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1 Abstract: Since crystals are made of periodic structures in space, predicting their three period vectors
> starting from any values based on the inside interactions is a basic theoretical physics problem.
s For the general situation where crystals are under constant external stress, we derived dynamical
«  equations of the period vectors in the framework of Newtonian dynamics, for pair potentials recently
s (doi:/10.1139/cjp-2014-0518). The derived dynamical equations show that the period vectors are
¢ driven by the imbalance between the internal and external stresses. This presents a physical process
z  where when the external stress changes, the crystal structure changes accordingly, since the original
s internal stress can not balance the external stress. The internal stress has both a full kinetic energy
o  term and a full interaction term. It is extended to many-body interactions in this paper. As a result,
10 all conclusions in the pair-potential case also apply for many-body potentials.

1 Keywords: dynamical equation; crystal; period vectors; periodic structure; period dynamics; pressure;
12 stress; many-body interaction; molecular dynamics; periodic boundary conditions
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1. Introduction

I
»

15 The spacial periodicity of the crystal structures is presented in almost all solid state physics
16 books[1-3]. Then a basic and general theory of predicting crystal structures under external
1z pressure/stress is very desired. In 1980, by extending Andersen’s idea[4], Parrinello and Rahman
1s proposed their theory of such for the first time in science history[5,6], when they met the same problem
1o in molecular dynamics (MD) simulations with the periodic boundary condition being applied[7-9].
20 Then many more efforts have been devoted to this fundamental physics problem [10-30]. While all
a1 the rest of them were based on Lagrangian/Hamiltonian dynamics or minimizing (Gibbs) energy or
22 enthalpy of the system, our recent effort[30] followed Newtonian dynamics.

23 According to the Born-Oppenheimer approximation, electrons and ions of crystals are treated
2« separately. Assuming the motion of the electrons is always solved by applying quantum mechanics
25 with respect to any given configuration of the ions, let us focus on the motion of the ions only, which
26 is usually described in the framework of classical physics. In other words, electrons are regarded
2z as a solvable media of interactions among the ions, and in this paper all forces by the electrons are
2e  assumed effectively included in the empirical many-body interactions among ions. Then a crystal
20 structure is reduced to a periodic arrangement of exactly the same cells of ions in three-dimensional
30 space. As usually done in MD simulations, the spacial periodicity of the system structure is always
a1 assumed throughout this paper, however the ions move and the size and shape of the cells change.
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52 Using MD terms, the cell at the center of the crystal is called the MD cell and the ions in the MD cell
»s  are called the MD ions. Then the position vectors of the MD ions and the period vectors form the
s« complete degrees of freedom of the crystal. The period vectors are also the edge vectors of a cell, which
35 determine the size and shape of cells. The period vectors may also be called basic vectors or primitive
36 translation vectors in solid state physics. Since crystals are formed based on the interactions of the
sz ions, their structures should be predictable/determinable by dynamics. No doubt, the dynamics of
ss  the MD ions is given by Newton’s second law, then the only task left is to derive the dynamics of the
3 three independent period vectors for crystals under external stress. All the dynamics should drive the
20 system from a state of any positions of the MD ions and any size and shape of the MD cell towards an
a1 equilibrium state, where the structure is usually measured in experiments.

a2 In our recent work[30], while Newton’s second law on the MD ions was strictly preserved, the
a3 dynamical equations of the period vectors were derived into the form where the period vectors are
as driven by the imbalance between the internal and external stresses, by repeatedly applying Newton’s
«s laws. This means that when a crystal achieves an equilibrium state, the internal and external stresses
ss must balance each other. It also presents a physical process where when the external stress changes, the
a7 crystal structure changes accordingly, because the original internal stress can not balance the external
«s stress. Especially, the derived internal stress has both the full kinetic energy term and the full interaction
4+ term. Since it was done for pair-potential only and many-body interactions are widely used[31], let us
so extend it to many-body interactions here. As a result, all conclusions in the pair-potential case also
51 apply for many-body potentials.

52 This paper is organized as follows, reflecting our three major steps. After a description
ss  of our model in Sec.2, Newton’s second law is applied on half systems to get instantaneous
s« dynamical equations of the period vectors in Sec.3. Statistics of the above dynamical equations
ss over indistinguishable translated states is carried out to improve them in Sec.4. Forces associated with
s¢ momentum transportation and statistics over ions’ moving directions are further implemented in the
sz dynamical equations in Sec.5. Sec.6 is devoted to summary and discussion.

ss 2. Model

50 The limited macroscopic bulk of a crystal with an “unlimited" inside microscopic periodic
e structure is taken as the model. We use a, b, and ¢ as the three independent period vectors, forming
&1 aright-handed triad. Then each cell can be denoted by the corresponding lattice translation vector
o2 T = Tha+ Tpb + Tcc, with integers T,, Ty, Tc ranging from negative infinity to positive infinity. As
es mentioned above, the specific cell of T = 0 in the center is the MD cell, and the ions in it are the MD
e« ions. Since we study the properties of the inner part of the bulk around the MD cell, far-away surface
es effects are neglected.
The external action on the surface is expressed by the constant external stress tensor (or dyad) I .
The corresponding external forces are modeled as applied by the surrounding external walls contacting
the surface of the bulk. For the case of constant external pressure p , I' = pI, where I is an identity
tensor or unit matrix, and the positive direction is defined from inside to outside of the bulk. By
definition, the external force acting on an infinitesimal surface area vector ds of the bulk is dF =T - ds.
The net external force on the bulk is

F:jfr.ds:r-fds:o, )
sf sf

e Where the integral is over all the surface of the bulk, and therefore the bulk has no acceleration. The
7 external stress I' is assumed to be symmetric, i.e., for all of its components I'; ; = I; ;. This assumption
ee ensures that the net external torque on the bulk is zero.

