

Article

Strong Cognitive Symbiosis: Cognitive Computing for All

Csaba Veres

University of Bergen, Fosswinckelsgate 6, Bergen, Norway

Abstract: *Cognitive Computing* has become somewhat of a rallying call in the technology world, with the promise of new smart services offered by industry giants like IBM and Microsoft. The recent technological advances in *Artificial Intelligence* (AI) have thrown into the public sphere some old questions about the relationship between machine computation and human intelligence. Much of the industry and media hype suggests that many traditional challenges have been overcome. On the contrary, our simple examples from language processing demonstrate that present day *Cognitive Computing* still struggles with fundamental, long-standing problems in AI. An alternative interpretation of *cognitive computing* is presented, following Licklider's lead in adopting *man-computer symbiosis* as a metaphor for designing software systems that enhance human cognitive performance. A survey of existing proposals on this view suggests a distinction between *weak* and *strong* versions of *symbiosis*. We propose a *Strong Cognitive Symbiosis* which dictates an interdependence rather than simply cooperation between human and machine functioning, and introduce new software systems which were designed for cognitive symbiosis. We conclude that strong symbiosis presents a viable new perspective for the design of cognitive computing systems.

Keywords: cognitive computing; cognition; AI; cognitive symbiosis; language; HCI

1. Introduction

The Gartner Hype Cycle for Smart Machines, 2017, names *Cognitive Computing* as a technology on the "Peak of Inflated Expectations" [1]. The IEEE Technical Activity for Cognitive Computing defines it as "an interdisciplinary research and application field" ... which ... "uses methods from psychology, biology, signal processing, physics, information theory, mathematics, and statistics" ... in an attempt to construct ... "machines that will have reasoning abilities analogous to a human brain".

The IBM Corporation has been active in bringing Cognitive Computing to the commercial world for some years. Perhaps their earliest success was the computer 'Deep Blue' which beat the world chess champion after a six-game match on May 11, 1997 [2]. They then developed the computer 'Watson' which, it was claimed, could process and reason about natural language, and learn from documents without supervision. In February 2011 Watson beat two previous champions in the "Jeopardy!" quiz show, demonstrating its ability to understand natural language questions, search its database of knowledge for relevant facts, and compose a natural language response with the correct answer. John Kelly, director of IBM Research, claims that "The very first cognitive system, I would say, is the Watson computer that competed on Jeopardy! [3]. Kelly continues that cognitive systems can "understand our human language, they recognize our behaviours and they fit more seamlessly into our work-life balance. We can talk to them, they will understand our mannerisms, our behaviours - and that will shift dramatically how humans and computers interact."

IBM's public promotional materials claim that "cognitive computers can process natural language and unstructured data and learn by experience, much in the same way humans do" [4]. This kind of extravagant language brings to mind the term 'strong AI' which describes systems that process information "in the same way humans do". Strong AI holds that "the appropriately programmed computer literally has cognitive states and that the programs thereby explain human cognition". On the other hand 'weak AI' proposes that the computer merely "enables us to formulate

40 and test hypotheses in a more rigorous and precise fashion" [5]. Searle argues against the possibility
 41 of strong AI with his famous Chinese room scenario, where he argues that an ungrounded symbol
 42 manipulation system lacks, in principle, the capacity for human understanding. It is not clear if the
 43 current crop of *Cognitive Computing* systems claim to be strong AI, but the more extravagant claims
 44 appear not too far off.

45 Microsoft is another industry giant who has added *Cognitive Computing* to their repertoire,
 46 adding *Cognitive Services* to their Azure computing platform [6]. These are basically AI services which
 47 can be composed into an interactive application. The services include Vision, Knowledge, Language,
 48 Speech and Search.

49 In a similar vein, Google inc. is heavily involved in commercializing AI, particularly deep
 50 learning [7], an evolution of neural networks with many hidden layers [8] which are particularly
 51 good at image recognition tasks. Google demonstrated GoogLeNet, the winning application at the
 52 2014 ImageNet Large-Scale Visual Recognition Challenge [9]. It should, however, be pointed out that
 53 Google does not specifically refer to cognitive computing by name.

54 The term *Cognitive Computing* has been in use since the 1980s, as can be seen in the Google Ngram
 55 Viewer. The early use of the term was associated with a strong growth in neural network research
 56 following a joint US-Japan conference on Cooperative/Competitive Neural Networks in 1982 [10]. In
 57 1986 the backpropagation algorithm was detailed in the two volume publication: "Parallel distributed
 58 processing: Explorations in the microstructure of cognition" [11], which enabled networks to learn
 59 much richer associations than was previously possible. Neural network modeling became much
 60 more versatile and accessible to researchers, and resulted in a plethora of new research programs
 61 exploiting the connectionist paradigm.

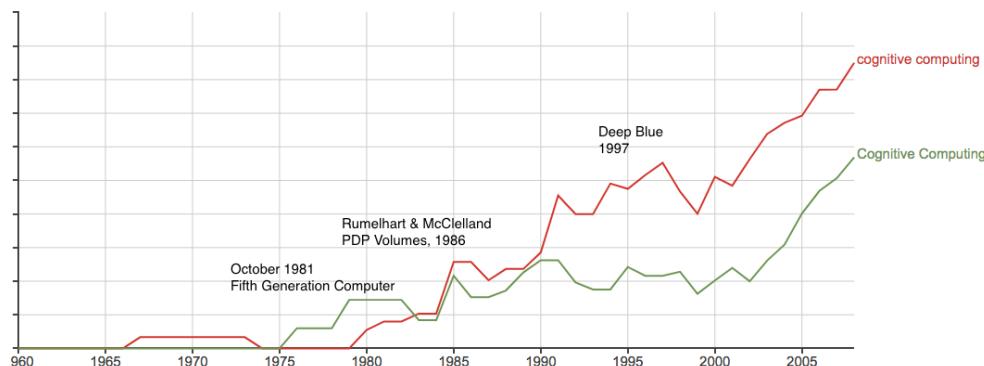


Figure 1. The use of the terms cognitive computing and Cognitive Computing according to Google's Ngram Viewer. Several key points in the evolution of AI are also shown.

62 The advances in neural network computing also helped revive research in related fields such
 63 as Fuzzy Logic with the emergence of neuro-fuzzy systems which could learn parameters in a
 64 fuzzy system, leading to a set of methodologies that could perform imprecise reasoning, or *soft
 65 computing* [12]. Finally, the mid-1980s also saw the advent of genetic algorithms which could be used
 66 to avoid local minima in learning systems [13]. In 1993 the state of the art could be summarized
 67 as: "Cognitive computing denotes an emerging family of problem-solving methods that mimic the
 68 intelligence found in nature" ... "all three core cognitive computing technologies — neural-, fuzzy-
 69 and genetic-based — derive their generality by interpolating the solutions to problems with which
 70 they have not previously been faced from the solutions to ones with which they are familiar." [14]

71 While none of these technologies could decisively meet Searle's challenge for strong AI, it
 72 appeared that some of the research was heading in that direction. For example the claimed biological
 73 plausibility of neural networks was used to argue that connectionist models of cognition were
 74 more viable than theories based on symbol manipulation [11]. Similarly, neuro-fuzzy systems

75 were supposed to operate in ways analogous to human cognition. According to Zadeh, "In the
76 final analysis, the role model for soft computing is the human mind."[\[12\]](#). These technologies
77 offered themselves as the foundation of programs that could indeed mimic human cognition. These
78 sentiments are echoed in current claims that *Cognitive Computing* systems process information "as
79 humans do".

