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1 Abstract: Cognitive Computing has become somewhat of a rallying call in the technology world,
2= with the promise of new smart services offered by industry giants like IBM and Microsoft. The
s recent technological advances in Artificial Intelligence (Al) have thrown into the public sphere
« some old questions about the relationship between machine computation and human intelligence.
s Much of the industry and media hype suggests that many traditional challenges have been
s overcome. On the contrary, our simple examples from language processing demonstrate that
»  present day Cognitive Computing still struggles with fundamental, long-standing problems in Al
s An alternative interpretation of cognitive computing is presented, following Licklider’s lead in
o adopting man-computer symbiosis as a metaphor for designing software systems that enhance human
1o cognitive performance. A survey of existing proposals on this view suggests a distinction between
u  weak and strong versions of symbiosis. We propose a Strong Cognitive Symbiosis which dictates an
1= interdependence rather than simply cooperation between human and machine functioning, and
1z introduce new software systems which were designed for cognitive symbiosis. We conclude that
12 strong symbiosis presents a viable new perspective for the design of cognitive computing systems.

15 Keywords: cognitive computing; cognition; Al; cognitive symbiosis; language; HCI

1 1. Introduction

17 The Gartner Hype Cycle for Smart Machines, 2017, names Cognititve Computing as a technology
1z on the "Peak of Inflated Expectations" [1]. The IEEE Technical Activity for Cognitive Computing
1o defines it as "an interdisciplinary research and application field" ... which ... "uses methods from

20 psychology, biology, signal processing, physics, information theory, mathematics, and statistics" ... in
=z an attempt to construct ... "machines that will have reasoning abilities analogous to a human brain".
22 The IBM Corporation has been active in bringing Cognitive Computing to the commercial world
23 for some years. Perhaps their earliest success was the computer ‘Deep Blue” which beat the world
24 chess champion after a six-game match on May 11, 1997 [2]. They then developed the computer
2 'Watson” which, it was claimed, could process and reason about natural language, and learn from
2 documents without supervision. In February 2011 Watson beat two previous champions in the
2z "Jeopardy!" quiz show, demonstrating its ability to understand natural language questions, search its
2s database of knowledge for relevant facts, and compose a natural language response with the correct
20 answer. John Kelly, director of IBM Research, claims that "The very first cognitive system, I would say,
30 is the Watson computer that competed on Jeopardy! [3]. Kelly continues that cognitive systems can
a1 "understand our human language, they recognize our behaviours and they fit more seamlessly into
s2 our work-life balance. We can talk to them, they will understand our mannerisms, our behaviours -
ss  and that will shift dramatically how humans and computers interact.”

3a IBM’s public promotional materials claim that "cognitive computers can process natural
s language and unstructured data and learn by experience, much in the same way humans do"[4].
ss This kind of extravagant language brings to mind the term ’'strong Al’ which describes systems
sz that process information "in the same way humans do". Strong Al holds that "the appropriately
;s programmed computer literally has cognitive states and that the programs thereby explain human
3o cognition". On the other hand "weak Al’ proposes that the computer merely "enables us to formulate
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20 and test hypotheses in a more rigorous and precise fashion"[5]. Searle argues against the possibility
a1 of strong Al with his famous Chinese room scenario, where he argues that an ungrounded symbol
.2 manipulation system lacks, in principle, the capacity for human understanding. It is not clear if the
a3 current crop of Cognitive Computing systems claim to be strong Al, but the more extravagant claims
4 appear not too far off.

45 Microsoft is another industry giant who has added Cognitive Computing to their repertoire,
« adding Cognitive Services to their Azure computing platform [6]. These are basically Al services which
«z can be composed into an interactive application. The services include Vision, Knowledge, Language,
s Speech and Search.

40 In a similar vein, Google inc. is heavily involved in commercializing Al, particularly deep
so learning [7], an evolution of neural networks with many hidden layers [8] which are particularly
s1 good at image recognition tasks. Google demonstrated GoogLeNet, the winning application at the
s2 2014 ImageNet Large-Scale Visual Recognition Challenge [9]. It should, however, be pointed out that
ss  Google does not specifically refer to cognitive computing by name.