As said previously, the dynamics for the MD ions is always Newton’s second law

mii‘i:Fi (i:1,2,~~,n), (2)
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e Where 1; is the position vector of the ith MD ion with mass m;, F; is the net force acting on MD ion
7 i from all other ions of any cell (but no external force on MD ions due to distance from the crystal
n surface), and 7 is the total number of MD ions. Then we will derive the dynamical equations for the
72 period vectors in the following.

For general purposes, consider 2-body, 3-body, - - -, up to M-body interactions among any group
of ions in any possible configurations. Since these many-body interactions are independent on each
other, forces and potentials can be written as a summation of individual m-body contributions. For
example, the net force on MD ion i can be expanded as

F=Y F", @3)

(m)

73 where F;" is the contribution of m-body interactions.
For identifying an ion in the many-body interactions across the whole crystal effectively, a
simplified form of index I} was used for it, so that its position vector can be expressed as

rlk = Ik,aa =+ Ik,bb + Ik,CC =4 rik, (4)

where Ij ,, Ixp, and I; . are any values of integers representing the cell in which it resides, and i,
ranging from 1 to n, refers to its corresponding image ion in the MD cell. This means that I represents
the total four independent integer variables of (I, Ixp, Ike, ik). A summation over Iy means the
nested summations over the four corresponding integers. As there are m distinct ions participating in
any m-body interaction, the subscript k in I}, is used to index the ions from 1 to m in such an interaction.
Since no pair of ions can occupy the same physical location, for any pair of indexes I and Iy, the
expression

(Ita = Iea)* + (b — T p)* + (e = Ioe)* + (i — i) > # 0 @)

7« is always assumed inside any m-body interaction throughout this article. This also means that for
75 MDion i and any other ion I, the expression (Ix2)* + (Icp)? + (I c)? + (ix — ixr)? # 0is always true,
76 and that for any two MD ions i} and iy, the mutual exclusive relationship iy # iy is always true inside
7z any m-body interaction.
Based on Newton’s third law, the net force of the m-body interaction in any given m-ion
configuration should be zero

- (m)
Z fIk (rh/r[z/ I'I3, o rrlm) = 0/ (6)
k=1

where fg") (ry, rp, T, -+, g, ) is the force acting on ion Ij by all the rest total m — 1 ions. Further
considering the periodicity of the system, the net m-body force acting on all MD ions should also be

Zero: "
Y F =0, ?)
i=1
where
(my_ 1 (m)
F: = f: I",I'],I'[,---,I'[m . (8)
v (m=1) {12,13,:'.,1,”} v (Tl T )

Equation (7) means no internal force can push the system as a whole to accelerate. With Egs. (3) and
(7) combined, it follows that the net of all forces acting on all MD ions is zero, i.e.

Z m¥; = Z F, =0, )


http://dx.doi.org/10.20944/preprints201709.0030.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2018 d0i:10.20944/preprints201709.0030.v2

40f18

[T TN

/MDcell h_cell 3h

Py Qh

Figure 1. A sketch for the bulk of a crystal being cut by plane Py, Py, with a cross section area vector Sy,
Plane PhP}’1 is chosen such that for a given period vector h = a, b, or ¢, the right (Ry,) part contains all
T = Taa + Typb + Tcc cells with Ty, > 0, and the left (L) part contains all the rest T cells with Ty, < 0.
The “half-line-cell” bar By, is composed of the MD cell and cells h, 2h, 3h, 4h, etc., till the surface.
Newton’s second law is applied to the Ry, part for the dynamical equations of the period vectors. (This
figure was copied from [30].)

7 where the summation indexes i and 7; are identical. Employing the centre-of-mass coordinate system
7o of the MD cell for all the work throughout this paper, the total momentum of the MD cell is zero.

80 As the period vectors may change with time, the volume Q) = (a X b) - ¢ and shape of the MD
a1 cell and those of the bulk should also change accordingly.

s2 3. Instantaneous Dynamics

83 In order to find the dynamical equations for the period vectors, imagine a plane P, P}, that cuts
s« the model bulk into a right part and a left part, with Sy, as the area vector of the cross section between
ss the two parts in the direction of pointing to the right part, as shown in Fig.1. Plane Py, Py, is chosen such
ss that, for a given period vector h = a, b, or ¢, the right (Ry,) part contains all T = T,a + Ty, b + Tcc cells
ez with T, > 0, and the left (Ly,) part contains all the rest T cells with Ty, < 0.
Apply Newton’s second law to a “snapshot” of the right (Ry) part. Then, the net external force
acting on the Ry, partis

FE,R: rdS:r dS:r'Sh, (10)
Rh,Sf Rh,sf

where the integral is over the surface of the bulk in the Ry, part. Let F;_, g be the net force acting on the
Ry, part by the Ly, part. Then the dynamical equation of the Ry, part is

Mpgigrc = FL g +T - Sy, (11)

ss Where My is the total mass of the Ry, part and ¥rc is the acceleration of the centre of mass of the Ry,
so part.
Since surface effects are neglected, F;_,g should be uniformly distributed cell by cell across the
section Sy, between the two parts. Dividing Eq. (11) by

Nh = |Snl| / |on|, (12)
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where: 0}, = 0Q2/0h is the (right) surface area vector of a cell with respect to the period h, then
1 .
~ MRrirc = Fn +T - 0, (13)
Nn
where 1
Fn = —Fi R, 14
= N TR (14)

%0 which is the net force, by the Ly, part, acting on the “half-line-cell" bar By, composed of the MD cell and
o1 cells h, 2h, 3h, 4h, etc,, till the surface, as shown in Fig.1.
Using Eq. (9), the left hand side of Eq. (13) becomes