80 Thirty years earlier Licklider was also contemplating a future with computers capable of human
81 thought-like behaviour [\[15\]](#), in response to the bold expectations for AI by the U.S. Department
82 of Defense (DOD). In the early 1960's, the DOD predicted that machines could take over from
83 human operators by the 80's. But Licklider felt that the emergence of something like strong AI
84 was not imminent, and there would be an interim period of "between 10 and 500 years" in which
85 humans and computers would exist in a symbiotic relationship which would "bring computing
86 machines effectively into the processes of thinking". He argued that for many years computer
87 programs would not be able to mimic human thought processes, but instead work with humans as
88 "dissimilar organisms living together in intimate association", enhancing the weaker parts of human
89 cognition. Rather than build machines that mimic human reasoning, we should strive to understand
90 how humans solve problems so that we can design programs that can take over those aspects of
91 problem solving that are most mundane or difficult. The principles of human cognition must be
92 well understood even if they can't be directly replicated, so computer programs can be written with
93 precisely the functionality that is needed to enhance human cognition.

94 In this article we argue that the situation has not changed significantly since Licklider's seminal
95 paper. Modern *Cognitive Computing* still falls short of realizing human-like thought. Section 2.
96 considers the fundamentals of cognitive computing from the perspective of language processing and
97 argues that the currently fashionable models do not accurately reflect human cognitive processes.
98 Section 3. presents related work on human-computer symbiosis. Section 4. develops our notion of
99 a *Strong Cognitive Symbiosis* and discusses some applications which use these principles. Sections 5.
100 and 6. conclude the paper.

101 2. Cognitive Computing and Cognition

102 While the popular discourse about Cognitive Computing emphasizes the human-like properties,
103 the scientific publications on the inner workings of Watson (perhaps the canonical example) clearly
104 show the many non human-like aspects of the implementation. For example, during the initial search
105 phase Watson retrieves a large amount of potentially relevant data through a number of different
106 techniques including the use of an inverted index in the Lucene search engine, and SPARQL queries
107 to retrieve RDF triples from a triplestore[\[16\]](#). This retrieves a huge volume of potentially relevant
108 facts which are then further processed, often with statistical techniques. It is very unlikely that human
109 reasoning would follow a similar process. Mental processes almost certainly do not use SPARQL.

110 Noam Chomsky at the MIT symposium on "Brains, Minds and Machines" held in May 2011 [\[17\]](#)
111 took modern AI to task, voicing the opinion that the currently popular statistical learning techniques
112 cannot reveal causal principles about the nature of cognition in general, and language in particular.
113 They are simply engineering tools which can perform very useful tasks, but they will not give insight
114 into cognitive processes, and do not operate by the same principles.

115 Peter Norvig, a fellow speaker at the symposium and director of research at Google took up the
116 challenge to argue that this is a false dichotomy and that Chomsky's proposed explanatory variables
117 in linguistic knowledge are a fiction [\[18\]](#). In his opinion predictive statistical models based on vast
118 quantities of data are simply all there is to natural language cognition. Progress in Linguistics is to
119 be made not by postulating hypothetical causal mental states and testing their consequences through
120 intuition in the form of grammaticality judgment, but by collecting vast quantities of language data
121 and finding statistical models that best fit the data. If Norvig is correct then the current optimism
122 about the possibilities of statistical models for cognitive computing are perhaps justified (and some
123 of Watson's heuristics could be considered genuinely 'cognitive'), but if Chomsky is correct, then we

124 must conclude that AI techniques and human cognition differ fundamentally. In this case we might
125 expect the current approaches to run into difficulties under some circumstances. Our position is that
126 if such differences are inevitable then it would be an advantage to know about them in advance, to
127 design reliable and useful solutions which compensate for the deficits.

128 The fundamental theoretical divide is apparent in Chomsky's belief in linguistic *competence*, the
129 tacit, internalized knowledge of language, and *performance* which is the observable manifestation
130 of the former (speech acts, written texts, etc.). However, performance data is not a pure reflection
131 of competence since linguistic productions are riddled with errors due to attention shifts, memory
132 limitations and environmental factors. Chomsky therefore eschews corpus data as evidence for
133 theory building, preferring instead grammaticality judgments which are elicited in response to
134 sentences constructed to test a certain theory about competence.

135 Norvig defends the use of corpora, while rejecting the use of grammaticality judgment as a form
136 of linguistic evidence. He claims that elicited judgments do not accurately reflect real language use.
137 He cites the famous example from Chomsky [19] who claims that neither sentence 1 or 2 (or any part
138 of the sentences) has ever appeared in the English language, and therefore any statistical model of
139 grammaticalness will rule them as being equally remote from English. Yet it is clear to humans that
140 1. but not 2. is a grammatical sentence of English, proving that grammar is not based on statistics:

- 141 1. Colourless green ideas sleep furiously.
- 142 2. Furiously sleep ideas green colourless.

143 Pereira [20] argues to the contrary and shows that modern statistical models of language prove
144 Chomsky wrong. In fact, 1. is 200,000 times more probable than 2. in a large corpus of newspaper
145 text. In his essay Norvig discusses a replication of the experiment on a different corpus "to prove that
146 this was not the result of Chomsky's sentence itself sneaking into newspaper text". The replication
147 corroborates Pereira's findings. In addition, he finds that both sentences are much less probable
148 than a normal grammatical sentence. Thus not only is Chomsky wrong about the statistical facts
149 about 1. and 2., but he is also wrong about the categorical distinction between grammatical and
150 ungrammatical sentences: 1. is more grammatical than 2, but less grammatical than ordinary
151 sentences, according to Norvig.

152 We disagree with these conclusions, and argue that the experiment in fact supports Chomsky's
153 view. Suppose Norvig's concerns about the possible proliferation of Chomsky's sentence in the
154 news corpus was in fact true, but it was true about 2. rather than 1. That is, sentence 2. becomes
155 common in text. Perhaps a fundamentalist Chomskian government assumes power in the future
156 and enforces a rule that every written newspaper text must be headed by Chomsky's "Furiously
157 sleep ideas green colourless", to remind writers to use only grammatical sentences. Before long, the
158 probability of 2. will exceed that of 1. But will 2. become more grammatical than 1, or will it just
159 become annoyingly omnipresent? We think the latter, in which case the statistical theory would make
160 the wrong prediction. To deny grammaticality judgment as a source of linguistic evidence in favor
161 of corpora seems mistaken. There must be a principled criterion for what sort of observed strings
162 should be counted as linguistic evidence.

