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Abstract: Since crystals are made of periodic structures in space, predicting their three period vectors 
starting from any values based on the inside interactions is a basic theoretical physics problem. 
For the general situation where crystals are under constant external stress, we derived dynamical 
equations of the period vectors in the framework of Newtonian dynamics, for pair potentials recently 
(doi:/10.1139/cjp-2014-0518). The derived dynamical equations show that the period vectors are 
driven by the imbalance between the internal and external stresses. This presents a physical process 
where when the external stress changes, the crystal structure changes accordingly, since the original 
internal stress can not balance the external stress. The internal stress has both a full kinetic energy 
term and a full interaction term. It is extended to many-body interactions in this paper. As a result, 
all conclusions in the pair-potential case also apply for many-body potentials.

Keywords: dynamical equation; crystal; period vectors; periodic structure; period dynamics; pressure; 
stress; many-body interaction; molecular dynamics; periodic boundary conditions
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1. Introduction14

The spacial periodicity of the crystal structures is presented in almost all solid state physics15

books[1–3]. Then a basic and general theory of predicting crystal structures under external16

pressure/stress is very desired. In 1980, by extending Andersen’s idea[4], Parrinello and Rahman17

proposed their theory of such for the first time in science history[5,6], when they met the same problem18

in molecular dynamics (MD) simulations with the periodic boundary condition being applied[7–9].19

Then many more efforts have been devoted to this fundamental physics problem [10–30]. While all20

the rest of them were based on Lagrangian/Hamiltonian dynamics or minimizing (Gibbs) energy or21

enthalpy of the system, our recent effort[30] followed Newtonian dynamics.22

According to the Born-Oppenheimer approximation, electrons and ions of crystals are treated23

separately. Assuming the motion of the electrons is always solved by applying quantum mechanics24

with respect to any given configuration of the ions, let us focus on the motion of the ions only, which25

is usually described in the framework of classical physics. In other words, electrons are regarded26

as a solvable media of interactions among the ions, and in this paper all forces by the electrons are27

assumed effectively included in the empirical many-body interactions among ions. Then a crystal28

structure is reduced to a periodic arrangement of exactly the same cells of ions in three-dimensional29

space. As usually done in MD simulations, the spacial periodicity of the system structure is always30

assumed throughout this paper, however the ions move and the size and shape of the cells change.31
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Using MD terms, the cell at the center of the crystal is called the MD cell and the ions in the MD cell32

are called the MD ions. Then the position vectors of the MD ions and the period vectors form the33

complete degrees of freedom of the crystal. The period vectors are also the edge vectors of a cell, which34

determine the size and shape of cells. The period vectors may also be called basic vectors or primitive35

translation vectors in solid state physics. Since crystals are formed based on the interactions of the36

ions, their structures should be predictable/determinable by dynamics. No doubt, the dynamics of37

the MD ions is given by Newton’s second law, then the only task left is to derive the dynamics of the38

three independent period vectors for crystals under external stress. All the dynamics should drive the39

system from a state of any positions of the MD ions and any size and shape of the MD cell towards an40

equilibrium state, where the structure is usually measured in experiments.41

In our recent work[30], while Newton’s second law on the MD ions was strictly preserved, the42

dynamical equations of the period vectors were derived into the form where the period vectors are43

driven by the imbalance between the internal and external stresses, by repeatedly applying Newton’s44

laws. This means that when a crystal achieves an equilibrium state, the internal and external stresses45

must balance each other. It also presents a physical process where when the external stress changes, the46

crystal structure changes accordingly, because the original internal stress can not balance the external47

stress. Especially, the derived internal stress has both the full kinetic energy term and the full interaction48

term. Since it was done for pair-potential only and many-body interactions are widely used[31], let us49

extend it to many-body interactions here. As a result, all conclusions in the pair-potential case also50

apply for many-body potentials.51

This paper is organized as follows, reflecting our three major steps. After a description52

of our model in Sec.2, Newton’s second law is applied on half systems to get instantaneous53

dynamical equations of the period vectors in Sec.3. Statistics of the above dynamical equations54

over indistinguishable translated states is carried out to improve them in Sec.4. Forces associated with55

momentum transportation and statistics over ions’ moving directions are further implemented in the56

dynamical equations in Sec.5. Sec.6 is devoted to summary and discussion.57

2. Model58

The limited macroscopic bulk of a crystal with an “unlimited" inside microscopic periodic59

structure is taken as the model. We use a, b, and c as the three independent period vectors, forming60

a right-handed triad. Then each cell can be denoted by the corresponding lattice translation vector61

T = Taa + Tbb + Tcc, with integers Ta, Tb, Tc ranging from negative infinity to positive infinity. As62

mentioned above, the specific cell of T = 0 in the center is the MD cell, and the ions in it are the MD63

ions. Since we study the properties of the inner part of the bulk around the MD cell, far-away surface64

effects are neglected.65

The external action on the surface is expressed by the constant external stress tensor (or dyad) Γ .
The corresponding external forces are modeled as applied by the surrounding external walls contacting
the surface of the bulk. For the case of constant external pressure p , Γ = pI, where I is an identity
tensor or unit matrix, and the positive direction is defined from inside to outside of the bulk. By
definition, the external force acting on an infinitesimal surface area vector ds of the bulk is dF = Γ · ds.
The net external force on the bulk is

F =
∮

s f
Γ · ds = Γ ·

∮
s f

ds = 0, (1)

where the integral is over all the surface of the bulk, and therefore the bulk has no acceleration. The66

external stress Γ is assumed to be symmetric, i.e., for all of its components Γi,j = Γj,i. This assumption67

ensures that the net external torque on the bulk is zero.68

As said previously, the dynamics for the MD ions is always Newton’s second law

mi r̈i = Fi (i = 1, 2, · · · , n), (2)
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where ri is the position vector of the ith MD ion with mass mi, Fi is the net force acting on MD ion69

i from all other ions of any cell (but no external force on MD ions due to distance from the crystal70

surface), and n is the total number of MD ions. Then we will derive the dynamical equations for the71

period vectors in the following.72

For general purposes, consider 2-body, 3-body, · · · , up to M-body interactions among any group
of ions in any possible configurations. Since these many-body interactions are independent on each
other, forces and potentials can be written as a summation of individual m-body contributions. For
example, the net force on MD ion i can be expanded as