1 1 1 .
— MQRgigc = — m; (¥; +T) =
Ny Mt = i 3 Lo (14 )

Mcel !
Nh

Y (15)

TeRy

where the total cell mass is M = }_;-; m; and the nested summations of } 1 Rp Y., mean all ions
in the Ry, part are counted. Noticing that T = T,a + Ty, b + Tc¢, Eq. (15) may be written as:

1 .
FMRfRC = Qp,ad +appb +ap (&, (16)
h
where M
Ay = NLK” Y Tw (W =ab,c). (17)
TERh

In the Ry, part, Ty, is always non-negative, but for any Ty, .y, it is assumed there exists another — Ty,
that cancels it in the above summation. Therefore, all non-diagonal terms ay, j/4p, are neglected. Then
Eq. (13) becomes

apnh = Fp +T - oy (18)

Considering all many-body interactions, the net force Fy, in Eq. (18) can be written as:
§ Em)
Fp = 2 Fh ’ 19)
m=2

s where Fﬁm) is the contribution of m-body interactions.

93 The m-body interaction between the right and left part of the crystal means that the participating
9« ions must be distributed in both parts, namely that not all participating ions are in the same part. Then
o5 Fl(lm) is the net force on ions in the right part of all such possible configurations divided by Ny. For
o6 total t ions (m > t > 1) in the right part (the rest of the ions are in the left part at the same time), the

oz corresponding net force for all possibilities is

(w2 An=0) (hyyn diazn - Tun<0) ¢

my 1 1 (m)
Ff,h N ! (m—t)! Z Z Z fl;, (r11,1‘12,- o frlm)
h ™ ' {I. I 1t} Ui deva, o Im}y - p=1
1 1 (w2 An=0) (yyn diszn - Jun<0) (m)
m
AT (m —t)! Z Z tfll (10,011,
h ’ {Ii,I,- It} {Iy1de42,+ I }
1 1 (w2 An>0) (yin drszn - Jun<0) (m)
m
= 2 Z fll (rflrrlzr' o rrlm)l

_ | _ |
Ni (E=DHm =t Uit droas I}

(20)


http://dx.doi.org/10.20944/preprints201709.0030.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2018 d0i:10.20944/preprints201709.0030.v2

6 of 18

where Zg )} denotes the nested summations over indexes in {- - -} with conditions in (- - ), and
commutability among ions in each part is considered. If there are indexes listed in the condition (- - -)
expression, the condition applies to all of them, otherwise applies to all the corresponding indexes
11]]<k(})) restricts i < 0 and j < 0, while ng;/sgive) requiresi > 0,7 > 0, and
k > 0. If there is only one index in the condition expression, the brackets may be omitted. Throughout

listed in {- - - }. For example, Zg

this article, all layers of nested summations should be realized into reasonable forms even for special
situations. For example, for k = 1:

(Bnd3n Aeh=0) (Iks1nlks2n L >0) (I tno D2 h = A >0)
()= Z (--); (21)
{13, I} } {1 D2 I} {Ies1 D2 I}
while for k = m:
(B dsn dn=0) (ks lki2n - Imn>0) (I3 h dkn=0)
()= Z (---). (22)
{203, I} s Iz A} {13, I}

Remembering that

L 1W>0 Ln>0 n
Z (--) = Z 22 (---), (23)
Il Il,h Il,h’ Il,h// il =1

©

s where h/, h" are also period vectors with possible values (h,h’,h”) = (a,b,c), or (b, ¢c,a), or (c,a,b)
» only, considering the crystal translatability, employing Ny = Yy ., ¥j , 1, and setting Iy py = Iy p» = 0,
o Eq. (20) becomes '

©

1,h/
1

o

(m) n (adsne dn=0) (i n o nn<0)
F m

1 = m
N e IR )0 DR )» £ (g 1 1o ).

T hp=0i=1 {Ip, I3, It} {Ti T2 I }
(24)

Translating the system so that the cell containing ion I;, which is I; yh = Oh, 1h, 2h, 3h, - - -, becomes
the MD cell, Eq. (24) can be further written as:

oo 1 (Bpdans In=l) (Icandison - Jun<l)

1
FETI) - | Z E 2 Z fz(lm) (rilrrlzrrly' . /rlm)r (25)

“ ) (m—
(E=DHm =D 0= (b ) {(Lii1 D2 I}
w1 and Eq. (19) becomes:
M m—1 (m)
Fpno = )} ) Fj
m=2 t=1
M m—1 1 —00 n (Iz,hrIS,h/"‘/It,th) (It+1,hr1t+2,h/'”/Im,h<l) ( )
m
i PRI ) S » S e )
m=2 t=1 : T 1=0 i1:1 {12,13,--- ,It} {It+1/lf+2/"'/lm}
(26)
102 Considering m-body potential ¢(" (11,11, - ,11,), and supposing only s (m > s > 1) of the m

103 ions are in the MD cell (all other ions are outside), where only a fraction s/m of the potential belongs

wa  to the cell, the sum of all such potential belonging to the cell is:

o

(m) s 1 (inside the cell) (outside the cell)
m

— m
Ep,CEll,S - % S'(T}’l _ S)' ) Z ) Z 99( )(rill rizl Tty ris/ rIerl/ rls+2/ Tty rIm)' (27)
{111127'”115} {Is+1lls+2/”'rlm}
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ws Since the set of valuess’ =s—1=0,1,2,---,m — 1 means all possible situations where all ions, except
p P

we ion iy (kept inside the cell), are placed inside or outside of the cell, one has:

1 (inside the cell)