163 One task where statistical methods have excelled is for lexical disambiguation, as summarized
164 in [20] "the co-occurrence of the words 'stocks', 'bonds' and 'bank' in the same passage is potentially
165 indicative of a financial subject matter, and thus tends to disambiguate those word occurrences,
166 reducing the likelihood that the 'bank' is a river bank, that the 'bonds' are chemical bonds, or that
167 the 'stocks' are an ancient punishment device". Norvig points out that 100% of the top contenders at
168 the 2010 SemEval-2 completion used statistical techniques. However, the limitations of the approach
169 can be easily demonstrated. Consider the following examples involving the ambiguous word 'bank'.

- 170 3. I will go to the river bank this afternoon, and have a picnic by the water.
- 171 4. I will go to the riverside bank this afternoon, and if the line isn't too long, have a picnic by the
172 nearby water feature.

173 The word 'bank' in sentence 3. is clearly about "the land alongside or sloping down to a river
174 or lake" (Oxford English Dictionary), while 4. is more difficult to interpret, but appears to be about
175 the 'financial' interpretation of 'bank'. Both 3. and 4. contain words that are likely to co-occur with
176 the 'sloping land' interpretation of 'bank' (i.e. picnic, water), which makes 4. misleading. But 4.
177 also contains 'riverside' which is a location, and gives us the clue that 'bank' must be some sort of
178 bounded object that has a location property. We suggest that the resolution of ambiguity requires a
179 suitable theory of compositional, structural lexical semantics (e.g.[21]) rather than statistical models.
180 That is, some semantic elements like [location] and [physical object] would combine in some suitable
181 account of compositional lexical semantics. In fact, even Watson uses a structured lexicon in question
182 analysis and candidate generation[22].

183 We can push the example in sentence 4 a little further, by swapping the word 'riverside' with
184 'river':

185 5. I will go to the river bank this afternoon, and if the line isn't too long, have a picnic by the water.
186 On first reading this seems odd, but suppose one was given as context that the person who uttered the sentence lived in a city which recently developed the previously neglected riverside into a business
187 hub, and several banks were opened. With such knowledge the 'financial' reading of 'bank' becomes
188 instantly clear, without a change in the a priori statistical distributions. As more people started talking
189 and writing about the river branch of their bank then no doubt over time the statistical facts would
190 come to reflect this usage. Statistical models completely miss the causal explanation for the change in
191 the observed facts. Statistics does not drive interpretation: interpretation drives statistics. The current
192 series of AI success stories primarily involve statistical learning approaches which accomplish their
193 specific tasks well, but lack the properties fundamental to aspects of semantic interpretation.

194 The semantic shallowness of cognitive computing by statistical learning has recently been
195 illustrated through the construction of *adversarial* examples. In a paper titled "Intriguing properties
196 of neural networks" [23], the authors show that slight (and hardly perceptible) perturbations in an
197 image can cause it to be misclassified by a deep neural network. The manipulation involves changes
198 in areas of the image that show points of maximum gradient in the trained network. A similar effect
199 was shown in the paper "Deep Text Classification Can be Fooled" [24], where the authors showed
200 that the *insertion, modification and removal* of hardly perceptible text snippets can cause text to be mis
201 classified. In some cases, the insertion of a single key word can cause the text to be mis classified by
202 a computer but remain correctly classified by the human. These examples show again that statistical
203 techniques can perform semantic classification very accurately (99.9% accuracy before the insertion)
204 without necessarily having representation of a semantics comparable to a human. But the lack of
205 semantics can also cause them to wildly mis behave. In the following section we review previous
206 ideas about ways in which computers can augment human reasoning without necessarily trying to
207 replicate it.

208 3. Related Work

209 The idea that technology can augment human cognition is an old one, and shared by many
210 technical approaches. The engineering view of human thinking is central to the field of *cybernetics*,
211 "the science of control and communication, in the animal and the machine" ([25]). The term *Intelligence*
212 *Amplification* has been used in various guises since William Ross Ashby introduced the notion that
213 human intelligence can be "amplified ... synthetically" [26] in his *Introduction to Cybernetics*.

214 The use of computing devices to enhance human cognitive behaviors is of course a central theme
215 of modern computing. Early attempts to harness the power of computers in this way can be seen in
216 the work of Douglas Engelbart who founded the Augmented Human Intellect Research Center at
217 SRI (Stanford Research Institute) International. He wrote: "The conceptual framework we seek must
218 orient us toward the real possibilities and problems associated with using modern technology to give

220 direct aid to an individual in comprehending complex situations, isolating the significant factors, and
221 solving problems." [27].

222 While these early pioneers were concerned with how technology could help people solve
223 complex tasks, it was the research field of Human Computer Interaction (HCI) which began directly
224 investigating the interaction between humans and machines. Initially conceived during WWII as
225 *Human Factors Engineering*, the goal was to discover principles which facilitated the interaction of
226 humans and machines, in this case military hardware such as airplanes. As the investigations turned
227 more specifically to human interaction with computing devices, other descriptors emerged to capture
228 the subject matter more accurately: *cognitive systems engineering*, and *Human-Information Interaction*
229 (HII) (see [28] for a historical review).

230 *Neo-Symbiosis* is a new attempt to invigorate Licklider's notion of symbiosis in today's
231 environment with our better understanding of cognition and more sophisticated computing
232 resources. The insight of *Neo-Symbiosis* is that the human-computer interaction shouldn't be confined
233 to simply augmenting cognitive skills a person already has (e.g. with increased speed, memory,
234 etc.), but to interact at a fundamental level to affect the reasoning process itself. An example is the
235 visualization of the periodic table of elements conceived by Mendeleev in 1869, which can trigger
236 novel human insight. The Periodic table not only provided a simple display of known data but also
237 pointed out gaps in knowledge that led to discoveries of new elements. It may have taken much
238 longer to discover the gaps if the existing knowledge was coded in a different format [28]. Another
239 example is the humble spelling checker which takes advantage of the computer's superior ability
240 to reliably store and retrieve arbitrary data, in order to monitor any mistakes that a human might
241 make in their spelling. Note that the interaction is symbiotic because the human can interact with
242 the spell checker, instructing it to accept the correction, to ignore it, or even to learn a new alternative
243 spelling if the person really did want to spell the word in a peculiar new way. These examples show
244 that the basic principles behind *Neo-Symbiosis* are not necessarily new. The novelty of the approach
245 is to clarify known psychological principles in sufficient detail to specify functional allocations that
246 are best performed by humans or computers. For example, human actions are frequently driven by
247 context, such that a web search with the word "apple" would have a different intention if the person
248 had previously searched for "orange" than if he had searched for "microsoft". Computer systems
249 could therefore monitor cognitive state to determine intended context, and then use their powerful
250 search capabilities to find relevant resources. As a related example, people often act differently in
251 different contexts, but they might miss cues (or make mistakes) about the specific context in which
252 they find themselves. A cognitive assistant could, for example, monitor a chat session in which a
253 person is writing separately to their spouse and their boss, and issue a warning if they wrote an
254 inappropriate message because they were inadvertently writing to the wrong person. [28] provide
255 numerous examples of human cognitive properties and their implications for design of computer
256 functionality. They base these cognitive properties on various proposals from the psychologist Daniel
257 Kahneman, and therefore their proposals are predicated on a particular theoretical position [29].