Fi =
M

∑
m=2

F(m)
i , (3)

where F(m)
i is the contribution of m-body interactions.73

For identifying an ion in the many-body interactions across the whole crystal effectively, a
simplified form of index Ik was used for it, so that its position vector can be expressed as

rIk = Ik,aa + Ik,bb + Ik,cc + rik , (4)

where Ik,a, Ik,b, and Ik,c are any values of integers representing the cell in which it resides, and ik,
ranging from 1 to n, refers to its corresponding image ion in the MD cell. This means that Ik represents
the total four independent integer variables of (Ik,a, Ik,b, Ik,c, ik). A summation over Ik means the
nested summations over the four corresponding integers. As there are m distinct ions participating in
any m-body interaction, the subscript k in Ik is used to index the ions from 1 to m in such an interaction.
Since no pair of ions can occupy the same physical location, for any pair of indexes Ik and Ik′ , the
expression

(Ik,a − Ik′ ,a)
2 + (Ik,b − Ik′ ,b)

2 + (Ik,c − Ik′ ,c)
2 + (ik − ik′)

2 6= 0 (5)

is always assumed inside any m-body interaction throughout this article. This also means that for74

MD ion ik′ and any other ion Ik, the expression (Ik,a)
2 + (Ik,b)

2 + (Ik,c)
2 + (ik − ik′)

2 6= 0 is always true,75

and that for any two MD ions ik and ik′ , the mutual exclusive relationship ik 6= ik′ is always true inside76

any m-body interaction.77

Based on Newton’s third law, the net force of the m-body interaction in any given m-ion
configuration should be zero

m

∑
k=1

f(m)
Ik

(rI1 , rI2 , rI3 , · · · , rIm) = 0, (6)

where f(m)
Ik

(rI1 , rI2 , rI3 , · · · , rIm) is the force acting on ion Ik by all the rest total m− 1 ions. Further
considering the periodicity of the system, the net m-body force acting on all MD ions should also be
zero:

n

∑
i1=1

F(m)
i1

= 0, (7)

where
F(m)

i1
=

1
(m− 1)! ∑

{I2,I3,··· ,Im}
f(m)

i1
(ri1 , rI2 , rI3 , · · · , rIm). (8)

Equation (7) means no internal force can push the system as a whole to accelerate. With Eqs. (3) and
(7) combined, it follows that the net of all forces acting on all MD ions is zero, i.e.

n

∑
i=1

mi r̈i =
n

∑
i=1

Fi = 0, (9)
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Figure 1. A sketch for the bulk of a crystal being cut by plane PhP′h, with a cross section area vector Sh.
Plane PhP′h is chosen such that for a given period vector h = a, b, or c, the right (Rh) part contains all
T = Taa + Tbb + Tcc cells with Th ≥ 0, and the left (Lh) part contains all the rest T cells with Th < 0.
The “half-line-cell” bar Bh is composed of the MD cell and cells h, 2h, 3h, 4h, etc., till the surface.
Newton’s second law is applied to the Rh part for the dynamical equations of the period vectors. (This
figure was copied from [30].)

where the summation indexes i and i1 are identical. Employing the centre-of-mass coordinate system78

of the MD cell for all the work throughout this paper, the total momentum of the MD cell is zero.79

As the period vectors may change with time, the volume Ω = (a× b) · c and shape of the MD80

cell and those of the bulk should also change accordingly.81

3. Instantaneous Dynamics82

In order to find the dynamical equations for the period vectors, imagine a plane PhP′h that cuts83

the model bulk into a right part and a left part, with Sh as the area vector of the cross section between84

the two parts in the direction of pointing to the right part, as shown in Fig.1. Plane PhP′h is chosen such85

that, for a given period vector h = a, b, or c, the right (Rh) part contains all T = Taa + Tbb + Tcc cells86

with Th ≥ 0, and the left (Lh) part contains all the rest T cells with Th < 0.87

Apply Newton’s second law to a “snapshot” of the right (Rh) part. Then, the net external force
acting on the Rh part is

FE,R =
∫

Rh ,s f
Γ · ds = Γ ·

∫
Rh ,s f

ds = Γ · Sh, (10)

where the integral is over the surface of the bulk in the Rh part. Let FL→R be the net force acting on the
Rh part by the Lh part. Then the dynamical equation of the Rh part is

MR r̈RC = FL→R + Γ · Sh, (11)

where MR is the total mass of the Rh part and r̈RC is the acceleration of the centre of mass of the Rh88

part.89

Since surface effects are neglected, FL→R should be uniformly distributed cell by cell across the
section Sh between the two parts. Dividing Eq. (11) by

Nh = |Sh| / |σh| , (12)
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where: σh = ∂Ω/∂h is the (right) surface area vector of a cell with respect to the period h, then

1
Nh

MR r̈RC = Fh + Γ · σh, (13)

where
Fh =

1
Nh

FL→R, (14)

which is the net force, by the Lh part, acting on the “half-line-cell" bar Bh composed of the MD cell and90

cells h, 2h, 3h, 4h, etc., till the surface, as shown in Fig.1.91

Using Eq. (9), the left hand side of Eq. (13) becomes

1
Nh

MR r̈RC =
1

Nh
∑

T∈Rh

n

∑
i=1

mi
(
r̈i + T̈

)
=

Mcell
Nh

∑
T∈Rh

T̈, (15)

where the total cell mass is Mcell = ∑n
i=1 mi and the nested summations of ∑T∈Rh ∑n

i=1 mean all ions
in the Rh part are counted. Noticing that T̈ = Taä + Tbb̈ + Tc c̈, Eq. (15) may be written as:

1
Nh

MR r̈RC = αh,aä + αh,bb̈ + αh,c c̈, (16)

where
αh,h′ =

Mcell
Nh

∑
T∈Rh

Th′ (h
′ = a, b, c). (17)

In the Rh part, Th is always non-negative, but for any Th′ 6=h, it is assumed there exists another −Th′

that cancels it in the above summation. Therefore, all non-diagonal terms αh,h′ 6=h are neglected. Then
Eq. (13) becomes

αh,hḧ = Fh + Γ · σh. (18)

Considering all many-body interactions, the net force Fh in Eq. (18) can be written as:

Fh =
M

∑
m=2

F(m)
h , (19)

where F(m)
h is the contribution of m-body interactions.92

The m-body interaction between the right and left part of the crystal means that the participating93

ions must be distributed in both parts, namely that not all participating ions are in the same part. Then94

F(m)
h is the net force on ions in the right part of all such possible configurations divided by Nh. For95

total t ions (m > t ≥ 1) in the right part (the rest of the ions are in the left part at the same time), the96

corresponding net force for all possibilities is97

F(m)
t,h =

1
Nh

1
t! (m− t)!

