wang, Beijing
245 University, P.R. China, Dr. Kenneth Edgecombe, Dr. Hartmut Schmider, Dr. Malcolm J. Stott, Dr. Kevin Robbie,
246 Queen's University, Canada, Dr. Xiaohua Wu, the Royal Military College of Canada, and Biomolecular Simulation
247 Team, Compute Canada, for their helpful discussions and earnest encouragement, and also the Centre for
248 Advanced Computing, Queen's University, Canada, for its support.

249 **Conflicts of Interest:** "The author declares no conflict of interest."

250 Abbreviations

251 The following abbreviations are used in this manuscript:

252 MD Molecular Dynamics

253 DOF Degrees Of Freedom of the system, only used in Eq. (68)

254 References

- 255 1. Kittel C. Introduction to Solid State Physics; John Wiley & Sons: New York, USA, 1986.
- 256 2. Ibach H.; Lüth H. Solid-state physics: an introduction to principles of materials science; Springer: New York,
257 USA, 2009.
- 258 3. Patterson J.D.; Bailey B.C. Solid-state physics: introduction to the theory; Springer: New York, USA, 2010.
- 259 4. Andersen, H.C. Molecular dynamics simulations at constant pressure and/or temperature. *J. Chem. Phys.*,
260 1980, 72, 2384. doi:10.1063/1.439486.
- 261 5. Parrinello, M.; Rahman, A. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study . *Phys. Rev. Lett.* 1980 , 45 , 1196. doi:10.1103/PhysRevLett.45.1196.
- 262 6. Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method .
263 *J. Appl. Phys.* 1981 , 52, 7182. doi:10.1063/1.328693.
- 264 7. Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids; Oxford University: Oxford, UK, 1987.
- 265 8. Frenkel, D.; Smit, B. Understanding Molecular Simulation; Academic: New York, USA, 1996.
- 266 9. Haile, J. M. Molecular Dynamics Simulation Elementary Methods; John Wiley & Sons: New York, USA, 1992.
- 267 10. Ray, J.R. Molecular dynamics equations of motion for systems varying in shape and size. *J. Chem. Phys.* 1983
268 , 79, 5128. doi:10.1063/1.445636.
- 269 11. Nosé, S.; Klein M.L. Constant pressure molecular dynamics for molecular systems. *Mol. Phys.* 1983 , 50,
270 1055. doi:10.1080/00268978300102851.
- 271 12. Ryckaert J.P.; Ciccotti G. Introduction of Andersen's demon in the molecular dynamics of systems with
272 constraints. *J. Chem. Phys.* 1983 , 78, 7368. doi:10.1063/1.444728.

274 13. Evans D.J.; Morriss G.P. Non-Newtonian molecular dynamics. *Computer Physics Reports* **1984**, *1*, 297.
275 doi:10.1016/0167-7977(84)90001-7.

276 14. Ray, J.R.; Rahman, A. Statistical ensembles and molecular dynamics studies of anisotropic solids . *J. Chem.*
277 *Phys.* **1984**, *80*, 4423. doi:10.1063/1.447221.

278 15. Ray, J.R.; Rahman, A. Statistical ensembles and molecular dynamics studies of anisotropic solids. II . *J. Chem.*
279 *Phys.* **1985**, *82*, 4243. doi:10.1063/1.448813.

280 16. Hoover W.G.; Canonical dynamics: Equilibrium phase-space distributions. *Phys. Rev. A* **1985**, *31*, 1695.
281 doi:10.1103/PhysRevA.31.1695.

282 17. Hoover W.G.; Constant-pressure equations of motion. *Phys. Rev. A* **1986**, *34*, 2499.
283 doi:10.1103/PhysRevA.34.2499.

284 18. Cleveland, C.L. New equations of motion for molecular dynamics systems that change shape . *J. Chem. Phys.*
285 **1988**, *89*, 4987. doi:10.1063/1.455642.

286 19. Wentzcovitch, R.M. Invariant molecular-dynamics approach to structural phase transitions . *Phys. Rev. B*
287 **1991**, *44*, 2358. doi:10.1103/PhysRevB.44.2358.

288 20. S. Melchionna S.; Ciccotti G.; Holian B.L. Hoover NPT dynamics for systems varying in shape and size. *Mol.*
289 *Phys.* **1993**, *78*, 533. doi:10.1080/00268979300100371.

290 21. Lill, J.V.; Broughton J.Q. Atomistic simulations incorporating nonlinear elasticity: Slow-stress relaxation and
291 symmetry breaking . *Phys. Rev. B* **1994**, *49*, 11 619. doi:10.1103/PhysRevB.49.11619.

292 22. Focher, P.; Chiarotti, G.L.; Bernasconi, M.; Tosatti, E.; Parrinello, M. Structural Phase Transformations via
293 First-Principles Simulation . *Europhys. Lett.* **1994**, *26*, 345. doi:10.1209/0295-5075/26/5/005.

294 23. Martyna G.J.; Tobias D.J.; Klein M.L. Constant pressure molecular dynamics algorithms. *J. Chem. Phys.* **1994**
295 , *101*, 4177. doi:10.1063/1.467468.

296 24. Bernasconi, M.; Chiarotti, G.L.; Focher, P.; Scandolo, S.; Tosatti, E.; Parrinello, M. First-principle-constant
297 pressure molecular dynamics . *J. Phys. Chem. Solids* **1995**, *56*, 501. doi:10.1016/0022-3697(94)00228-2.

298 25. Souza I.; Martins, J.L. Metric tensor as the dynamical variable for variable-cell-shape molecular dynamics .
299 *Phys. Rev. B* **1997**, *55*, 8733. doi:10.1103/PhysRevB.55.8733.

300 26. Liu, G.; Wang E.G.; Wang D.S. A New Molecular-Dynamics Approach for Fully Relaxed Crystals at Constant
301 Pressure . *Chin. Phys. Lett.* **1997**, *14*, 764. doi:10.1088/0256-307X/14/10/012.

302 27. Liu, G.; Wang E.G. Extended molecular dynamics scheme for crystals with fully relaxed size and shape .
303 *Solid State Commun.* **1998**, *105*, 671. doi:10.1016/S0038-1098(98)00001-5.

304 28. Tuckerman M.E.; Alejandre J.; López-Rendón R.; Jochim A.L.; Martyna G.J. A Liouville-operator derived
305 measure-preserving integrator for molecular dynamics simulations in the isothermal-isobaric ensemble. *J.*
306 *Phys. A: Math. Gen.* **2006**, *39*, 5629. doi:10.1088/0305-4470/39/19/S18.

307 29. Pantelides, C.C.; Adjiman, C.S.; Kazantsev, A.V. General Computational Algorithms for Ab Initio Crystal
308 Structure Prediction for Organic Molecules. In *Prediction and Calculation of Crystal Structures*; AtahanEvrenk,
309 S., AspuruGuzik, A. Springer International Publishing: Basel, Switzerland, 2014; pp. 25–58.

310 30. Liu G. Dynamical equations for the period vectors in a periodic system under constant external stress. *Can. J.*
311 *Phys.* **2015**, *93*, 974. doi:/10.1139/cjp-2014-0518.

312 31. Thompson, A.P.; Plimpton, S.J.; Mattson W. General formulation of pressure and stress tensor for arbitrary
313 many-body interaction potentials under periodic boundary conditions. *J. Chem. Phys.* **2009**, *131*, 154107.
314 doi:/10.1063/1.3245303.

315 32. Malvern, L. E. *Introduction To The Mechanics of A Continuous Medium*; Prentice-Hall: Englewood Cliffs,
316 New Jersey, USA, 1969.