258 The IBM corporation's interpretation of *Symbiotic Cognitive Computing* is to immerse cognitive
259 computing resources in a physical, interactive environment. They built a *Cognitive Environments*
260 *Laboratory* (CEL) to explore how people and cognitive computing implementations work together [30,
261 31]. The CEL approach sees the role of the computer as a "super expert" which interacts with people,
262 offering advice and information based on superior computational power. In the CEL environment
263 the computer system follows individual users as they move about the environment, seamlessly
264 connecting them to information sources. The system can perform functions like transcribing spoken
265 conversations in order to preserve a record of the discussion, and augment that with a record of all
266 information that was on displays at the time. This can help decision makers re-trace their steps in
267 case of disputes, for example. The environment can present information on one or more of the large
268 number of displays, based on spoken requests by the users. Many sophisticated, interactive 2D
269 and 3D visualizations are available, as well as speech output. CEL is a technologically sophisticated

270 environment in which researchers can study the interaction of humans and computers with state of
271 the art speech and face recognition technologies.

272 The approach differs from Neo-Symbiosis, where the operations of computer systems are
273 designed to have a deeper integration with cognitive processes, rather than assume the role of
274 intelligent assistants. The key observation is that Neo-Symbiosis uses specific theories about cognition
275 to construct tools which support cognition at specific points of possible failure, whereas the CEL
276 approach is to provide assistance during tasks which have been observed as difficult in work settings
277 experienced over time. Thus, [31] propose five key principles of symbiotic cognitive computing:
278 "context, connection, representation, modularity, and adaption." The principles are derived by
279 "reflecting upon the state of human-computer interaction with intelligent agents and on our own
280 experiences attempting to create effective symbiotic interactions in the CEL" ([31], p.84). Clearly this
281 is not a strongly theory driven approach.

282 Similarly, [32] argues that representations are the medium of cognition and are therefore key to
283 supporting symbiosis. While the authors do not provide an implementation, they discuss the *MatLab*
284 programming competition which used a number of novel artifacts to communicate information about
285 code snippets submitted by users, and to encourage the reuse of such code by other contestants using
286 a rewards system. The authors argue that successful outcome was achieved through an symbiosis
287 between the artifacts and the players. However, the role played by the artifacts was simply to enable
288 discovery and integration of the code snippets, and to provide an incentive mechanism to the players.
289 As a symbiotic system, the MatLab game has a similar grounding, in intuition, as the CEL.

290 One view which presents IBM's Watson in a light closer to the Neo-Symbiosis view is shared
291 by [33]. They argue that good results from cognitive systems can only come through a symbiotic
292 relationship where humans take charge of tasks in which the computers are deficient. In the case of
293 Watson, this equates to the selection of the training corpus, which needs to be fine-tuned by humans
294 because Watson cannot automatically infer which body of documents is likely to be relevant to a
295 particular domain of interest. Another consideration is the kinds of data provided. Should the corpus
296 include data catalogs, taxonomies and ontologies, or should the system be expected to discover these
297 on its own? The decisions made by humans at this early stage of machine learning can significantly
298 impact the overall performance of the system. A similar view is held by the CrowdTruth initiative
299 which argues that semantic annotation should be spread among a large number of naive annotators,
300 and that human disagreement should form an important input to cognitive learning systems [34]. In
301 some places John Kelly also hints at this sort of interaction, claiming that computers must at some
302 stage "... interact naturally with people to extend what either humans or machine could do on their
303 own" [3].

304 A somewhat contrary but bold view of the consequences of Cognitive Computing can be seen
305 in Dan Briody's post on IBM's "thinkLeaders" platform. He foresees a vastly changed business
306 environment that has adapted to Cognitive Computing, and predicts that "New ways of thinking,
307 working and collaborating will invariably lead to cultural and organizational change ..." [35].
308 Presumably these *new ways of thinking* are an adaptation to the human-like but not-quite-human
309 cognitive assistants.

310 We will now describe our approach to cognitive symbiosis which does not rely on developing
311 *new ways of thinking* but instead, intelligently supports *old ways of thinking* to achieve new results.

312 4. Towards a Strong Cognitive Symbiosis

313 The existing approaches to symbiosis straddle the divide between two different interpretations
314 of the term. Mirriam Webster defines symbiosis as "the living together in more or less intimate
315 association or close union of two dissimilar organisms" or "a cooperative relationship (as between
316 two persons or groups)". WordNet 3.1 gives a stronger interpretation as "the relation between two
317 different species of organisms that are interdependent; each gains benefits from the other". The key

Inderal	1 tablet 3 times a day
Lanoxin	1 tablet every AM
Carafate	1 tablet before meals and at bedtime
Zantac	1 tablet every 12 hours (twice a day)
Quinaglute	1 tablet 4 times a day
Coumadin	1 tablet a day

(a) Prescription suited for a doctor/pharmacist

	Breakfast	Lunch	Dinner	Bedtime
Lanoxin	✓			
Inderal	✓	✓	✓	
Quinaglute	✓	✓	✓	✓
Carafate	✓	✓	✓	✓
Zantac		✓		✓
Coumadin				✓

(b) Prescription suited for a patient

Figure 2. Two isomorphic views organized for different tasks

318 difference is that the two organisms are dependent on one another in the stronger WordNet definition,
 319 implying that there are functions that neither could perform without the other.

320 This distinction can be seen as a "symbiosis version" of *strong* versus *weak* AI. *Association* implies
 321 only that the machine can communicate and co-operate at a level which is typically restricted to
 322 human-human interaction, whereas *interdependence* implies that the machine could not operate at
 323 some level without the human interaction. That is, they share some key aspect of computation and
 324 representation which allows information exchange at an algorithmic level.

325 We can get a sense of this difference through the following two examples involving information
 326 representation in reasoning and decision making. In the book *Things that Make Us Smart* [36], Don
 327 Norman argues that the unaided human mind is "overrated" and much of what it has achieved is
 328 due to the invention of external aids that help overcome intrinsic limitations in memory capacity,
 329 working memory processing, and so on. The information format of these external aids is critical for
 330 assisting particular kinds of reasoning. One example from the work of Ruth Day involves written
 331 notation about prescription drugs and the recommended doses. Figure 2 (a) shows the longhand
 332 notation which is natural for prescribing doctors and contains valuable information for pharmacists
 333 filling the prescription. However, the format would not be easy for patients who are concerned with
 334 questions like "what pills should I take at breakfast?" These questions are much better answered by
 335 the representation in figure 2 (b). Notice in 2(b) that the medicine names have been re ordered so
 336 that they are now grouped according to the time of day to be administered. It seems intuitively
 337 obvious that the two representations make certain tasks simpler, but there is no attempt to provide an
 338 explanation of this in terms of precise cognitive processes. Norman does make a distinction between
 339 *reflexive* and *experiential* thought, but these are not fleshed out in detail in terms of specific cognitive
 340 algorithms.