(I1,h ,I2,h ,··· ,It,h≥0)

∑
{I1,I2,··· ,It}

(It+1,h ,It+2,h ,··· ,Im,h<0)

∑
{It+1,It+2,··· ,Im}

t

∑
µ=1

f(m)
Iµ

(rI1 , rI2 , · · · , rIm)

=
1

Nh

1
t! (m− t)!

(I1,h ,I2,h ,··· ,It,h≥0)

∑
{I1,I2,··· ,It}

(It+1,h ,It+2,h ,··· ,Im,h<0)

∑
{It+1,It+2,··· ,Im}

tf(m)
I1

(rI1 , rI2 , · · · , rIm)

=
1

Nh

1
(t− 1)! (m− t)!

(I1,h ,I2,h ,··· ,It,h≥0)

∑
{I1,I2,··· ,It}

(It+1,h ,It+2,h ,··· ,Im,h<0)

∑
{It+1,It+2,··· ,Im}

f(m)
I1

(rI1 , rI2 , · · · , rIm),

(20)
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where ∑
(··· )
{··· } denotes the nested summations over indexes in {· · · } with conditions in (· · · ), and

commutability among ions in each part is considered. If there are indexes listed in the condition (· · · )
expression, the condition applies to all of them, otherwise applies to all the corresponding indexes
listed in {· · · }. For example, ∑

(i,j<0)
{i,j,k} restricts i < 0 and j < 0, while ∑

(positive)
{i,j,k} requires i > 0, j > 0, and

k > 0. If there is only one index in the condition expression, the brackets may be omitted. Throughout
this article, all layers of nested summations should be realized into reasonable forms even for special
situations. For example, for k = 1:

(I2,h ,I3,h ,··· ,Ik,h=0)

∑
{I2,I3,··· ,Ik}

(Ik+1,h ,Ik+2,h ,··· ,Im,h>0)

∑
{Ik+1,Ik+2,··· ,Im}

(· · · ) =
(Ik+1,h ,Ik+2,h ,··· ,Im,h>0)

∑
{Ik+1,Ik+2,··· ,Im}

(· · · ) ; (21)

while for k = m:

(I2,h ,I3,h ,··· ,Ik,h=0)

∑
{I2,I3,··· ,Ik}

(Ik+1,h ,Ik+2,h ,··· ,Im,h>0)

∑
{Ik+1,Ik+2,··· ,Im}

(· · · ) =
(I2,h ,I3,h ,··· ,Ik,h=0)

∑
{I2,I3,··· ,Ik}

(· · · ) . (22)

Remembering that
I1,h≥0

∑
I1

(· · · ) =
I1,h≥0

∑
I1,h

∑
I1,h′

∑
I1,h′′

n

∑
i1=1

(· · · ) , (23)

where h′, h′′ are also period vectors with possible values (h, h′, h′′) = (a, b, c), or (b, c, a), or (c, a, b)98

only, considering the crystal translatability, employing Nh = ∑I1,h′ ∑I1,h′′
1, and setting I1,h′ = I1,h′′ = 0,99

Eq. (20) becomes100

F(m)
t,h =

1
(t− 1)! (m− t)!

+∞

∑
I1,h=0

n

∑
i1=1

(I2,h ,I3,h ,··· ,It,h≥0)

∑
{I2,I3,··· ,It}

(It+1,h ,It+2,h ,··· ,Im,h<0)

∑
{It+1,It+2,··· ,Im}

f(m)
I1

(rI1 , rI2 , rI3 , · · · , rIm).

(24)

Translating the system so that the cell containing ion I1, which is I1,hh = 0h, 1h, 2h, 3h, · · · , becomes
the MD cell, Eq. (24) can be further written as:

F(m)
t,h =

1
(t− 1)! (m− t)!

−∞

∑
l=0

n

∑
i1=1

(I2,h ,I3,h ,··· ,It,h≥l)

∑
{I2,I3,··· ,It}

(It+1,h ,It+2,h ,··· ,Im,h<l)

∑
{It+1,It+2,··· ,Im}

f(m)
i1

(ri1 , rI2 , rI3 , · · · , rIm), (25)

and Eq. (19) becomes:101

Fh =
M

∑
m=2

m−1

∑
t=1

F(m)
t,h

=
M

∑
m=2

m−1

∑
t=1

1
(t− 1)! (m− t)!

−∞

∑
l=0

n

∑
i1=1

(I2,h ,I3,h ,··· ,It,h≥l)

∑
{I2,I3,··· ,It}

(It+1,h ,It+2,h ,··· ,Im,h<l)

∑
{It+1,It+2,··· ,Im}

f(m)
i1

(ri1 , rI2 , rI3 , · · · , rIm).

(26)

Considering m-body potential ϕ(m)(rI1 , rI2 , · · · , rIm), and supposing only s (m ≥ s ≥ 1) of the m102

ions are in the MD cell (all other ions are outside), where only a fraction s/m of the potential belongs103

to the cell, the sum of all such potential belonging to the cell is:104

E(m)
p,cell,s =

s
m

1
s!(m− s)!

(inside the cell)

∑
{i1,i2,··· ,is}

(outside the cell)

∑
{Is+1,Is+2,··· ,Im}

ϕ(m)(ri1 , ri2 , · · · , ris , rIs+1 , rIs+2 , · · · , rIm). (27)
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Since the set of values s′ = s− 1 = 0, 1, 2, · · · , m− 1 means all possible situations where all ions, except105

ion i1 (kept inside the cell), are placed inside or outside of the cell, one has:106

1
(m− 1)!

(inside the cell)

∑
i1

∑
{I2,I3,··· ,Im}

ϕ(m)(ri1 , rI2 , rI3 , · · · , rIm)

=
m−1

∑
s′=0

1
s′!(m− 1− s′)!