ﬁ Z Z q)(m) (ril’rIZ’rI3’ e /rlm)

i {I I3, ,In }
m—1 1 (inside the cell) (outside the cell) )
— m . . “ e . DY
- S/!(Ti’l —_1— S/)! . ) ¢ (rllrrlzl 1r151r15+1rr15+2/
'=0 {11112/"‘ /ZS} {IS+1/IS+2/“' /Im}

w7z Then the m-body cell potential energy becomes:

pcell Z Ep cells = m[ Z Z (m)(rilfrlzfrly T Irlm)'

Z1 1{12r13/' Im}

s As aresult, the total up to M-body cell potential energy is:

M (m) M 1 n ( )
Ep,CEll Z Ep,CEll = Z % Z Z (P " (ri1lr12!r13/ e /rlm)‘
m=2 m=2 : ilil {12 13 Im}
109 Making use of Eq. (4), take the derivative:
) 1y ()
_EEW@” = ) Z Z Z Ik,hflk (rilrrlzr Iy, ,I’Im)
Ciy=1{Ip, I3, Iy} k=2
- Z Z (m - 1)Im,hf§:l) (rillrlzlrlsl' T /rlm)
! i1=1 {12 Iz, Im}
= Z Z m,hfgnn) (ri11r121r13/' t ,I'Im),
Z1 L, I}
with the force:
fgk )(rh/rfzr e /rlm> = _7(1)(”[) (rllrrlzr e /rlm)'

al']k

The right side of Eq. (31) can be split into two terms based on the sign of I, 1, , so that:

9 (m) (m)  g(m)
- ﬁEp cell — Fh,+ + 1:h,f’
110 where:
(m) n Il (m)
Fm = 72 Ihfm(l" Iy I'["'I'I)
h,+ mha=r, 117 Slp7 S3s 7 *lm
m (m 2)'11 =1 {Ip, I3, Iy} '
n lm,h>l ( )
= 722 ) " (v, 1, 1)
Im 117417 Hi37s 7 ml’
m (m 2'1011 1{Ip, I3, ,In} 1
111 and
(m) L (m)
FhT— = i —2) Z Z Im,hflf (l'ilrl'lzzl‘lsz"',l‘lm)
m(m=2)1 = )
n lm,h<l ( )
= ZZ Z " (v, 1 ).
Im 117 41pr i3 7 m
m(m 2N ST (e '

,11,,). (28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)


http://dx.doi.org/10.20944/preprints201709.0030.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2018 d0i:10.20944/preprints201709.0030.v2

8 of 18

112 By making use of the translatability to move the system so that the cell I, yh + I, yh' + I, yrh”,
us  in which ion [, resides, is translated to the MD cell, Eq. (34) becomes

!

)
E Z fim (r11/r121r13/ ttt /rim)

=0 Il {12/I3r“' /Im—l } im=1

m 2 Z Z Z Z f rIl’rIZ’rIS)’ e /rim)' (36)

=0 L (DL, Iy 1}im=1

|
s

’m
M

us Renaming ion iy, as ion [; and ion I; as ion 7y, then

mh<l

1 = X
FSZ)' - m(m—Z)!z;Z:: Z 2 f rll’rlzfrfy""rlm)' (37)

{12113/ o Im—l} In

us  Expand it with respect to ', the number of ions distributed in the part of the crystal defined by Iy, > I,

ue of total m — 2 ions indexed from I, to I;,_1, then

=

g 1 m72fzoo i (Iz,h,l3,hz'izlt/+1’h>l) (It/+2’h,lt/+3i..,lm1,h<l) Imfl fT)(ril,rzz,rzy--- 11,
ht T , tl(m—2—t)!
V=01=00i=1 {p I I} {Ly oy I } Ln
m—1
m—te(m
= ) F (38)
th
=1 M

a7 where f is actually equal to ' + 1.
118 Now let us make use of the translatability to move the system so that cell I, yh + I, yyh’ + I, yrh”,
ue in which ion [, resides, is translated to the MD cell, then Eq. (35) becomes

(m) 1 e ")
Fh,f = m (m _ 2); Z 2 2 Z fim (rh/rfz'rfsf' o 'rim)
=0 L {Iya Dy} im=1

+oo I1n>1

- (m— 2 Z Z Z Z f rllfrlzlrlsl"',l‘im). (39)

=0 L (DL, Iy1}im=1

1

9

o Expand the above equation with respect to ' = t — 1, the number of ions distributed in the part of the
1 crystal defined by I, > I, of total m — 2 ions indexed from I, to I,,_1, then it changes into

[
N

_ Lwln  Lin>1) (1 p! o L 1 p <l m
F(m) _ -1 m 2+oo( 1,h/A2h th ) ( t+1,h/ 142,k m—1,h ) n ffm )(rllrrlzlrly . rim)
h,— m tz,_ 1270 L L .Z_ Hl(m—2—t)!
=01I= {1t} {Ist vz e} im=1

(40)
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122 Meanwhile, employing Eq. (6), the first line of Eq. (20) can also be written as
(m) 9 (o An>0) (svndison - Iun<0) (m)
m m
Ff,h = Npt! (m —t)! Z Z Z fI;, (rh'rlz" e ’rIm)
h™ AL} {lgr dign n} - p=t+l
1 (I o A n>0) (Isyn dison - Inn<0) (m)
m
- N t! (m_t>| Z Z (m_t)f[m (rlllrlzr"‘ /rlm)
™ C b i} {Irsa der2, e dm}
1 (I An>0) (Iyy o draon = Iun<0) (m)
m
= N, t'(m—t—l)' Z Z flm (rh'rlz"”'rlm)
h ’ {L,I, It} {Li1, L2, dm }
1 (I poone A =0) (Tn dis2n - dn-1p<0) Lyp<0 ()
m
BT (m—t—1)! Z E 2 Z flm (r, - 11,),
’ ’ {IlrIZI"'/If} {1t+111t+2/"'/lm—1} Im,h lm:1
(41)

where in the last line, I,y = I, ,» = 0, which means the cell containing ion I;; can be and only be
Iynh = —1h, —2h, —3h, - - .. Translating the system so that the cell containing ion I, becomes the
MD cell, Eq. (41) becomes:

(m) ] too (Indon = den>1) (Tpindesons - In-1n<l) (m)
m m
Fin = H(m—t—1)! ) )3 Y Y. £, (o en tn, e n,). (42)
’ T 1=0 {I],IZ,'“,It} {It+lrlt+21'“rlmfl} lm:l
Combining Egs. (40) and Eq. (42), then
m—1
t
=Y —F. 43)
t=1 M
As a result
M m—1 M M
_ (m) _ (m) | gmY _ 9 pm _ _9
Fp = mZ::z = Fin = mZ::z (Fh,+ + Fh,—) - mX::z *ﬁEp,cell - *EEPM”‘ (44)

Let us define the main interaction tensor for up to M-body interactions as

-1 aEp,cell aEp,cell aEp,cell M (m)
Amain = 7y [(6;1) war ( ob ) wbt (ac> ®C} = L A (45)
with " ) aE(m)” E(m)ll BE(m)”
m)y _ —1 p,ce p,ce p.ce
Aoin = a 5 ® a+ b R b+ 5 cl, (46)
then
Fh = Amuin *Oh, (47)

13 whereh-0y, = Qand h' -3, = h” - 3, = 0 are used.
Then Eq. (18) becomes

apnh = (Apgin +T) -0 (h=a, b, ¢). (48)

12« The dynamical equation Eq. (48) is essentially the same as in previous work[27], for only constant
125 external pressure being considered.
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Figure 2. A sketch for two distinct states of the system which are exactly the same in all microscopic
details except being translated slightly relative to each other. As a set of image ions, the black diamonds
are on the right side in each cell of the right state, but on the left side in each cell of the left state. The
black disks as another set of image ions are on the other sides in the states. In these states all right parts
from plane P, Pj have the same number of cells. (This figure was copied from [30].)

16 4. Microscopic Translated States

127 As seen in Fig. 2, the two distinct states of the system are exactly the same in all microscopic
126 details except being translated relative to each other. In these states all right parts from plane Py P;
120 have the same number of cells conceptually. Since they cannot be distinguished from a macroscopic
o point of view, an unweighted average of Eq. (48) or Eq. (18) over all such configurations should be
11 taken. Among these, Eq. (18) is the same except the net force Fy, acting on the half-line-cell bar By, by
12 the Ly, part, as in Fig. 1. Equivalently, this means that the net force Fy, in Eq. (18) is replaced by the
13 unweighted average of it over all possible parallel locations of cutting planes Py Py that pass through
e the MD cell in Fig. 1. For clarity, PhPl’1 was used in its original meaning (i.e., with fixed position),
1s  but QpQp was employed for such a plane running from left to right. For simplicity, Ry, from Fig.
e 1 was separated into two parts: T, = 0 slab made of all cell of T = T,a + Ty,b + Tcc with Ty, = 0,
137 and R{l part made of the rest of the cells. As an example, for h = a, T, = 0 slab includes all cells of
s T =0a+ Tpb + Tcc with Ty, and T, being any integers. Since it makes a difference only if QpQ}, meets
e some ion(s) when it runs, we will only consider the situation where there are s > 1 ion(s) in the T, = 0
wo slab participating in the interactions. We will consider the following three cases in sequence.
The first case is that there are other ¢ > 1 ion(s) participating in the m-body interaction appearing
in the Ly, part. When the plane Qp, Qj, runs from left to right passing through the MD cell, the probability
for MD ion iy appearing on the left side of Q,Qj, is

h— (r — . ho—r ) -
mk/h:( (fszTO)) on _ (ho (f)zk) Ly )
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11 where 1y is the position vector of the left-bottom and far-away vertex of the MD cell and hy = h + ry.
w2 The following averaged net force acting on the s ions by the rest ions

1 1 (Il,h/IZ,hr“‘rIs,h:O) (Is+1,h/Is+2,h/”'rIs+t,h<O)
(m) ho= — _ X
clsth " Ny st (m—t—s)!
h st ( )! {h,I, Is} {Ist1s2, Aoyt }
(Is+t+1/hrls+t+2,h/‘“/Im,h>0) s (m)
m
Z Z ”iy,hfl,, (r11,r12,r13, T,
{sterrIsvtras I}y p=1
(Il dsn=0) (L1 ndsion - Jsren<0)
= o » Yo x
 Nps!t(m—t—s)!
h ( ) {IlrIZr"'fIS} {Is+1lls+21"'r15+f}
(Is+t+l,hrIs+t+2,h/“'rIm,h>O) )
m
Sﬂil,hfjl (rl1r L, X, -y, rIm)r (50)

{Is+t+1rls+t+2/' o /Im}

s should be excluded from Fy, as it was unconditionally included in the Fy, previously. The above
us equation can be simplified by translating the cell where ion I; resides, in the Ty, = 0 slab, to the MD
1s  cell (then I; becomes i; and Ny, can be reduced to 1 by removing summations over Iy j,y and I; )

(m) s n (Iz,hrl?),h/"'/ls,h:O) (Is+1,hrIs+2,hr"'/Is+t,h<0)
m
Filstn = Sii(m—f—s) & )3 )3 x
11:1 {12’13"“'15} {IS+1IIS+21“'IIS+t}
(It h s t2h Imn>0)
; f(m)(r' rL, Y, )
171],11 1'1 117 Izr 13/ ’ Im
{srist dsev2 I}