341 The second example concerns *cognitive illusions*, systematic problems of reasoning which result in
 342 errors of judgment (see [29] for a comprehensive review). A typical example is *base rate neglect*, which
 343 is supposed to show that the human mind lacks specific algorithms for naive Bayesian inference. For
 344 example, consider the following "mammography" problem (adapted from [37]):

345 The probability of breast cancer is 1% for a woman at age forty who participates in
346 routine screening. If a woman has breast cancer, the probability is 80% that she will get a
347 positive mammography. If a woman does not have breast cancer, the probability is 9.69%
348 that she will also get a positive mammography. A woman in this age group had a positive
349 mammography in a routine screening. What is the probability that she actually has breast
350 cancer? _____ %

351 The correct answer can be calculated using then common formulation of Bayes' theorem
352 (equation 1)

$$p(A | B) = \frac{p(B | A) p(A)}{p(B)} \quad (1)$$

353 which in this example evaluates to:

$$p(A | B) = \frac{(0.8)(0.01)}{(0.01)(0.80) + (0.99)(0.096)} = 0.078 = 7.8\% \quad (2)$$

354 [37] showed that 95 out of 100 physicians estimated the answer to be between 70% and 80%,
355 which is in fact ten times higher than the correct answer. This is an example of base rate neglect, since
356 the error in reasoning is consistent with the claim that people ignore the relatively low background
357 probability of having breast cancer ($P(A) = 0.01$). Thus, the nearly 10% probability of showing a false
358 positive reading is quite high given the low background probability of actually having breast cancer,
359 and drastically reduces the true probability that a person with a positive test reading has the illness.

360 However, [38] challenged the prevailing view that such experiments show that humans lack
361 the appropriate cognitive algorithms to solve problems with Bayesian reasoning. Instead, they
362 argue, humans do have the necessary procedures, but they operate with representations that are
363 incompatible with the formulation of the problems. More specifically in the current example the
364 problem formulation is in terms of *probability formats*, whereas the mental algorithms which would
365 solve such problems operate on *frequency formats*. By way of analogy, "assume that in an effort to find
366 out whether a system has an algorithm for multiplication, we feed that system Roman numerals. The
367 observation that the system produces mostly garbage does not entail the conclusion that it lacks an
368 algorithm for multiplication. We now apply this argument to Bayesian inference."

369 Their general argument is that mathematically equivalent representations of information entail
370 algorithms that are not necessarily computationally equivalent. Using this reasoning they performed
371 experiments in which the representational format was manipulated, and showed significant increases
372 in answers corresponding to the Bayesian outcome. Consider the following, frequentist version of the
373 previous problem.

374 10 out of every 1,000 women at age forty who participate in routine screening
375 have breast cancer. 8 of every 10 women with breast cancer will get a positive
376 mammography. 95 out of every 990 women without breast cancer will also get a positive
377 mammography. Here is a new representative sample of women at age forty who got a
378 positive mammography in routine screening. How many of these women do you expect
379 to actually have breast cancer? _____ out of _____

380 The researchers conducted several experiments and showed dramatic improvements in
381 performance when the problem was presented in frequentist format. When presented in this format it
382 is hard to ignore the large number of women (95) that will test positive even though they do not have
383 breast cancer. The reasonable conclusion is that "Cognitive algorithms, Bayesian or otherwise, cannot
384 be divorced from the information on which they operate and how that information is represented",
385 and this has a profound lesson for educators "... to teach representations instead of rules, that is,
386 to teach people how to translate probabilities into frequency representations rather than how to
387 insert probabilities into equations ..." and tutoring systems "... that enhance the idea of frequency

388 representations with instruction, explanation, and visual aids hold out the promise of still greater
389 success."

390 These concluding comments support the strong notion of cognitive symbiosis. Our suggestion
391 is that key interactions in the symbiotic system can be regarded as a hypothesis about cognitive
392 functioning used to solve tasks. This hypothesis then determines the most useful information for
393 assisting the problem solution. In other words, the information exchanged between the human
394 and computer in an effort to solve a problem are predicated on a hypothesis about what kind of
395 cognitive algorithm will be used to solve the problem, and precisely what form of information and
396 representation the algorithm requires.

397 Our vision of cognitive symbiosis is derivative of this approach. We assert that current
398 approaches to AI are not sufficient to emulate the full range of human cognitive abilities, even though
399 they do manage to perform *some* cognitive tasks at a level comparable to humans (e.g. [39]). However
400 these successes are limited to very narrow domains and there are barriers which prevent similar
401 success in others. This, in turn, implies that AI will be limited within the foreseeable future, just as
402 it was in Licklider's time. Our suggestion is to adopt a strong view of cognitive symbiotic systems
403 engineering in which the goal is to produce software systems whose interactions with people are
404 optimized to tightly engage with empirically identified weaknesses in human as well as machine
405 cognition.

406 Our concrete work on cognitive symbiotic systems has focused on applications which use
407 predominantly natural language. In the area of natural language processing (NLP) and machine
408 learning, semantic interpretation, or symbol grounding [40] pose one of the most difficult problems
409 [34]. Two common NLP tasks which depend on semantic interpretation and therefore prove
410 particularly difficult are keyphrase/term/word extraction and lexical disambiguation [41,42]. Yet
411 these are tasks on which humans excel. Regarding lexical ambiguity, people are so efficient
412 that they are typically unaware of alternative interpretations of ambiguous words and sentences
413 [43]. The psycholinguist David Swinney has studied the time course of ambiguity resolution in
414 sentence comprehension using the *cross modal priming* paradigm. His experiments have shown that
415 humans can automatically resolve lexical ambiguity within three syllables of the presentation of the
416 disambiguating information [44].

417 On the other hand humans are poor, but computers much more capable of storing and retrieving
418 information. Jonides argues that memory is an essential component of thinking, and shows evidence
419 that individual variations in working memory capacity correlate with performance on various
420 reasoning tasks [45]. Limitations in working memory capacity result in deficiencies in reasoning.
421 Minimizing the need to burden working memory ought to improve thinking.

422 The symbiotic applications we now describe were developed to exploit the human capacity for
423 keyword selection and disambiguation, and combine it with the computer's capabilities to store,
424 retrieve and discover vast amounts of text related to specific keyword indexes. We present this as an
425 example of strong symbiosis, since each actor contributes to the result according to their respective
426 cognitive strengths, and neither would be able to perform as accurately on their own.

427 *LexiTags* [46,47] is a social semantic bookmarking service in which users can save URLs of interest
428 and annotate them with disambiguated tags that are either WordNet senses or DBpedia identifiers.
429 The service is very similar to <http://delicious.com> where users assign personal keywords called *tags*
430 to web sites of interest, and the service stores the URL together with the set of tags. The tags can then
431 be used to *refind* the web sites. The additional step in LexiTags is that users have to disambiguate
432 their tags by selecting one of the unambiguous choices offered through the user interface. We call
433 this *semantic tagging*. Semantic tagging therefore assigns unambiguous, user specific key topics
434 to documents and other web resources. While sophisticated statistical algorithms exist for topic
435 analysis (e.g.[48]), the problem of allocating personalized, contextually significant topic(s) or tags
436 to documents is more difficult because it relies on the subjective goals and beliefs of the reader [41].