(inside the cell)

∑
{i1,i2,··· ,is}

(outside the cell)

∑
{Is+1,Is+2,··· ,Im}

ϕ(m)(ri1 , ri2 , · · · , ris , rIs+1 , rIs+2 , · · · , rIm). (28)

Then the m-body cell potential energy becomes:107

E(m)
p,cell =

m

∑
s=1

E(m)
p,cell,s =

1
m!

n

∑
i1=1

∑
{I2,I3,··· ,Im}

ϕ(m)(ri1 , rI2 , rI3 , · · · , rIm). (29)

As a result, the total up to M-body cell potential energy is:108

Ep,cell =
M

∑
m=2

E(m)
p,cell =

M

∑
m=2

1
m!

n

∑
i1=1

∑
{I2,I3,··· ,Im}

ϕ(m)(ri1 , rI2 , rI3 , · · · , rIm). (30)

Making use of Eq. (4), take the derivative:109

− ∂

∂h
E(m)

p,cell =
1

m!

n

∑
i1=1

∑
{I2,I3,··· ,Im}

m

∑
k=2

Ik,hf(m)
Ik

(ri1 , rI2 , rI3 , · · · , rIm)

=
1

m!

n

∑
i1=1

∑
{I2,I3,··· ,Im}

(m− 1)Im,hf(m)
Im

(ri1 , rI2 , rI3 , · · · , rIm)

=
1

m (m− 2)!

n

∑
i1=1

∑
{I2,I3,··· ,Im}

Im,hf(m)
Im

(ri1 , rI2 , rI3 , · · · , rIm), (31)

with the force:
f(m)

Ik
(rI1 , rI2 , · · · , rIm) = −

∂

∂rIk

ϕ(m)(rI1 , rI2 , · · · , rIm). (32)

The right side of Eq. (31) can be split into two terms based on the sign of Im,h , so that:

− ∂

∂h
E(m)

p,cell = F(m)
h,+ + F(m)

h,−, (33)

where:110

F(m)
h,+ =

1
m (m− 2)!

n

∑
i1=1

Im,h>0

∑
{I2,I3,··· ,Im}

Im,hf(m)
Im

(ri1 , rI2 , rI3 , · · · , rIm)

=
1

m (m− 2)!

+∞

∑
l=0

n

∑
i1=1

Im,h>l

∑
{I2,I3,··· ,Im}

f(m)
Im

(ri1 , rI2 , rI3 , · · · , rIm), (34)

and111

F(m)
h,− =

1
m (m− 2)!

n

∑
i1=1

Im,h<0

∑
{I2,I3,··· ,Im}

Im,hf(m)
Im

(ri1 , rI2 , rI3 , · · · , rIm)

=
−1

m (m− 2)!

−∞

∑
l=0

n

∑
i1=1

Im,h<l

∑
{I2,I3,··· ,Im}

f(m)
Im

(ri1 , rI2 , rI3 , · · · , rIm). (35)
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By making use of the translatability to move the system so that the cell Im,hh + Im,h′h′ + Im,h′′h′′,112

in which ion Im resides, is translated to the MD cell, Eq. (34) becomes113

F(m)
h,+ =

1
m (m− 2)!

+∞

∑
l=0

I1,h<−l

∑
I1

∑
{I2,I3,··· ,Im−1}

n

∑
im=1

f(m)
im (rI1 , rI2 , rI3 , · · · , rim)

=
1

m (m− 2)!

−∞

∑
l=0

I1,h<l

∑
I1

∑
{I2,I3,··· ,Im−1}

n

∑
im=1

f(m)
im (rI1 , rI2 , rI3 , · · · , rim). (36)

Renaming ion im as ion I1 and ion I1 as ion im, then114

F(m)
h,+ =

1
m (m− 2)!

−∞

∑
l=0

n

∑
i1=1

∑
{I2,I3,··· ,Im−1}

Im,h<l

∑
Im

f(m)
i1

(ri1 , rI2 , rI3 , · · · , rIm). (37)

Expand it with respect to t′ , the number of ions distributed in the part of the crystal defined by Ik,h ≥ l,115

of total m− 2 ions indexed from I2 to Im−1, then116

F(m)
h,+ =

1
m

m−2

∑
t′=0

−∞

∑
l=0

n

∑
i1=1

(I2,h ,I3,h ,··· ,It′+1,h≥l)

∑
{I2,I3,··· ,It′+1}

(It′+2,h ,It′+3,h ,··· ,Im−1,h<l)

∑
{It′+2,It′+3,··· ,Im−1}

Im,h<l

∑
Im

f(m)
i1

(ri1 , rI2 , rI3 , · · · , rIm)

t′! (m− 2− t′)!

=
m−1

∑
t=1

m− t
m

F(m)
t,h , (38)

where t is actually equal to t′ + 1.117

Now let us make use of the translatability to move the system so that cell Im,hh+ Im,h′h′+ Im,h′′h′′,118

in which ion Im resides, is translated to the MD cell, then Eq. (35) becomes119

F(m)
h,− =

−1
m (m− 2)!

−∞

∑
l=0

I1,h>−l

∑
I1

∑
{I2,I3,··· ,Im−1}

n

∑
im=1

f(m)
im (rI1 , rI2 , rI3 , · · · , rim)

=
−1

m (m− 2)!

+∞

∑
l=0

I1,h>l

∑
I1

∑
{I2,I3,··· ,Im−1}

n

∑
im=1

f(m)
im (rI1 , rI2 , rI3 , · · · , rim). (39)

Expand the above equation with respect to t′ = t− 1 , the number of ions distributed in the part of the120

crystal defined by Ik,h > l , of total m− 2 ions indexed from I2 to Im−1, then it changes into121

F(m)
h,− =

−1
m

m−2

∑
t′=0

+∞

∑
l=0

(I1,h ,I2,h ,··· ,It,h>l)

∑
{I1,I2,··· ,It}

(It+1,h ,It+2,h ,··· ,Im−1,h≤l)

∑
{It+1,It+2,··· ,Im−1}

n

∑
im=1

f(m)
im (rI1 , rI2 , rI3 , · · · , rim)

t′! (m− 2− t′)!
.

(40)
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Meanwhile, employing Eq. (6), the first line of Eq. (20) can also be written as122

F(m)
t,h =

−1
Nht! (m− t)!

(I1,h ,I2,h ,··· ,It,h≥0)

∑
{I1,I2,··· ,It}

(It+1,h ,It+2,h ,··· ,Im,h<0)

∑
{It+1,It+2,··· ,Im}

m

∑
µ=t+1

f(m)
Iµ

(rI1 , rI2 , · · · , rIm)

=
−1

Nht! (m− t)!

(I1,h ,I2,h ,··· ,It,h≥0)

∑
{I1,I2,··· ,It}

(It+1,h ,It+2,h ,··· ,Im,h<0)

∑
{It+1,It+2,··· ,Im}

(m− t) f(m)
Im

(rI1 , rI2 , · · · , rIm)

=
−1

Nht! (m− t− 1)!

(I1,h ,I2,h ,··· ,It,h≥0)

∑
{I1,I2,··· ,It}

(It+1,h ,It+2,h ,··· ,Im,h<0)

∑
{It+1,It+2,··· ,Im}

f(m)
Im

(rI1 , rI2 , · · · , rIm)

=
−1

t! (m− t− 1)!