(L dahr 10 <0) (Tpzn D43 n livsn=0)

s n
— 2 X
slt!(m—t—s)! Z
( ) =1 {hB, I11} {liv2 b3, Jrts )
(It h st t2h0 Tn>0) (m)
m
ni1,hfi1 (rili I, rn, 1, )1 (51)

{st11 sy tv2, Im}

us Where ion index numbers were re-assigned. In the above expression, there are t > 1 ion(s) in the Ly,
wr part. The situation with ¢ = 0 ion(s) in the Ly, part is considered in the other two cases. There are s > 1
s ion(s) in the T, = 0 slab. Asion ij is in the MD cell, there are additional s — 1 ion(s) in the T}, = 0 slab.
1e Actually the above expression is valid for all situations withs’ =s—1=0,1,2,--- ,m —t — 1 ions
150 running anywhere in the Ty, = 0 slab (except r;, position), and accordingly m — t — 1 — s’ ions running
11 anywhere in the R} part. From total m — t — 1 ions numbered t +2,t +3,..., m running anywhere in
152 the Ry, part except r;, position, considering all the possible situations placing s’ ions into the Ty, = 0
153 slab and putting all the rest ions in the R} part, the following equality emerges

1 (v n dr+30 Dun=0)

m
(m —f— 1)| Z ﬂil,hfzgl )(rilrrlzrrly e ,I'[m)
’ {It+2rIH~3r"'fIm}

m—t—1 (Isondiran = dipsh=0) (Iysiindipsion - lun>0)

_ iy, h (m)
= L s’!(m—tl—l—s’)! L D £ (X 1y, e, 1,)-

s'=0 {2/ 0k13, 0 deys} {tysradirsias s Im}

(52)
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154 Combining Eq. (51) and Eq. (52),
—t—1
m)  _ "N g
Fcl,t,h - ZO Fcl,s,t,h
s'=

n i h (B dshs d1n<0) (Ton de+3ns - Inn>0) ()
i1, m
- Lo, o L A )
’ ) {03, g1} {Ir2. 0143, I }
(53)

155 The second case is that all ions participating in the m-body interaction reside in Ry, part, thus
16 there is no ion in the Ly, part, and there must be at least one ion in the Ty, = 0 slab and at least one ion
157 in the R} part. The situation with no ion in the R} part will be considered in the last case. Consider
s 5 > 1ion(s) in the T, = 0 slab and the remaining total m —s > 1 ion(s) in the R} part. For a given
150 plane QpQj, cutting the MD cell, the net force acting on the ions on the right side of Q,Qj, by those on
1o the left side should be added to Fy,. Recalling Eq. (6), equivalently the net force acting on the ions on
161 the left side of Qy, Qil by those on the right side should be subtracted from Fy,. With ion probabilities
12 appearing on the left side of Qp Qj, considered, the averaged net force on them can be written as

(m) 1 1 (Il Asn=0) (Iyinlsszn - Iun>0) s (m)
m m
Fasn = Npsiom—s) Y Minfy, (e e x,,)
’ ’ {IlrIZ/"' /Is} {Is+1rls+2/”' /Im} ‘”:l
1 1 (Il Asn=0) (Lsindss2n - un>0) (m)
m
o N7h5' (m—s)! 2 2 Snilzhfll (r111r12'r13’ e ’rlm)
’ ’ {IlrIZ/"' rIS} {Is+1r15+2/”' /Im}
1 n (Ladan In=0) (Iiinlsszn - un>0) (m)
m
 (s=1)!(m—s)! Z Z Z 77i1,hfi1 (riy, 1,115, -+, 1, )-
: ti=1 {12r13/"'/ls} {Is+lzls+2r"'r1m}
(54)
163 The last case is that all ions participating in the m-body interaction are in the Ty, = 0 slab. For a

¢ given plane QQj cutting the MD cell, the net force acting on the ions on the right side of Q,Q}, by
15 those on the left side should be added to Fy,. Based on Eq. (6), equivalently the net force acting on the
166 ions on the left side of QpQ}, by those on the right side should be subtracted from Fy,. As a matter of
1z fact, only when ions are distributed on both sides of plane Qy Qil, such forces should be considered.
s For a given configuration of the m ions, assuming ion I, is the last one to be crossed by plane Q,Q},
1 when it runs from left to right, the probability for ion I} appearing on the left side of plane Q, Qj, and
w0 ion I; on the right side is (rim — I'ik) - 0/ (), then the averaged net force of the given configuration to
i1 be subtracted from Fy, is

m (l‘im — riﬂ) *Oh

fg"ll = #fgn) (r11,r12,r13,- - ,1‘1,,,)
u=1
n ho—riy —(hg—1;)) - 0on
- Z (( ) Q ) fg;n) (rll’rIZ’rIS’ T ’rIm)

p=1

m m
m m
= Z niﬂ,hfgy )(rlll rIzl r13/ Tty rIm) - 171m,h Z fgy )(rlll rlzl rI3I Tty rlm)' (55)
u=1 u=1
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w2 Applying Eq. (6), the last term in the last equation becomes zero, then the averaged net force of all
13 such configurations is

(lndons = Iun=0)

11
g _ £m
3,h 3,h
‘ Nh m' {IlrIZ/"'/Im} ‘

1 1 (Il,hrIZ,h/"'rIm,h:O)

m

= (m)

N Nh m! 2 Z ni;uhfly (r111r12/ rl3, te ,I'[m)
{IlrIZ/"‘/Im} =1

1 1 (Il,hrIZ,h/"‘ /Im,h:0>

- Nih% 2 mnll'hfgin) (rll’rIZ’rI:i’ o /rlm)
ST il
1 n (Bndsns dnn=0) -
m
Tl Lk, el ) 5
: i1: [2,[3’...,Im