54 The term Cognitive Computing has been in use since the 1980s, as can be seen in the Google Ngram
ss  Viewer. The early use of the term was associated with a strong growth in neural network research
s following a joint US-Japan conference on Cooperative/Competitive Neural Networks in 1982 [10]. In
sz 1986 the backpropagation algorithm was detailed in the two volume publication: "Parallel distributed
ss processing: Explorations in the microstructure of cognition"[11], which enabled networks to learn
so much richer associations than was previously possible. Neural network modeling became much
so more versatile and accessible to researchers, and resulted in a plethora of new research programs
o1 exploiting the connectionist paradigm.

cognitive computing

Deep Blue

1997 Cognitive Computing

Rumelhart & McClelland
PDP Volumes, 1986

October 1281
Fifth Generation Computer

960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Figure 1. The use of the terms cognitive computing and Cognitive Computing according to Google’s
Ngram Viewer. Several key points in the evoultion of Al are also shown.

62 The advances in neural network computing also helped revive research in related fields such
es as Fuzzy Logic with the emergence of neuro-fuzzy systems which could learn parameters in a
ea fuzzy system, leading to a set of methodologies that could perform imprecise reasoning, or soft
es computing[12]. Finally, the mid-1980s also saw the advent of genetic algorithms which could be used
es to avoid local minima in learning systems[13]. In 1993 the state of the art could be summarized
ez as: "Cognitive computing denotes an emerging family of problem-solving methods that mimic the
es intelligence found in nature" ... "all three core cognitive computing technologies — neural-, fuzzy-
e and genetic-based — derive their generality by interpolating the solutions to problems with which
7 they have not previously been faced from the solutions to ones with which they are familiar."[14]

7 While none of these technologies could decisively meet Searle’s challenge for strong Al, it
72 appeared that some of the research was heading in that direction. For example the claimed biological
73 plausibility of neural networks was used to argue that connectionist models of cognition were
7 more viable than theories based on symbol manipulation [11]. Similarly, neuro-fuzzy systems
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7 were supposed to operate in ways analogous to human cognition. According to Zadeh, "In the
7 final analysis, the role model for soft computing is the human mind."[12]. These technologies
7z offered themselves as the foundation of programs that could indeed mimic human cognition. These
7e sentiments are echoed in current claims that Cognitive Computing systems process information "as
7 humans do".

80 Thirty years earlier Licklider was also contemplating a future with computers capable of human
a1 thought-like behaviour [15], in response to the bold expectations for Al by the U.S. Department
s2 of Defense (DOD). In the early 1960’s, the DOD predicted that machines could take over from
es human operators by the 80’s. But Licklider felt that the emergence of something like strong Al
s« Wwas not imminent, and there would be an interim period of "between 10 and 500 years" in which
ss humans and computers would exist in a symbiotic relationship which would "bring computing
ss machines effectively into the processes of thinking". He argued that for many years computer
ez programs would not be able to mimic human thought processes, but instead work with humans as
ss "dissimilar organisms living together in intimate association"”, enhancing the weaker parts of human
s cognition. Rather than build machines that mimic human reasoning, we should strive to understand
%0 how humans solve problems so that we can design programs that can take over those aspects of
o1 problem solving that are most mundane or difficult. The principles of human cognition must be
o2 well understood even if they can’t be directly replicated, so computer programs can be written with
s precisely the functionality that is needed to enhance human cognition.

0s In this article we argue that the situation has not changed significantly since Licklider’s seminal
os paper. Modern Cognitive Computing still falls short of realizing human-like thought. Section 2.
o6 considers the fundamentals of cognitive computing from the perspective of language processing and
oz argues that the currently fashionable models do not accurately reflect human cognitive processes.
os Section 3. presents related work on human-computer symbiosis. Section 4. develops our notion of
oo a Strong Cognitive Symbiosis and discusses some applications which use these principles. Sections 5.
100 and 6. conclude the paper.

11 2. Cognitive Computing and Cognition

102 While the popular discourse about Cognitive Computing emphasizes the human-like properties,
103 the scientific publications on the inner workings of Watson (perhaps the canonical example) clearly
10s  show the many non human-like aspects of the implementation. For example, during the initial search
15 phase Watson retrieves a large amount of potentially relevant data through a number of different
106 techniques including the use of an inverted index in the Lucene search engine, and SPARQL queries
w7 to retrieve RDF triples from a triplestore[16]. This retrieves a huge volume of potentially relevant
1e  facts which are then further processed, often with statistical techniques. It is very unlikely that human
s reasoning would follow a similar process. Mental processes almost certainly do not use SPARQL.