(I1,h ,I2,h ,··· ,It,h≥0)

∑
{I1,I2,··· ,It}

(It+1,h ,It+2,h ,··· ,Im−1,h<0)

∑
{It+1,It+2,··· ,Im−1}

Im,h<0

∑
Im,h

n

∑
im=1

f(m)
Im

(rI1 , rI2 , · · · , rIm),

(41)

where in the last line, Im,h′ = Im,h′′ = 0, which means the cell containing ion Im can be and only be
Im,hh = −1h, −2h, −3h, · · · . Translating the system so that the cell containing ion Im becomes the
MD cell, Eq. (41) becomes:

F(m)
t,h =

−1
t! (m− t− 1)!

+∞

∑
l=0

(I1,h ,I2,h ,··· ,It,h>l)

∑
{I1,I2,··· ,It}

(It+1,h ,It+2,h ,··· ,Im−1,h≤l)

∑
{It+1,It+2,··· ,Im−1}

n

∑
im=1

f(m)
im (rI1 , rI2 , rI3 , · · · , rim). (42)

Combining Eqs. (40) and Eq. (42), then

F(m)
h,− =

m−1

∑
t=1

t
m

F(m)
t,h . (43)

As a result

Fh =
M

∑
m=2

m−1

∑
t=1

F(m)
t,h =

M

∑
m=2

(
F(m)

h,+ + F(m)
h,−

)
=

M

∑
m=2
− ∂

∂h
E(m)

p,cell = −
∂

∂h
Ep,cell . (44)

Let us define the main interaction tensor for up to M-body interactions as

Λmain =
−1
Ω

[(
∂Ep,cell

∂a

)
⊗ a+

(
∂Ep,cell

∂b

)
⊗ b+

(
∂Ep,cell

∂c

)
⊗ c
]
=

M

∑
m=2

Λ
(m)
main (45)

with

Λ
(m)
main =

−1
Ω

∂E(m)
p,cell

∂a

⊗ a+

∂E(m)
p,cell

∂b

⊗ b+

∂E(m)
p,cell

∂c

⊗ c

 , (46)

then
Fh = Λmain · σh, (47)

where h · σh = Ω and h′ · σh = h′′ · σh = 0 are used.123

Then Eq. (18) becomes

αh,hḧ = (Λmain + Γ) · σh (h = a, b, c). (48)

The dynamical equation Eq. (48) is essentially the same as in previous work[27], for only constant124

external pressure being considered.125
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Figure 2. A sketch for two distinct states of the system which are exactly the same in all microscopic
details except being translated slightly relative to each other. As a set of image ions, the black diamonds
are on the right side in each cell of the right state, but on the left side in each cell of the left state. The
black disks as another set of image ions are on the other sides in the states. In these states all right parts
from plane PhP′h have the same number of cells. (This figure was copied from [30].)

4. Microscopic Translated States126

As seen in Fig. 2, the two distinct states of the system are exactly the same in all microscopic127

details except being translated relative to each other. In these states all right parts from plane PhP′h128

have the same number of cells conceptually. Since they cannot be distinguished from a macroscopic129

point of view, an unweighted average of Eq. (48) or Eq. (18) over all such configurations should be130

taken. Among these, Eq. (18) is the same except the net force Fh, acting on the half-line-cell bar Bh by131

the Lh part, as in Fig. 1. Equivalently, this means that the net force Fh in Eq. (18) is replaced by the132

unweighted average of it over all possible parallel locations of cutting planes PhP′h that pass through133

the MD cell in Fig. 1. For clarity, PhP′h was used in its original meaning (i.e., with fixed position),134

but QhQ′h was employed for such a plane running from left to right. For simplicity, Rh from Fig.135

1 was separated into two parts: Th = 0 slab made of all cell of T = Taa + Tbb + Tcc with Th = 0,136

and R′h part made of the rest of the cells. As an example, for h = a, Th = 0 slab includes all cells of137

T = 0a + Tbb + Tcc with Tb and Tc being any integers. Since it makes a difference only if QhQ′h meets138

some ion(s) when it runs, we will only consider the situation where there are s ≥ 1 ion(s) in the Th = 0139

slab participating in the interactions. We will consider the following three cases in sequence.140

The first case is that there are other t ≥ 1 ion(s) participating in the m-body interaction appearing
in the Lh part. When the plane QhQ′h runs from left to right passing through the MD cell, the probability
for MD ion ik appearing on the left side of QhQ′h is

ηik ,h =

(
h−

(
rik − r0

))
· σh

Ω
=

(
h0 − rik

)
· σh

Ω
, (49)
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where r0 is the position vector of the left-bottom and far-away vertex of the MD cell and h0 = h + r0.141

The following averaged net force acting on the s ions by the rest ions142

F(m)
c1,s,t,h =

1
Nh

1
s!t! (m− t− s)!

(I1,h ,I2,h ,··· ,Is,h=0)

∑
{I1,I2,··· ,Is}

(Is+1,h ,Is+2,h ,··· ,Is+t,h<0)

∑
{Is+1,Is+2,··· ,Is+t}

×

(Is+t+1,h ,Is+t+2,h ,··· ,Im,h>0)

∑
{Is+t+1,Is+t+2,··· ,Im}

s

∑
µ=1

ηiµ ,hf(m)
Iµ

(rI1 , rI2 , rI3 , · · · , rIm)

=
1

Nh

1
s!t! (m− t− s)!

(I1,h ,I2,h ,··· ,Is,h=0)

∑
{I1,I2,··· ,Is}

(Is+1,h ,Is+2,h ,··· ,Is+t,h<0)

∑
{Is+1,Is+2,··· ,Is+t}

×

(Is+t+1,h ,Is+t+2,h ,··· ,Im,h>0)

∑
{Is+t+1,Is+t+2,··· ,Im}

sηi1,hf(m)
I1

(rI1 , rI2 , rI3 , · · · , rIm), (50)

should be excluded from Fh, as it was unconditionally included in the Fh previously. The above143

equation can be simplified by translating the cell where ion I1 resides, in the Th = 0 slab, to the MD144

cell (then I1 becomes i1 and Nh can be reduced to 1 by removing summations over I1,h′ and I1,h′′ )145

F(m)
c1,s,t,h =

s
s!t! (m− t− s)!

n

∑
i1=1

(I2,h ,I3,h ,··· ,Is,h=0)

∑
{I2,I3,··· ,Is}

(Is+1,h ,Is+2,h ,··· ,Is+t,h<0)

∑
{Is+1,Is+2,··· ,Is+t}

×

(Is+t+1,h ,Is+t+2,h ,··· ,Im,h>0)

∑
{Is+t+1,Is+t+2,··· ,Im}

ηi1,hf(m)
i1

(ri1 , rI2 , rI3 , · · · , rIm)