437 In return for the additional step to disambiguate semantic tags, the user receives a range
 438 of benefits not available in traditional bookmarking services. Semantic tags facilitate accurate
 439 classification of the resource. This in turn makes it possible to identify other resources which are
 440 semantically related by precise relations such as taxonomy, meronymy, derivational relatedness,
 441 entailment or antonymy [49]. In addition, *word embeddings* can be used to identify statistically related
 442 semantic concepts [50]. Word embeddings can be made more precise and useful if disambiguation
 443 information is available. For example [51] forms ultradense representations with *AutoExtend* by
 444 using WordNet *synsets* and *lexemes* to create orthogonal transforms of standard word embeddings.
 445 To illustrate, Table 1 shows related words for the non disambiguated tag *suit* using word2vec, the
 446 state of the art tool for word embedding [52]. The related words indicate that at least two distinct
 447 senses have been confounded, the noun *suit* (of clothes) and the verb to *suit*(his needs). The table also
 448 shows related words for these two disambiguated senses as encoded in AutoExtend, as well as the
 449 additional noun sense *lawsuit*. Clearly, recommendations of related items can be more accurate and
 450 varied when semantic tags are used. For example, the semantically disambiguated tag *suit#clothes*
 451 could recommend resources tagged with a rich set of the relevant tags *attire*, *garment*, *trousers*, *shirt*,
 452 *tuxedo*, *tux*, *pinstripe*, and not the more impoverished and mixed set from word2vec.

Table 1. Ambiguous and disambiguated words and semantically similar words based on word2vec and AutoExtend.

Word	word2vec	AutoExtend
suit	suits, tailor, adapt, customize, conform, accommodate, tailored, meet, dress, cater	
suit#clothes		suit-of-clothes, attire, zoot-suit, garment, dress, trousers, pinstripe, shirt, tuxedo, gabardine, tux, pinstripe, costume, mumu
suit#accomodate		meet, cater, adapt, provide, fit, oblige, satisfy
suit#lawsuit		lawsuit, countersuit, counterclaim, sue, violation, grievance, patent infringement, punitive damages, injunction

453 A second, related tool shows how disambiguated lexical tags can be used to perform a metadata
 454 reasoning task which might otherwise be very difficult. MaDaME[53] is a web application for
 455 developers who wish to mark up their sites with the <http://schema.org> classes and properties.
 456 Schema.org is an effort originally proposed by a consortium of search engine providers to promote
 457 schemas for structured data on the Internet, on web pages, and in email messages. The tool allows
 458 users to highlight key words in their web site, and disambiguate them by selecting a sense from
 459 WordNet or DBPedia with a similar interface as LexiTags. The tool then automatically infers the most
 460 appropriate schema.org concepts and generates markup that adds schema.org as well as WordNet
 461 and SUMO identifiers to the HTML web page. The inference is currently performed via a mapping
 462 between WordNet synsets and schema.org classes; a tree search algorithm identifies the closest match
 463 between user selected synsets and the existing mappings. We are currently looking into replacing the
 464 classic search algorithm with one based on statistical methods.

465 While Strong Cognitive Symbiosis is a new design principle pioneered in this publication,
 466 elements of the approach can be gleaned in other applications. For example [54] discuss visual
 467 analytic decision-making environments for large-scale time-evolving graphs. These pose difficulties
 468 for decision making because they describe phenomena where large volumes of inter related data are

469 evolving in complex patterns. Current visualization techniques do not offer a solution for decision
470 making with such complex data. The authors argue that designing decision-making environments
471 for such complex tasks require systems which "work in symbiosis with humans" (p.85). These
472 would require an understanding of human thought processes and incorporate those processes into
473 the computational model to reduce human burden. To this end they propose three HCI principles
474 for human-machine interaction in visual analytics regarding: *(i) Data and view specifications, (ii) View*
475 *manipulations, and (iii) Process and provenance*. These principles essentially prescribe that graph
476 browsing interfaces should allow users to select and navigate graph structures according to their
477 specific needs and goals, and to retain traceability of states. In order to react to user requests with
478 time-evolving graphs, the application has to solve some difficult computational problems in terms of
479 data management, analytics and graph visualization. However, the computational problems almost
480 exclusively involve formal properties of the graphs themselves rather than the way a human might
481 process those graphs. For example, summarizing graphs involves the calculation of node-edge
482 properties such as *journey, density, eccentricity, diameter, radius, modularity, conductance, reachability,*
483 *and centrality measures*. Special techniques are needed for analysis, summary, and visualization of
484 evolving graphs in which these formal properties are subject to change. The symbiotic aspect of
485 the application is that the visualizations and summaries must be comprehensible for humans, and
486 humans must be able to manipulate those representations to answer their questions.

487 5. Discussion

488 The rise in the awareness of Artificial Intelligence in public consciousness has been phenomenal
489 in the past few years. Many leading technology companies have declared that "it's superior AI" are
490 key to its continued success: Amazon, Google, Apple [55–57]. Russia's president Vladimir Putin has
491 publicly declared that whoever masters AI will "rule the world" [58].

492 Together with this awareness have come warnings from prominent scientific and business
493 figures about the dangers of an AI which becomes more powerful than the human mind. The so-called
494 *singularity* has profound warnings about what can happen if humans lose control of the machines
495 [59–61].

496 We think that fears of singularity are overstated. While we are suitably impressed with recent
497 progress in image recognition, text processing, and so on, we are also acutely aware of remaining
498 limitations. A technology which has difficulties with resolving lexical ambiguity, it seems to us, does
499 not appear to be on the verge of attaining human-level cognition in the immediate future.

500 The biggest question of practical and commercial interest, then, is how to best use our human
501 knowledge of statistical learning systems and AI in general, to construct computing platforms and
502 information systems that can help humans perform complex cognitive tasks. What is the best way
503 to benefit from *Cognitive Computing*? A preconception that machines can perform tasks "just like
504 humans" is counter productive if it is not true, because it sets up an industry expectation that cannot
505 be fulfilled and might stifle alternative approaches. For example if company *A* markets a fully
506 automatic cognitive solution for managing unstructured data, then a competing company *B* will
507 have a hard time developing a semi automated, symbiotic solution to the same problem, even if the
508 symbiotic solution would prove more effective. In this paper we have argued that the preconception
509 is in fact, not true. Computers are still very far from thinking like humans. It is therefore time to
510 take a step back, and focus on systems which use modern AI techniques to realize a strong symbiotic
511 relation between human and machine.