110 Noam Chomsky at the MIT symposium on "Brains, Minds and Machines" held in May 2011 [17]
11 took modern Al to task, voicing the opinion that the currently popular statistical learning techniques
12 cannot reveal causal principles about the nature of cognition in general, and language in particular.
us  They are simply engineering tools which can perform very useful tasks, but they will not give insight
us into cognitive processes, and do not operate by the same principles.

115 Peter Norvig, a fellow speaker at the symposium and director of research at Google took up the
ue challenge to argue that this is a false dichotomy and that Chomsky’s proposed explanatory variables
1z in linguistic knowledge are a fiction [18]. In his opinion predictive statistical models based on vast
ue quantities of data are simply all there is to natural language cognition. Progress in Linguistics is to
us  be made not by postulating hypothetical causal mental states and testing their consequences through
120 intuition in the form of grammaticality judgment, but by collecting vast quantities of language data
11 and finding statistical models that best fit the data. If Norvig is correct then the current optimism
122 about the possibilities of statistical models for cognitive computing are perhaps justified (and some
123 of Watson’s heuristics could be considered genuinely ‘cognitive’), but if Chomsky is correct, then we
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12 must conclude that Al techniques and human cognition differ fundamentally. In this case we might
125 expect the current approaches to run into difficulties under some circumstances. Our position is that
126 if such differences are inevitable then it would be an advantage to know about them in advance, to
127 design reliable and useful solutions which compensate for the deficits.

128 The fundamental theoretical divide is apparent in Chomsky’s belief in linguistic competence, the
120 tacit, internalized knowledge of language, and performance which is the observable manifestation
130 of the former (speech acts, written texts, etc.). However, performance data is not a pure reflection
11 of competence since linguistic productions are riddled with errors due to attention shifts, memory
132 limitations and environmental factors. Chomsky therefore eschews corpus data as evidence for
133 theory building, preferring instead grammaticality judgments which are elicited in response to
134 sentences constructed to test a certain theory about competence.

135 Norvig defends the use of corpora, while rejecting the use of grammaticality judgment as a form
136 Of linguistic evidence. He claims that elicited judgments do not accurately reflect real language use.
137 He cites the famous example from Chomsky [19] who claims that neither sentence 1 or 2 (or any part
1s  Of the sentences) has ever appeared in the English language, and therefore any statistical model of
130 grammaticalness will rule them as being equally remote from English. Yet it is clear to humans that
190 1. but not 2. is a grammatical sentence of English, proving that grammar is not based on statistics:

11 1. Colourless green ideas sleep furiously.
12 2. Furiously sleep ideas green colourless.

143 Pereira [20] argues to the contrary and shows that modern statistical models of language prove
1es  Chomsky wrong. In fact, 1. is 200,000 times more probable than 2. in a large corpus of newspaper
s text. In his essay Norvig discusses a replication of the experiment on a different corpus "to prove that
s this was not the result of Chomsky’s sentence itself sneaking into newspaper text". The replication
17 corroborates Pereira’s findings. In addition, he finds that both sentences are much less probable
s than a normal grammatical sentence. Thus not only is Chomsky wrong about the statistical facts
140 about 1. and 2., but he is also wrong about the categorical distinction between grammatical and
10 ungrammatical sentences: 1. is more grammatical than 2, but less grammatical than ordinary
11 sentences, according to Norvig.

152 We disagree with these conclusions, and argue that the experiment in fact supports Chomsky’s
153 view. Suppose Norvig’s concerns about the possible proliferation of Chomsky’s sentence in the
15« NEws corpus was in fact true, but it was true about 2. rather than 1. That is, sentence 2. becomes
155 common in text. Perhaps a fundamentalist Chomskian government assumes power in the future
1ss and enforces a rule that every written newspaper text must be headed by Chomsky’s "Furiously
157 sleep ideas green colourless", to remind writers to use only grammatical sentences. Before long, the
158 probability of 2. will exceed that of 1. But will 2. become more grammatical than 1, or will it just
15 become annoyingly omnipresent? We think the latter, in which case the statistical theory would make
10 the wrong prediction. To deny grammaticality judgment as a source of linguistic evidence in favor
161 Of corpora seems mistaken. There must be a principled criterion for what sort of observed strings
162 should be counted as linguistic evidence.