=
s

s!t! (m− t− s)!

n

∑
i1=1

(I2,h ,I3,h ,··· ,It+1,h<0)

∑
{I2,I3,··· ,It+1}

(It+2,h ,It+3,h ,··· ,It+s,h=0)

∑
{It+2,It+3,··· ,It+s}

×

(Is+t+1,h ,Is+t+2,h ,··· ,Im,h>0)

∑
{Is+t+1,Is+t+2,··· ,Im}

ηi1,hf(m)
i1

(ri1 , rI2 , rI3 , · · · , rIm), (51)

where ion index numbers were re-assigned. In the above expression, there are t ≥ 1 ion(s) in the Lh146

part. The situation with t = 0 ion(s) in the Lh part is considered in the other two cases. There are s ≥ 1147

ion(s) in the Th = 0 slab. As ion i1 is in the MD cell, there are additional s− 1 ion(s) in the Th = 0 slab.148

Actually the above expression is valid for all situations with s′ = s− 1 = 0, 1, 2, · · · , m− t− 1 ions149

running anywhere in the Th = 0 slab (except ri1 position), and accordingly m− t− 1− s′ ions running150

anywhere in the R′h part. From total m− t− 1 ions numbered t + 2, t + 3, . . . , m running anywhere in151

the Rh part except ri1 position, considering all the possible situations placing s′ ions into the Th = 0152

slab and putting all the rest ions in the R′h part, the following equality emerges153

1
(m− t− 1)!

(It+2,h ,It+3,h ,··· ,Im,h≥0)

∑
{It+2,It+3,··· ,Im}

ηi1,hf(m)
i1

(ri1 , rI2 , rI3 , · · · , rIm)

=
m−t−1

∑
s′=0

ηi1,h

s′! (m− t− 1− s′)!

(It+2,h ,It+3,h ,··· ,It+s,h=0)

∑
{It+2,It+3,··· ,It+s}

(It+s+1,h ,It+s+2,h ,··· ,Im,h>0)

∑
{It+s+1,It+s+2,··· ,Im}

f(m)
i1

(ri1 , rI2 , rI3 , · · · , rIm).

(52)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 August 2018                   doi:10.20944/preprints201709.0030.v2

http://dx.doi.org/10.20944/preprints201709.0030.v2


12 of 18

Combining Eq. (51) and Eq. (52),154

F(m)
c1,t,h =

m−t−1

∑
s′=0

F(m)
c1,s,t,h

=
n

∑
i1=1

ηi1,h

t! (m− t− 1)!

(I2,h ,I3,h ,··· ,It+1,h<0)

∑
{I2,I3,··· ,It+1}

(It+2,h ,It+3,h ,··· ,Im,h≥0)

∑
{It+2,It+3,··· ,Im}

f(m)
i1

(ri1 , rI2 , rI3 , · · · , rIm).

(53)

The second case is that all ions participating in the m-body interaction reside in Rh part, thus155

there is no ion in the Lh part, and there must be at least one ion in the Th = 0 slab and at least one ion156

in the R′h part. The situation with no ion in the R′h part will be considered in the last case. Consider157

s ≥ 1 ion(s) in the Th = 0 slab and the remaining total m− s ≥ 1 ion(s) in the R′h part. For a given158

plane QhQ′h cutting the MD cell, the net force acting on the ions on the right side of QhQ′h by those on159

the left side should be added to Fh. Recalling Eq. (6), equivalently the net force acting on the ions on160

the left side of QhQ′h by those on the right side should be subtracted from Fh. With ion probabilities161

appearing on the left side of QhQ′h considered, the averaged net force on them can be written as162

F(m)
c2,s,h =

1
Nh

1
s! (m− s)!

(I1,h ,I2,h ,··· ,Is,h=0)

∑
{I1,I2,··· ,Is}

(Is+1,h ,Is+2,h ,··· ,Im,h>0)

∑
{Is+1,Is+2,··· ,Im}

s

∑
µ=1

ηiµ ,hf(m)
Iµ

(rI1 , rI2 , rI3 , · · · , rIm)

=
1

Nh

1
s! (m− s)!

(I1,h ,I2,h ,··· ,Is,h=0)

∑
{I1,I2,··· ,Is}

(Is+1,h ,Is+2,h ,··· ,Im,h>0)

∑
{Is+1,Is+2,··· ,Im}

sηi1,hf(m)
I1

(rI1 , rI2 , rI3 , · · · , rIm)

=
1

(s− 1)! (m− s)!

n

∑
i1=1

(I2,h ,I3,h ,··· ,Is,h=0)

∑
{I2,I3,··· ,Is}

(Is+1,h ,Is+2,h ,··· ,Im,h>0)

∑
{Is+1,Is+2,··· ,Im}

ηi1,hf(m)
i1

(ri1 , rI2 , rI3 , · · · , rIm).

(54)

The last case is that all ions participating in the m-body interaction are in the Th = 0 slab. For a163

given plane QhQ′h cutting the MD cell, the net force acting on the ions on the right side of QhQ′h by164

those on the left side should be added to Fh. Based on Eq. (6), equivalently the net force acting on the165

ions on the left side of QhQ′h by those on the right side should be subtracted from Fh. As a matter of166

fact, only when ions are distributed on both sides of plane QhQ′h, such forces should be considered.167

For a given configuration of the m ions, assuming ion Im is the last one to be crossed by plane QhQ′h168

when it runs from left to right, the probability for ion Ik appearing on the left side of plane QhQ′h and169

ion Im on the right side is
(
rim − rik

)
· σh/Ω, then the averaged net force of the given configuration to170

be subtracted from Fh is171

f(m)
c3,h =

m

∑
µ=1

(
rim − riµ

)
· σh

Ω
f(m)

Iµ
(rI1 , rI2 , rI3 , · · · , rIm)

=
m

∑
µ=1

((
h0 − riµ

)
− (h0 − rim)

)
· σh

Ω
f(m)

Iµ
(rI1 , rI2 , rI3 , · · · , rIm)

=
m

∑
µ=1

ηiµ ,hf(m)
Iµ

(rI1 , rI2 , rI3 , · · · , rIm)− ηim ,h

m

∑
µ=1

f(m)
Iµ

(rI1 , rI2 , rI3 , · · · , rIm). (55)
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Applying Eq. (6), the last term in the last equation becomes zero, then the averaged net force of all172

such configurations is173

F(m)
c3,h =

1
Nh

1
m!

(I1,h ,I2,h ,··· ,Im,h=0)

∑
{I1,I2,··· ,Im}

f(m)
c3,h

=
1

Nh

1
m!