Equation (54) is valid for s’ = s—1 = 0,1,2,--- ,m — 2 in the above case, while Eq. (56) is
essentially the situation with s’ =s —1 = m — 1, namely

Fo) =FQ) (57)

c3,

wwa  For fixed r;, only s’ = 0,1,2, - — 1 of the remaining m — 1 ions in the Ry, part can appear in the
s Ty, = 0slab and the remaining 1on(s) in the R} h part, then:

(Iz,hr13,h/‘ “ 20)

1 m
(m — 1)' fi] )(rilrrlzlrli’)’ e ’rIm)
’ {12r13/"'/lm}
m=1 1 (s Jsh=0) (I lsszn Juh>0) -
m
N (s—=1)f(m—s)! )y D £ (tiy 10y, 10,001y, ).
s'=0 {12/I3r“' rIS} {Is+1r15+2/"' ;Im}
(58)
176 Furthermore
m—2 m—1
(m) _ gim (m) _ (m)
F02+c3,h - 1:<‘c3,h + Z Fc2,s,h - Z FcZ,s,h
s'=0 s'=0
m (IZ,hIIS,hr"' rls,h:()) (Is+1,h/15+2,hr"' rIm,h >0)

-y T (m)
= /Z Z S _ 1 l S)' Z Z fil (ri11r121r13/ T /rlm)
s'=01i1=1

{12113""'15} {Is+1lls+2/"'rlm}

(IZ,hfIS,hf"' Ly n>0)

1) Z fff)(rivrlszly' T, (59)
{213, I }

7711,

Il
H M=

Similarly, Eq. (53) is valid for t = 1,2,--- ,m — 1 in the first case, while Eq. (59) is essentially the
situation with ¢ = 0, namely

FETJ)rCB,h F£12 0h° (60)


http://dx.doi.org/10.20944/preprints201709.0030.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2018 d0i:10.20944/,

1

w7s remaining ion(s) in the Ry, part at the same time, then

J

1 (m)
w1, 12 1 }fil (i) Ty Ty -+ 11,
243, Adm

(L dsh ii1p<0) (Tion di4an - Inn>0)
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7 For fixed rj,onlyt=0,1,2,--- ,m—1 of the remaining m — 1 ions can appear in the Ly, part with the

m—1
1 (m)
- Z Hm—t—1)! Z Z fil (riy, 11,115, -+, T, ).
t=0 ™ R 009 CRE Ay {It12/ 1113, I }
(61)
179 As a result,
-1 m—1
(m) _ gl N opm (m)
Fc1+c2+c3,h - FCZ+C3,h + El Fcl,t,h - tz(:) Fcl,t,h
t= =
m—1 n i h (Lpdane dir1p<0) (Ieon drssns - dun=0) (m)
i1, m

= Z t| (m _1t _ 1)[ Z Z fll (rillrlzrrlg,l tt /rlm)

t=0 i1=1 {Ip,Iz,++ Ir11} {Lyo dii3, I }

n

_ iy, h (m)
- Z (mll)' Z fil (€795 V9% JVRRRIS I

=1 AL B, I}

2 (ho—13,) - Oh _(m)

= F.", 62

il; 5 i (62)

120 Where as defined in Eq. (8), Fl(lm) is the net m-body force acting on MD ion i; by all other m — 1 ions in

12 all possible configurations.
By using Eq. (7), Eq. (62) can be reduced as

n . . n
F) Z ( 1‘11) UhF(m) = . Z (Fz(m)@’fﬂ) *Oh-

cl4+c2+c3,h =
i1=1 i1=1

Then the averaged net force acting on the half-line-cell bar By, by the Ly, partin Fig. 1is

n

M

_ 1

Fi = Fi — Ny Filoran =Fnt g L (Fy©r) -on,
m=

=1
where Eq. (3) is used. Now, let us introduce another tensor

1 o
F’:a ZFi1®ri1'

=1

A

which is zero when an equilibrium state is reached. This provides
Fh=Fn+ Ay 0h = (Apain +Ap) -0h = A0y,
where the full interaction term of the internal stress is
A= Auin+ Ap.

It can also be written as
aEp,cell

et 5 (%)
QzegC)F oz

(63)

(64)

(65)

(66)

(67)

(68)
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where DOF refers to all degrees of freedom of the system including the three period vectors a, b, ¢, and
all MD ion position vectors ry, 1, - - -, and r,. Then the period dynamics Eq. (48) can be updated into

apph = (A+T)- 0, (h=a,b,c). (69)

12 5. Momentum Transportation

183 Consider an ideal gas in a fixed and closed container in an equilibrium state from a macroscopic
e point of view and imagine to cut it into a left half and a right half. Gas particles carrying their
s momentum can freely run between the two halves. Then we have two choices to study it.

186 One choice is to employ a material-based system. In such a system definition, the gas particles
1z always belong to the same half system, which they belong to at the very beginning. Then at the very
s beginning, we have very clear half systems of gas particles. However very soon, some gas particles
1o in one half may move into the other half, but still belong to the original half system. Then the half
1o systems would no longer have a clear boundary. Definitely, Newton’s second law still applies to the
101 half systems, but not easy to use.