163 One task where statistical methods have excelled is for lexical disambiguation, as summarized
1ee  in [20] "the co-occurrence of the words ‘stocks’, ‘bonds” and ‘bank’ in the same passage is potentially
165 indicative of a financial subject matter, and thus tends to disambiguate those word occurrences,
16 reducing the likelihood that the ‘bank’ is a river bank, that the ‘bonds’ are chemical bonds, or that
167 the ‘stocks’ are an ancient punishment device". Norvig points out that 100% of the top contenders at
1es  the 2010 SemEval-2 completion used statistical techniques. However, the limitations of the approach
160 can be easily demonstrated. Consider the following examples involving the ambiguous word ‘bank’.

170 3. Iwill go to the river bank this afternoon, and have a picnic by the water.
in 4. T will go to the riverside bank this afternoon, and if the line isn’t too long, have a picnic by the
172 nearby water feature.
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173 The word ‘bank’ in sentence 3. is clearly about "the land alongside or sloping down to a river
17a  or lake" (Oxford English Dictionary), while 4. is more difficult to interpret, but appears to be about
15 the “financial” interpretation of ‘bank’. Both 3. and 4. contain words that are likely to co-occur with
176 the ‘sloping land’ interpretation of ‘bank’ (i.e. picnic, water), which makes 4. misleading. But 4.
1z also contains ‘riverside” which is a location, and gives us the clue that bank” must be some sort of
17e  bounded object that has a location property. We suggest that the resolution of ambiguity requires a
170 suitable theory of compositional, structural lexical semantics (e.g.[21]) rather than statistical models.
1.0 That is, some semantic elements like [location] and [physical object] would combine in some suitable
1e1 account of compositional lexical semantics. In fact, even Watson uses a structured lexicon in question
12 analysis and candidate generation[22].

183 We can push the example in sentence 4 a little further, by swapping the word ‘riverside” with
184 Tiver”:

s 5. Iwill go to the river bank this afternoon, and if the line isn’t too long, have a picnic by the water.

1 On first reading this seems odd, but suppose one was given as context that the person who uttered the
17 sentence lived in a city which recently developed the previously neglected riverside into a business
1ee  hub, and several banks were opened. With such knowledge the ‘financial’ reading of ‘bank” becomes
18s  instantly clear, without a change in the a priori statistical distributions. As more people started talking
10 and writing about the river branch of their bank then no doubt over time the statistical facts would
11 come to reflect this usage. Statistical models completely miss the causal explanation for the change in
102 the observed facts. Statistics does not drive interpretation: interpretation drives statistics. The current
103 series of Al success stories primarily involve statistical learning approaches which accomplish their
10s  specific tasks well, but lack the properties fundamental to aspects of semantic interpretation.

105 The semantic shallowness of cognitive computing by statistical learning has recently been
106 illustrated through the construction of adversarial examples. In a paper titled "Intriguing properties
17 of neural networks" [23], the authors show that slight (and hardly perceptible) perturbations in an
10e image can cause it to be misclassified by a deep neural network. The manipulation involves changes
100 in areas of the image that show points of maximum gradient in the trained network. A similar effect
200 was shown in the paper "Deep Text Classification Can be Fooled" [24], where the authors showed
201 that the insertion, modification and removal of hardly perceptible text snippets can cause text to be mis
202 classified. In some cases, the insertion of a single key word can cause the text to be mis classified by
203 a computer but remain correctly classified by the human. These examples show again that statistical
20 techniques can perform semantic classification very accurately (99.9% accuracy before the insertion)
20s without necessarily having representation of a semantics comparable to a human. But the lack of
206 Semantics can also cause them to wildly mis behave. In the following section we review previous
207 ideas about ways in which computers can augment human reasoning without necessarily trying to
208 replicate it.

200 3. Related Work

210 The idea that technology can augment human cognition is an old one, and shared by many
2 technical approaches. The engineering view of human thinking is central to the field of cybernetics,
212 "the science of control and communication, in the animal and the machine" ([25]). The term Intelligence
a3 Amplification has been used in various guises since William Ross Ashby introduced the notion that
=z human intelligence can be "amplified ... synthetically” [26] in his Introduction to Cybernetics.

215 The use of computing devices to enhance human cognitive behaviors is of course a central theme
26 of modern computing. Early attempts to harness the power of computers in this way can be seen in
21z the work of Douglas Engelbart who founded the Augmented Human Intellect Research Center at
ze SRI (Stanford Research Institute) International. He wrote: "The conceptual framework we seek must
210 orient us toward the real possibilities and problems associated with using modern technology to give
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220 direct aid to an individual in comprehending complex situations, isolating the significant factors, and
221 solving problems." [27].