(I1,h ,I2,h ,··· ,Im,h=0)

∑
{I1,I2,··· ,Im}

m

∑
µ=1

ηiµ ,hf(m)
Iµ

(rI1 , rI2 , rI3 , · · · , rIm)

=
1

Nh

1
m!

(I1,h ,I2,h ,··· ,Im,h=0)

∑
{I1,I2,··· ,Im}

mηi1,hf(m)
I1

(rI1 , rI2 , rI3 , · · · , rIm)

=
1

(m− 1)!

n

∑
i1=1

(I2,h ,I3,h ,··· ,Im,h=0)

∑
{I2,I3,··· ,Im}

ηi1,hf(m)
i1

(ri1 , rI2 , rI3 , · · · , rIm). (56)

Equation (54) is valid for s′ = s − 1 = 0, 1, 2, · · · , m − 2 in the above case, while Eq. (56) is
essentially the situation with s′ = s− 1 = m− 1, namely

F(m)
c3,h = F(m)

c2,s=m,h. (57)

For fixed ri1 , only s′ = 0, 1, 2, · · · , m− 1 of the remaining m− 1 ions in the Rh part can appear in the174

Th = 0 slab and the remaining ion(s) in the R′h part, then:175

1
(m− 1)!

(I2,h ,I3,h ,··· ,Im,h≥0)

∑
{I2,I3,··· ,Im}

f(m)
i1

(ri1 , rI2 , rI3 , · · · , rIm)

=
m−1

∑
s′=0

1
(s− 1)! (m− s)!

(I2,h ,I3,h ,··· ,Is,h=0)

∑
{I2,I3,··· ,Is}

(Is+1,h ,Is+2,h ,··· ,Im,h>0)

∑
{Is+1,Is+2,··· ,Im}

f(m)
i1

(ri1 , rI2 , rI3 , · · · , rIm).

(58)

Furthermore176

F(m)
c2+c3,h = F(m)

c3,h +
m−2

∑
s′=0

F(m)
c2,s,h =

m−1

∑
s′=0

F(m)
c2,s,h

=
m−1

∑
s′=0

n

∑
i1=1

ηi1,h

(s− 1)! (m− s)!

(I2,h ,I3,h ,··· ,Is,h=0)

∑
{I2,I3,··· ,Is}

(Is+1,h ,Is+2,h ,··· ,Im,h>0)

∑
{Is+1,Is+2,··· ,Im}

f(m)
i1

(ri1 , rI2 , rI3 , · · · , rIm)

=
n

∑
i1=1

ηi1,h

(m− 1)!

(I2,h ,I3,h ,··· ,Im,h≥0)

∑
{I2,I3,··· ,Im}

f(m)
i1

(ri1 , rI2 , rI3 , · · · , rIm). (59)

Similarly, Eq. (53) is valid for t = 1, 2, · · · , m− 1 in the first case, while Eq. (59) is essentially the
situation with t = 0, namely

F(m)
c2+c3,h = F(m)

c1,t=0,h. (60)
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For fixed ri1 , only t = 0, 1, 2, · · · , m− 1 of the remaining m− 1 ions can appear in the Lh part with the177

remaining ion(s) in the Rh part at the same time, then178

1
(m− 1)! ∑

{I2,I3,··· ,Im}
f(m)

i1
(ri1 , rI2 , rI3 , · · · , rIm)

=
m−1

∑
t=0

1
t! (m− t− 1)!

(I2,h ,I3,h ,··· ,It+1,h<0)

∑
{I2,I3,··· ,It+1}

(It+2,h ,It+3,h ,··· ,Im,h≥0)

∑
{It+2,It+3,··· ,Im}

f(m)
i1

(ri1 , rI2 , rI3 , · · · , rIm).

(61)

As a result,179

F(m)
c1+c2+c3,h = F(m)

c2+c3,h +
m−1

∑
t=1

F(m)
c1,t,h =

m−1

∑
t=0

F(m)
c1,t,h

=
m−1

∑
t=0

n

∑
i1=1

ηi1,h

t! (m− t− 1)!

(I2,h ,I3,h ,··· ,It+1,h<0)

∑
{I2,I3,··· ,It+1}

(It+2,h ,It+3,h ,··· ,Im,h≥0)

∑
{It+2,It+3,··· ,Im}

f(m)
i1

(ri1 , rI2 , rI3 , · · · , rIm)

=
n

∑
i1=1

ηi1,h

(m− 1)! ∑
{I2,I3,··· ,Im}

f(m)
i1

(ri1 , rI2 , rI3 , · · · , rIm)

=
n

∑
i1=1

(
h0 − ri1

)
· σh

Ω
F(m)

i1
, (62)

where as defined in Eq. (8), F(m)
i1

is the net m-body force acting on MD ion i1 by all other m− 1 ions in180

all possible configurations.181

By using Eq. (7), Eq. (62) can be reduced as

F(m)
c1+c2+c3,h =

n

∑
i1=1

(
−ri1

)
· σh

Ω
F(m)

i1
= − 1

Ω

n

∑
i1=1

(
F(m)

i1
⊗ ri1

)
· σh. (63)

Then the averaged net force acting on the half-line-cell bar Bh by the Lh part in Fig. 1 is

F′h = Fh −
M

∑
m=2

F(m)
c1+c2+c3,h = Fh +

1
Ω

n

∑
i1=1

(
Fi1 ⊗ ri1

)
· σh, (64)

where Eq. (3) is used. Now, let us introduce another tensor

Λp =
1
Ω

n

∑
i1=1

Fi1 ⊗ ri1 , (65)

which is zero when an equilibrium state is reached. This provides

F′h = Fh + Λp · σh =
(
Λmain + Λp

)
· σh = Λ · σh, (66)

where the full interaction term of the internal stress is

Λ = Λmain + Λp. (67)

It can also be written as

Λ = − 1
Ω ∑

z∈DOF

(
∂Ep,cell

∂z

)
⊗ z, (68)
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where DOF refers to all degrees of freedom of the system including the three period vectors a, b, c, and
all MD ion position vectors r1, r2, · · · , and rn. Then the period dynamics Eq. (48) can be updated into

αh,hḧ = (Λ + Γ) · σh (h = a, b, c). (69)

5. Momentum Transportation182

Consider an ideal gas in a fixed and closed container in an equilibrium state from a macroscopic183

point of view and imagine to cut it into a left half and a right half. Gas particles carrying their184

momentum can freely run between the two halves. Then we have two choices to study it.185