512 We acknowledge that Strong Cognitive Symbiosis is difficult to achieve because it requires a
513 design in which the operation of the machine and human can interact at a deep algorithmic level.
514 This is not typical of modern AI systems, especially those constructed around neural network or
515 deep-learning frameworks. Such programs typically learn end-to-end generalizations from large
516 data sets, and the focus is the input-output mappings they can learn. In the rare cases where an
517 intervention is made at an algorithmic level, it is to the detriment of the result [23,24]. However, there

518 is an emerging approach which is highly compatible with our suggestions, *Neural-Symbolic Learning*
519 and *Reasoning* [62]. The goal of neural-symbolic computation is to integrate neural network learning
520 and symbolic reasoning, for example by extracting logical expressions from trained neural networks,
521 or using an independent feature space to enable *heterogeneous transfer learning*. The latter example
522 is particularly interesting. [63] show how it is possible to train a network on an image clustering
523 task where the training data is from a feature set that is different from the test set. In essence, they
524 use an independent set of invariant image features derived from local image descriptors [64], to
525 mediate between the training and test set. The technique works by computing co occurrence matrices
526 between the invariant features F and an image space A , and between the features F and a second,
527 text labeled image space W . Finally, [63] show a transfer of learning from text space W to image
528 space A . The intriguing possibility for a strong symbiosis perspective is to use a similar technique in
529 a domain where the invariant features are tuned through close interaction between human users and
530 the computer, to obtain the best results for each individual user.

531 6. Conclusions

532 In conclusion we propose that, recent advances in deep neural network technology
533 notwithstanding, we are no closer to predicting the arrival of "real" Artificial Intelligence than
534 Licklider was 50 years ago. We are still in that interim period of "between 10 and 500 years". In this
535 paper we argued that the false belief that we are in fact close to constructing computers with genuine
536 cognitive abilities is disingenuous, for it diverts efforts away from investigating strong symbiotic
537 systems which are constructed around their inherent but well understood cognitive limitations. We
538 need to develop a principled framework which incorporates the shared and equal contribution of
539 cognitive theories and technical solutions in programming smart machines, and not oversell short
540 term, domain restricted engineering successes. *Strong Cognitive Symbiosis* is an attempt at such a
541 framework.

542 **Conflicts of Interest:** "The authors declare no conflict of interest."

543 Abbreviations

544 The following abbreviations are used in this manuscript:
545
546 IEEE: Institute of Electrical and Electronics Engineers
547 AI: Artificial Intelligence
548 IBM: International Business Machines
549 SPARQL: SPARQL Protocol and RDF Query Language
550 RDF: Resource Description Framework
551 MIT: Massachusetts Institute of Technology
552 HCI: Human Computer Interaction
553 CEL: Cognitive Environments Laboratory
554 SUMO: Suggested Upper Merged Ontology
555 HTML: Hypertext Markup Language
556

557 References

- 558 1. <http://www.cityam.com/270451/gartner-hype-cycle-2017-artificial-intelligence-peak-hype> accessed
559 10/10/2017
- 560 2. <http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/> accessed 10/10/2017
- 561 3. <http://www.scientificamerican.com/article/will-ibms-watson-usher-in-cognitive-computing/> accessed
562 10/10/2017
- 563 4. http://www.research.ibm.com/cognitive-computing/#fbid=GZ_iDrBgajZ accessed 10/10/2017
- 564 5. Searle, J. R. (1980). Minds, brains, and programs. *Behavioral and Brain Sciences*, *3*(03), 417–424.
565 doi:10.1017/S0140525X00005756
- 566 6. <https://azure.microsoft.com/en-us/services/cognitive-services/> accessed 10/10/2017
- 567 7. <http://deeplearning.net> accessed 10/10/2017

568 8. Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. *Neural Computation*, **18**(7), 1527–1554. doi:10.1162/neco.2006.18.7.1527

569 9. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2014). Going Deeper with Convolutions. Google Tech Report, arXiv.org.

570 10. <http://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/History/history2.html> accessed 10/10/2017

571 11. David E. Rumelhart, James L. McClelland, and the PDP Research Group (Eds.). (1986). Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations. MIT Press, Cambridge, MA, USA.

572 12. Zadeh, L. A. (1994). Soft computing and fuzzy logic. *Software, IEEE*, **11**(6), 48–56. doi:10.1109/52.329401

573 13. Yen, J. (1999). Fuzzy logic-a modern perspective. *Knowledge and Data Engineering, IEEE Transactions on*, **11**(1), 153–165. doi:10.1109/69.755624

574 14. Johnson, R. C. (1993). What is cognitive computing? *Dr. Dobb's Journal*, **18**(2), 18–24.

575 15. Licklider, J. C. R. (1960). Man-Computer Symbiosis. *Human Factors in Electronics, IRE Transactions on*, **(1)**, 4–11. doi:10.1109/THFE2.1960.4503259

576 16. Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A. A., et al. (2010). Building Watson: An Overview of the DeepQA Project. *AI Magazine*, **31**(3), 59–79. doi:10.1609/aimag.v31i3.2303

577 17. <http://mit150.mit.edu/symposia/brains-minds-machines> accessed 10/10/2017

578 18. <http://norvig.com/chomsky.html> accessed 10/10/2017

579 19. Chomsky, N. (1957). Syntactic Structures. The Hague: Mouton.

580 20. Pereira, F. (2000). Formal grammar and information theory: together again? *Philosophical Transactions of the Royal Society of London a: Mathematical, Physical and Engineering Sciences*, **358**(1769), 1239–1253. doi:10.1098/rsta.2000.0583

581 21. Pustejovsky, James. (1995) The Generative Lexicon. MIT Press.

582 22. Deep parsing in Watson. (2012). *IBM Journal of Research and Development*, **56**(3.4), 3:1–3:15. doi:10.1147/JRD.2012.2185409

583 23. Szegedy, Zaremba, Sutskever, Bruna: Intriguing properties of neural networks. (2013). arXiv:1312.6199 [cs.CV]

584 24. Bin Liang, Hongcheng Li, Miaoqiang Su, Pan Bian, Xirong Li & Wenchang Shi. Deep Text Classification Can be Fooled (2017). <http://arxiv.org/abs/1704.08006>

585 25. Wiener, N. Cybernetics. John Wiley & Sons, New York; 1948.

586 26. Ashby, W.R., An Introduction to Cybernetics, Chapman and Hall, London, UK, (1956). Reprinted, Methuen and Company, London, UK, 1964.

587 27. Engelbart, D.C., Augmenting Human Intellect: A Conceptual Framework, Summary Report AFOSR-3233, Stanford Research Institute, Menlo Park, CA, October (1962)

588 28. Griffith, D., and Greitzer, F. (2007) Neo-Symbiosis: The Next Stage in the Evolution of Human Information Interaction. *International Journal of Cognitive Informatics and Natural Intelligence*, **1**(1), 39-52, January-March 2007.

589 29. Kahneman, D. (2011). Thinking Fast and Slow. Farrar, Straus and Giroux (Publisher).

590 30. J. O. Kephart and J. Lenchner, "A Symbiotic Cognitive Computing Perspective on Autonomic Computing," 2015 IEEE International Conference on Autonomic Computing, Grenoble, (2015), pp. 109-114. doi: 10.1109/ICAC.2015.16

591 31. Robert G. Farrell, Jonathan Lenchner, Jeffrey O. Kephart, Alan M. Webb, Michael J. Muller, Thomas D. Erikson, David O. Melville, Rachel K. E. Bellamy, Daniel M. Gruen, Jonathan H. Connell, Danny Soroker, Andy Aaron, Shari Trewin, Maryam Ashoori, Jason B. Ellis, Brian P. Gaucher, Dario Gil: Symbiotic Cognitive Computing. *AI Magazine* 37(3): 81-93 (2016)

592 32. Erickson, T.. A Distributed Cognition Perspective on Symbiotic Cognitive Systems: External Representations as a Medium for Symbiosis. AAAI Workshops, North America, mar. 2016. Available at: <<https://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12616>>. Date accessed: 28 Aug. (2017)

593 33. Judith Hurwitz, Marcia Kaufman, Adrian Bowles. (2015). Cognitive Computing and Big Data Analytics. Wiley. ISBN: 978-1-118-89662-4

594 34. Lora Aroyo, Chris Welty. (2014) The Three Sides of CrowdTruth. *J. Human Computation*. **1**(1).