222 While these early pioneers were concerned with how technology could help people solve
223 complex tasks, it was the research field of Human Computer Interaction (HCI) which began directly
224 investigating the interaction between humans and machines. Initially conceived during WWII as
22 Human Factors Engineering, the goal was to discover principles which facilitated the interaction of
22¢ humans and machines, in this case military hardware such as airplanes. As the investigations turned
22z more specifically to human interaction with computing devices, other descriptors emerged to capture
226 the subject matter more accurately: cognitive systems engineering, and Human-Information Interaction
220 (HII) (see [28] for a historical review).

230 Neo-Symbiosis is a new attempt to invigorate Licklider’s notion of symbiosis in today’s
231 environment with our better understanding of cognition and more sophisticated computing
232 resources. The insight of Neo-Symbiosis is that the human-computer interaction shouldn’t be confined
233 to simply augmenting cognitive skills a person already has (e.g. with increased speed, memory,
2.a etc.), but to interact at a fundamental level to affect the reasoning process itself. An example is the
235 visualization of the periodic table of elements conceived by Mendeleev in 1869, which can trigger
23s novel human insight. The Periodic table not only provided a simple display of known data but also
27 pointed out gaps in knowledge that led to discoveries of new elements. It may have taken much
238 longer to discover the gaps if the existing knowledge was coded in a different format [28]. Another
230 example is the humble spelling checker which takes advantage of the computer’s superior ability
2e0  to reliably store and retrieve arbitrary data, in order to monitor any mistakes that a human might
2a1  make in their spelling. Note that the interaction is symbiotic because the human can interact with
22 the spell checker, instructing it to accept the correction, to ignore it, or even to learn a new alternative
2a3 spelling if the person really did want to spell the word in a peculiar new way. These examples show
2as  that the basic principles behind Neo-Symbiosis are not necessarily new. The novelty of the approach
25 is to clarify known psychological principles in sufficient detail to specify functional allocations that
2e6  are best performed by humans or computers. For example, human actions are frequently driven by
2z context, such that a web search with the word "apple" would have a different intention if the person
2es  had previously searched for "orange" than if he had searched for "microsoft”. Computer systems
2e0 could therefore monitor cognitive state to determine intended context, and then use their powerful
20 search capabilities to find relevant resources. As a related example, people often act differently in
=1 different contexts, but they might miss cues (or make mistakes) about the specific context in which
=2 they find themselves. A cognitive assistant could, for example, monitor a chat session in which a
263 person is writing separately to their spouse and their boss, and issue a warning if they wrote an
:s¢ inappropriate message because they were inadvertently writing to the wrong person. [28] provide
25 numerous examples of human cognitive properties and their implications for design of computer
=6 functionality. They base these cognitive properties on various proposals from the psychologist Daniel
27 Kahneman, and therefore their proposals are predicated on a particular theoretical position [29].

258 The IBM corporation’s interpretation of Symbiotic Cognitive Computing is to immerse cognitive
20 computing resources in a physical, interactive environment. They built a Cognitive Environments
200 Laboratory (CEL) to explore how people and cognitive computing implementations work together [30,
261 31]. The CEL approach sees the role of the computer as a "super expert" which interacts with people,
22 Offering advice and information based on superior computational power. In the CEL environment
263 the computer system follows individual users as they move about the environment, seamlessly
26 connecting them to information sources. The system can perform functions like transcribing spoken
265 conversations in order to preserve a recored of the discussion, and augment that with a record of all
26 information that was on displays at the time. This can help decision makers re-trace their steps in
26z case of disputes, for example. The environment can present information on one more of the large
2e number of displays, based on spoken requests by the users. Many sophisticated, interactive 2D
200 and 3D visualizations are available, as well as speech output. CEL is a technologically sophisticated
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270 environment in which researchers can study the interaction of humans and computers with state of
znn the art speech and face recognition technologies.