102 The other choice is to employ a space-based system definition[32], in which at any time, a particle
13 belongs to the system if it is inside the corresponding space with a fixed and close geometric boundary,
e otherwise it is not. Then each half system is actually defined by the corresponding fixed half space
15 inside the container, then always has a clear boundary. When a gas particle moves from one half into
16 the other half, it leaves from the former system and joines the later system. The later system gets its
1z momentum and the former system gets its momentum as well but in the opposite direction. For the
1we dynamical process of each space-based half system, the total regular force we see is the net external
100 force acting on the gas particles by the container during collisions between them, which is not zero
200 at non-zero absolute temperature. However, the total momentum of each half system is always zero.
201 Then the net momentum transported into and out of the half system per unit time, due to gas particles’
202 crossing the boundary between the two halves, should also be considered as an external force acting
203 on the half system in order to satisfy Newton’s second law. As a matter of fact, these two forces balance
202 each other. Let us call the later as the force associated with momentum transportation. Since a specific
205 momentum transported from space-based system S 4 to its neighbour space-based system Sg per unit
206 time should be regarded as an external force acting on system Sg by system S 4, its opposite direction
207 momentum movement rate from Sp to S4 should be regarded as another external force acting on
208 system S, by system Sp. They are actually action and re-action forces satisfying Newton's third law.
200 Similarly, if a material-based system is used to study each half part of the crystal above, when an
210 ion “runs from one part into the other part of the crystal”, it still belongs to the original part, then the
2 motion of every individual ion must be traced all the time. Furthermore the corresponding components
212 of the external stress I, acting on the surface of one part of the crystal, should also be identified acting
213 on the ions, which belong to the other part. If a space-based system is employed, these are not needed,
z1e but the force associated with momentum transportation should be considered as an external force on
215 the system.

As in our previous work[30], for the Ly and Ry, parts in Fig. 1, both as space-based systems,
consider the above statistics over the indistinguishable translated states with the help of plane
QnQj, again, but of the force associated with momentum transportation. If the total amount of
such indistinguishable translated states is assumed as the cell volume (), the amount of those where
MD ion i can cross plane Qy Qil during a unit time is |f; - 0y, |, with momentum m;#; being carried each.
Then the additional averaged force associated with momentum transportation on Ry, part

fh,tm = 6 '

1

1 & 1 &
(£ - on) mit; = = Y mi (b @) - o (70)
=1 i=1
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should be added to FL. As a result, Eq. (66) is updated to
Fy = Fy o+ fr o = (A+4) -0, 71)
where the instantaneous kinetic-energy term of the internal stress is
1 n
A = a Z m;t; @ 1. (72)
i=1
Defining the instantaneous internal stress as
I =A+4A, (73)
the period dynamics Eq. (69) becomes
apph = (I'+T) -0y, (h=a,b,c). (74)

The observable period vectors showing fixed values under certain external conditions (e.g.
constant external pressure and temperature) should not depend on the directions of ions” motions. A
further unweighted average of Eq. (74) was performed over all moving directions of the MD ions. For
this, the averaged Eq. (72) becomes:

— 1 & ) 2
N = 35 Yomilii T = 25 Egpion], (75)
i=1

where Ej vp ion is the total kinetic-energy of the MD ions. Also considering the motion of the valence
electrons the same way, the averaged kinetic-energy term of internal stress should be:

— 2 2
A=A+ ﬁEk,MD,veI = ﬁ (Ek,MD,ion + Ek,MD,ve) I, (76)

where Ej yvip 4. is the total kinetic-energy of the valence electrons in the MD cell. The forces
corresponding to this part of the internal stress should be balanced by the part of the external forces
involved in collisions between the ions in the bulk surface and the surrounding external walls, as in
the above example of an ideal gas. Accordingly, the averaged internal stress from Eq. (73) is

II=A+A. (77)
Then the period dynamics Eq. (74) changes into
Déh,hﬁ = (H + F) %Y (h =a,b, C). (78)

216 6. Summary and Discussion

217 Keeping Newton’s second law for MD ions and applying it to macroscopic half-systems with
zs  additional statistics over indistinguishable translated states and forces associated with momentum
210 transportation applied, we arrived at the coupled dynamical equations, Eq. (2) for MD ions and
220 Eq. (78) for the period vectors, of crystals of many-body interactions under constant external stress.
an Equation (78) shows that the system period vectors are driven by the imbalance between the internal
222 and external stresses. Then when the system reaches an equilibrium state, the internal and external
223 stresses balance each other. The internal stress has both full kinetic-energy and full interaction terms.
22 As aresult, the dynamical equations and associated formulas in this article for many-body interactions
225 share the same form of those in our last work[30] for pair-potential only.
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226 The kinetic-energy term was obtained from the statistics of forces associated with momentum
227 transportation when the two halves of the system are recognized as space-based ones. Since the full
226 interaction term of the internal stress Eq. (68) is valid for any-body interactions, it should also be valid
220 for forces from electrons but calculated based on quantum mechanics involved. In such a situation,
230 the effective interactions among ions through electrons are many-body ones, as the calculated state of
21 electrons depends on the positions of all ions.

232 As a matter of fact, the external stress is required as a constant only in deriving Egs. (1) and (10)
233 and this requirement only means that it is constant over the surface of the crystal throughout this
23 paper. Then for such external stress but changing with real time, one can solve the crystal with Egs. (2)
235 and (78) to reach an equilibrium state iteratively for the given external stress at a given real time, then
236 the next real time, ..., till end.

237 In the MD world, simulations are usually classified into various ensembles, based on applicable
23e  combinations of fixed volume, constant external pressure, and constant external temperature. For
230 ensembles of fixed volume, Eq. (78) shows that an external stress balancing the internal stress should
20 always be supplied or assumed. For ensembles of constant external pressure/stress, Eq. (78) can
21 be used. Additionally, the straightforward ion speed rescaling method can always be a choice, for
2a2  constant external temperature simulations.
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250 Abbreviations

251 The following abbreviations are used in this manuscript:
252

MD  Molecular Dynamics
253

DOF  Degrees Of Freedom of the system, only used in Eq. (68)
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