621 35. <https://www.ibm.com/blogs/think-leaders/technology/cognitive-computing-new-vocabulary/> last
622 accessed 10/10/2017

623 36. Donald A. Norman. (1993). Things that Make Us Smart: Defending Human Attributes in the Age of the
624 Machine. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

625 37. Eddy, D. M. (1982). Probabilistic reasoning in clinical medicine: Problems and opportunities. In Daniel
626 Kahneman, Paul Slovic & Amos Tversky (eds.), Judgment Under Uncertainty: Heuristics and Biases.
627 Cambridge University Press. pp. 249–267

628 38. Gigerenzer, G. & Hoffrage, U. How to improve Bayesian reasoning without instruction: Frequency formats.
629 Psychological review 102, 684 (1995).

630 39. Kosinski, M., & Wang, Y. (2017, September 12). Deep neural networks are more accurate than humans at
631 detecting sexual orientation from facial images.. Retrieved from psyarxiv.com/hv28a

632 40. Stevan Harnad, The symbol grounding problem, Physica D: Nonlinear Phenomena, Volume 42, Issue 1,
633 (1990), Pages 335-346, ISSN 0167-2789, [http://dx.doi.org/10.1016/0167-2789\(90\)90087-6](http://dx.doi.org/10.1016/0167-2789(90)90087-6).

634 41. Hasan, KS & Ng, V. Automatic Keyphrase Extraction: A Survey of the State of the Art.
635 Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume
636 1: Long Papers), pp. 1262-1273 ACL (1) (2014). at <https://pdfs.semanticscholar.org/f892/5b12b51cdbda6bc55da18b7e975c38446326.pdf>

638 42. Agirre, Eneko; Edmonds, Philip; Word sense disambiguation: Algorithms and applications (2007) Springer
639 Science & Business Media

640 43. Steven Lawrence Small, Garrison Weeks Cottrell, and Michael Tanenhaus (Eds.) (1988) Lexical Ambiguity
641 Resolution: Perspectives from Psycholinguistics, Neuropsychology, and Artificial Intelligence. Morgan
642 Kaufmann Publishers Inc., San Francisco, CA, USA.

643 44. Swinney, David. (1979) A Lexical access during sentence comprehension: (Re)consideration of context
644 effects. Journal of Verbal Learning and Verbal Behavior, volume 18, number 6, pages 645–659

645 45. Jonides, J. Working Memory and Thinking. In. Smith, E. E., and Osherson, D. N. (1995) An Invitation to
646 Cognitive Science, Second Edition, Volume 3, MIT Press

647 46. Veres, C. (2011) LexiTags: An Interlingua for the Social Semantic Web. Social Data on the Web (SDoW)
648 workshop at the 10th International Semantic Web Conference, Oct. 23 - 27, 2011.

649 47. Veres, C. (2013). Crowdsourced Semantics with Semantic Tagging: "Don't just tag it, LexiTag it!" in Maribel
650 Acosta, Lora Aroyo, Abraham Bernstein, Jens Lehmann, Natasha F. Noy, Elena Simperl (Eds.): Proceedings
651 of the 1st International Workshop on Crowd- sourcing the Semantic Web, Sydney, Australia, October 19,
652 2013. CEUR Workshop Proceedings

653 48. Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77–84.
654 doi:10.1145/2133806.2133826

655 49. Christiane Fellbaum (1998, ed.) WordNet: An Electronic Lexical Database. Cambridge, MA: MIT Press.

656 50. Tomas Mikolov, Scott Wen-tau Yih, Geoffrey Zweig (2013). Linguistic Regularities in Continuous Space
657 Word Representations. Published In Proceedings of the 2013 Conference of the North American Chapter of
658 the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT-2013)

659 51. Rothe, Sascha and Schütze, Hinrich. AutoExtend: Extending Word Embeddings to Embeddings for Synsets
660 and Lexemes. (2015) Proceedings of the ACL.

661 52. T Mikolov, I Sutskever, K Chen, GS Corrado, J Dean (2013) Distributed representations of words and
662 phrases and their compositionality. Advances in neural information processing systems, 2013

663 53. Veres, C. (2013) Schema.org for the Semantic Web with MaDaME. in Steffen Lohmann (Ed.): Proceedings
664 of the I-SEMANTICS 2013 Posters & Demonstrations Track, Graz, Austria, September 4-6, 2013.
665 CEUR-WS.org 2013 CEUR Workshop Proceedings, Volume 1026.

666 54. Venna, Siva RamaKrishna Reddy & Gottumukkala, Raju & Raghavan, Vijay. (2016). Visual Analytic
667 Decision-Making Environments for Large-Scale Time-Evolving Graphs. Handbook of Statistics . . .
668 10.1016/bs.host.2016.07.002.

669 55. <https://www.androidheadlines.com/2017/04/ai-key-amazons-future-success-says-jeff-bezos.html> last
670 accessed 10/10/2017

671 56. <https://www.theverge.com/2016/4/21/11482576/google-ceo-sundar-pichai-cloud-ai-future> last
672 accessed 10/10/2017

673 57. <http://bgr.com/2017/06/11/apple-ai-machine-learning-ar-wwdc-2017/> last accessed 10/10/2017

674 58. <http://fortune.com/2017/09/04/ai-artificial-intelligence-putin-rule-world/> last accessed 10/10/2017

675 59. https://en.wikipedia.org/wiki/Technological_singularity last accessed 10/10/2017

676 60. <https://goo.gl/JkudMV> last accessed 10/10/2017

677 61. <http://www.bbc.com/news/technology-30290540> last accessed 10/10/2017

678 62. Garcez, Artur d'Avila and Besold, Tarek R. and Raedt, Luc de and Foldiak, Peter and Hitzler, Pascal and Icard, Thomas and Kühnberger, Kai-Uwe and Lamb, Luis C and Miikkulainen, Risto and Silver, Daniel L, (2015), Neural-Symbolic Learning and Reasoning: Contributions and Challenges. Knowledge Representation and Reasoning: Integrating Symbolic and Neural Approaches: Papers from the 2015 AAAI Spring Symposium

683 63. Yang, Qiang and Chen, Yuqiang and Xue, Gui-Rong and Dai, Wenyuan and Yu, Yong. (2009). Heterogeneous transfer learning for image clustering via the social. <http://dx.doi.org/10.1145/1687878.1687880>

686 64. Lowe, David G. (2004) Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, issn 0920-5691, volume 60, number 2, p. 91 - 110. <http://dx.doi.org/10.1023/b:visi.0000029664.99615.94>

688