272 The approach differs from Neo-Symbiosis, where the operations of computer systems are
23 designed to have a deeper integration with cognitive processes, rather than assume the role of
2za  intelligent assistants. The key observation is that Neo-Symbiosis uses specific theories about cognition
25 to construct tools which support cognition at specific points of possible failure, whereas the CEL
276 approach is to provide assistance during tasks which have been observed as difficult in work settings
2z experienced over time. Thus, [31] propose five key principles of symbiotic cognitive computing;:
ze  "context, connection, representation, modularity, and adaption." The principles are derived by
270 "reflecting upon the state of human-computer interaction with intelligent agents and on our own
200 experiences attempting to create effective symbiotic interactions in the CEL" ([31], p.84). Clearly this
2e1  is not a strongly theory driven approach.

282 Similarly, [32] argues that representations are the medium of cognition and are therefore key to
203 supporting symbiosis. While the authors do not provide an implementation, they discuss the MatLab
2es programming competition which used a number of novel artifacts to communicate information about
2es  code snippets submitted by users, and to encourage the reuse of such code by other contestants using
2es  a rewards system. The authors argue that successful outcome was achieved through an symbiosis
27 between the artifacts and the players. However, the role played by the artifacts was simply to enable
2es  discovery and integration of the code snippets, and to provide an incentive mechanism to the players.
200 As a symbiotic system, the MatLab game has a similar grounding, in intuition, as the CEL.

200 One view which presents IBM’s Watson in a light closer to the Neo-Symbiosis view is shared
201 by [33]. They argue that good results from cognitive systems can only come trough a symbiotic
202 relationship where humans take charge of tasks in which the computers are deficient. In the case of
203 Watson, this equates to the selection of the training corpus, which needs to be fine-tuned by humans
204 because Watson cannot automatically infer which body of documents is likely to be relevant to a
205 particular domain of interest. Another consideration is the kinds of data provided. Should the corpus
26 include data catalogs, taxonomies and ontologies, or should the system be expected to discover these
207 on its own? The decisions made by humans at this early stage of machine learning can significantly
208 impact the overall performance of the system. A similar view is held by the CrowdTruth initiative
200 Which argues that semantic annotation should be spread among a large number of naive annotators,
s0 and that human disagreement should form an important input to cognitive learning systems [34]. In
s1  some places John Kelly also hints at this sort of interaction, claiming that computers must at some
;02 stage "... interact naturally with people to extend what either humans or machine could do on their
303 own" [3]

308 A somewhat contrary but bold view of the consequences of Cognitive Computing can be seen
s0s in Dan Briody’s post on IBM’s "thinkLeaders" platform. He foresees a vastly changed business
s environment that has adapted to Cognitive Computing, and predicts that "New ways of thinking,
so7  working and collaborating will invariably lead to cultural and organizational change ..." [35].
s Presumably these new ways of thinking are an adaptation to the human-like but not-quite-human
300 cognitive assistants.

310 We will now describe our approach to cognitive symbiosis which does not rely on developing
su  new ways of thinking but instead, intelligently supports old ways of thinking to achieve new results.

sz 4. Towards a Strong Cognitive Symbiosis

213 The existing approaches to symbiosis stride the divide between two different interpretations
s Of the term. Mirriam Webster defines symbiosis as "the living together in more or less intimate
a5 association or close union of two dissimilar organisms" or "a cooperative relationship (as between
as  two persons or groups)'. WordNet 3.1 gives a stronger interpretation as "the relation between two
a1z different species of organisms that are interdependent; each gains benefits from the other". The key
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Inderal 1 tablet 3 times a day

Lanoxin 1 tablet every AM

Carafate 1 tablet before meals and at bedtime
Zantac 1 tablet every 12 hours (twice a day)
Quinaglute | 1 tablet 4 times a day

Coumadin | 1 tableta day

(a) Prescription suited for a doctor/pharmacist

CAEIRRE:

PIEE|3

22 ) S B R B
Lanoxin v
Inderal VAR
Quinaglute | v |V |V |V
Carafate A RARs
Zantac v v
Coumadin v

(b) Prescription suited for a patient
Figure 2. Two isomorphic views organized for different tasks

se  difference is that the two organisms are dependent on one another in the stronger WordNet definition,
a1s  implying that there are functions that neither could perform without the other.

320 This distinction can be seen as a "symbiosis version" of strong versus weak Al. Association implies
sz only that the machine can communicate and co-operate at a level which is typically restricted to
;22 human-human interaction, whereas interdependence implies that the machine could not operate at
;23 some level without the human interaction. That is, they share some key aspect of computation and
24 representation which allows information exchange at an algorithmic level.