One choice is to employ a material-based system. In such a system definition, the gas particles186

always belong to the same half system, which they belong to at the very beginning. Then at the very187

beginning, we have very clear half systems of gas particles. However very soon, some gas particles188

in one half may move into the other half, but still belong to the original half system. Then the half189

systems would no longer have a clear boundary. Definitely, Newton’s second law still applies to the190

half systems, but not easy to use.191

The other choice is to employ a space-based system definition[32], in which at any time, a particle192

belongs to the system if it is inside the corresponding space with a fixed and close geometric boundary,193

otherwise it is not. Then each half system is actually defined by the corresponding fixed half space194

inside the container, then always has a clear boundary. When a gas particle moves from one half into195

the other half, it leaves from the former system and joines the later system. The later system gets its196

momentum and the former system gets its momentum as well but in the opposite direction. For the197

dynamical process of each space-based half system, the total regular force we see is the net external198

force acting on the gas particles by the container during collisions between them, which is not zero199

at non-zero absolute temperature. However, the total momentum of each half system is always zero.200

Then the net momentum transported into and out of the half system per unit time, due to gas particles’201

crossing the boundary between the two halves, should also be considered as an external force acting202

on the half system in order to satisfy Newton’s second law. As a matter of fact, these two forces balance203

each other. Let us call the later as the force associated with momentum transportation. Since a specific204

momentum transported from space-based system SA to its neighbour space-based system SB per unit205

time should be regarded as an external force acting on system SB by system SA, its opposite direction206

momentum movement rate from SB to SA should be regarded as another external force acting on207

system SA by system SB. They are actually action and re-action forces satisfying Newton’s third law.208

Similarly, if a material-based system is used to study each half part of the crystal above, when an209

ion “runs from one part into the other part of the crystal", it still belongs to the original part, then the210

motion of every individual ion must be traced all the time. Furthermore the corresponding components211

of the external stress Γ, acting on the surface of one part of the crystal, should also be identified acting212

on the ions, which belong to the other part. If a space-based system is employed, these are not needed,213

but the force associated with momentum transportation should be considered as an external force on214

the system.215

As in our previous work[30], for the Lh and Rh parts in Fig. 1, both as space-based systems,
consider the above statistics over the indistinguishable translated states with the help of plane
QhQ′h again, but of the force associated with momentum transportation. If the total amount of
such indistinguishable translated states is assumed as the cell volume Ω, the amount of those where
MD ion i can cross plane QhQ′h during a unit time is |ṙi · σh|, with momentum mi ṙi being carried each.
Then the additional averaged force associated with momentum transportation on Rh part

fh,tm =
1
Ω

n

∑
i=1

(ṙi · σh)mi ṙi =
1
Ω

n

∑
i=1

mi (ṙi ⊗ ṙi) · σh (70)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 August 2018                   doi:10.20944/preprints201709.0030.v2

http://dx.doi.org/10.20944/preprints201709.0030.v2


16 of 18

should be added to F′h. As a result, Eq. (66) is updated to

Fh = F′h + fh,tm =
(
Λ + ∆′

)
· σh, (71)

where the instantaneous kinetic-energy term of the internal stress is

∆′ =
1
Ω

n

∑
i=1

mi ṙi ⊗ ṙi. (72)

Defining the instantaneous internal stress as

Π′ = Λ + ∆′, (73)

the period dynamics Eq. (69) becomes

αh,hḧ =
(
Π′ + Γ

)
· σh (h = a, b, c). (74)

The observable period vectors showing fixed values under certain external conditions (e.g.
constant external pressure and temperature) should not depend on the directions of ions’ motions. A
further unweighted average of Eq. (74) was performed over all moving directions of the MD ions. For
this, the averaged Eq. (72) becomes:

∆′ =
1

3Ω

n

∑
i=1

mi |ṙi|2 I =
2

3Ω
Ek,MD,ionI, (75)

where Ek,MD,ion is the total kinetic-energy of the MD ions. Also considering the motion of the valence
electrons the same way, the averaged kinetic-energy term of internal stress should be:

∆ = ∆′ +
2

3Ω
Ek,MD,veI =

2
3Ω

(Ek,MD,ion + Ek,MD,ve) I, (76)

where Ek,MD,ve is the total kinetic-energy of the valence electrons in the MD cell. The forces
corresponding to this part of the internal stress should be balanced by the part of the external forces
involved in collisions between the ions in the bulk surface and the surrounding external walls, as in
the above example of an ideal gas. Accordingly, the averaged internal stress from Eq. (73) is

Π = Λ + ∆. (77)

Then the period dynamics Eq. (74) changes into

αh,hḧ = (Π + Γ) · σh (h = a, b, c). (78)

6. Summary and Discussion216

Keeping Newton’s second law for MD ions and applying it to macroscopic half-systems with217

additional statistics over indistinguishable translated states and forces associated with momentum218

transportation applied, we arrived at the coupled dynamical equations, Eq. (2) for MD ions and219

Eq. (78) for the period vectors, of crystals of many-body interactions under constant external stress.220

Equation (78) shows that the system period vectors are driven by the imbalance between the internal221

and external stresses. Then when the system reaches an equilibrium state, the internal and external222

stresses balance each other. The internal stress has both full kinetic-energy and full interaction terms.223

As a result, the dynamical equations and associated formulas in this article for many-body interactions224

share the same form of those in our last work[30] for pair-potential only.225
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The kinetic-energy term was obtained from the statistics of forces associated with momentum226

transportation when the two halves of the system are recognized as space-based ones. Since the full227

interaction term of the internal stress Eq. (68) is valid for any-body interactions, it should also be valid228

for forces from electrons but calculated based on quantum mechanics involved. In such a situation,229

the effective interactions among ions through electrons are many-body ones, as the calculated state of230

electrons depends on the positions of all ions.231

As a matter of fact, the external stress is required as a constant only in deriving Eqs. (1) and (10)232

and this requirement only means that it is constant over the surface of the crystal throughout this233

paper. Then for such external stress but changing with real time, one can solve the crystal with Eqs. (2)234

and (78) to reach an equilibrium state iteratively for the given external stress at a given real time, then235

the next real time, ..., till end.236

In the MD world, simulations are usually classified into various ensembles, based on applicable237

combinations of fixed volume, constant external pressure, and constant external temperature. For238

ensembles of fixed volume, Eq. (78) shows that an external stress balancing the internal stress should239

always be supplied or assumed. For ensembles of constant external pressure/stress, Eq. (78) can240

be used. Additionally, the straightforward ion speed rescaling method can always be a choice, for241

constant external temperature simulations.242
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The following abbreviations are used in this manuscript:251

252

MD Molecular Dynamics
DOF Degrees Of Freedom of the system, only used in Eq. (68)
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