325 We can get a sense of this difference through the following two examples involving information
226 representation in reasoning and decision making. In the book Things that Make Us Smart [36], Don
sz Norman argues that the unaided human mind is "overrated" and much of what it has achieved is
:22  due to the invention of external aids that help overcome intrinsic limitations in memory capacity,
;20 working memory processing, and so on. The information format of these external aids is critical for
;30 assisting particular kinds of reasoning. One example from the work of Ruth Day involves written
a1 notation about prescription drugs and the recommended doses. Figure 2 (a) shows the longhand
sz notation which is natural for prescribing doctors and contains valuable information for pharmacists
33 filling the prescription. However, the format would not be easy for patients who are concerned with
:3a  questions like "what pills should I take at breakfast?" These questions are much better answered by
335 the representation in figure 2 (b). Notice in 2(b) that the medicine names have been re ordered so
136 that they are now grouped according to the time of day to be administered. It seems intuitively
s obvious that the two representations make certain tasks simpler, but there is no attempt to provide an
s explanation of this in terms of precise cognitive processes. Norman does make a distinction between
330 reflexive and experiential thought, but these are not fleshed out in detail in terms of specific cognitive
;a0 algorithms.

241 The second example concerns cognitive illusions, systematic problems of reasoning which result in
sz errors of judgment (see [29] for a comprehensive review). A typical example is base rate neglect, which
s is supposed to show that the human mind lacks specific algorithms for naive Bayesian inference. For
:aa  example, consider the following "mammography" problem (adapted from [37]:
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345 The probability of breast cancer is 1% for a woman at age forty who participates in
346 routine screening. If a woman has breast cancer, the probability is 80% that she will get a
247 positive mammography. If a woman does not have breast cancer, the probability is 9.69%
348 that she will also get a positive mammography. A woman in this age group had a positive
349 mammography in a routine screening. What is the probability that she actually has breast
350 cancer? %
351 The correct answer can be calculated using then common formulation of Bayes’ theorem
2 (equation 1)
p(B|A)p(A)
A|B)="—"7-"" (1)
p(a|B) = 25
353 which in this example evaluates to:
(0.8)(0.01)
A|B)= = 0.078 = 7.8% 2
P(ATB) = (501 (0.80) + (0.99)(0.09) ° @
354 [37] showed that 95 out of 100 physicians estimated the answer to be between 70% and 80%,

35 which is in fact ten times higher than the correct answer. This is an example of base rate neglect, since
ss6  the error in reasoning is consistent with the claim that people ignore the relatively low background
357 probability of having breast cancer (P(A) = 0.01). Thus, the nearly 10% probability of showing a false
e positive reading is quite high given the low background probability of actually having breast cancer,
sse and drastically reduces the true probability that a person with a positive test reading has the illness.
360 However, [38] challenged the prevailing view that such experiments show that humans lack
1 the appropriate cognitive algorithms to solve problems with Bayesian reasoning. Instead, they
32 argue, humans do have the necessary procedures, but they operate with representations that are
ses  incompatible with the formulation of the problems. More specifically in the current example the
ses  problem formulation is in terms of probability formats, whereas the mental algorithms which would
ses  solve such problems operate on frequency formats. By way of analogy, "assume that in an effort to find
ses out whether a system has an algorithm for multiplication, we feed that system Roman numerals. The
ez Observation that the system produces mostly garbage does not entail the conclusion that it lacks an
see  algorithm for multiplication. We now apply this argument to Bayesian inference."

369 Their general argument is that mathematically equivalent representations of information entail
s algorithms that are not necessarily computationally equivalent. Using this reasoning they performed
s experiments in which the representational format was manipulated, and showed significant increases
sz in answers corresponding to the Bayesian outcome. Consider the following, frequentist version of the
a3 previous problem.

374 10 out of every 1,000 women at age forty who participate in routine screening

375 have breast cancer. 8 of every 10 women with breast cancer will get a positive

376 mammography. 95 out of every 990 women without breast cancer will also get a positive

377 mammography. Here is a new representative sample of women at age forty who got a

378 positive mammography in routine screening. How many of these women do you expect

379 to actually have breast cancer? out of

380 The researchers conducted several experiments and showed dramatic improvements in

se1  performance when the problem was presented in frequentist format. When presented in this format it
sz is hard to ignore the large number of women (95) that will test positive even though they do not have
;a3 breast cancer. The reasonable conclusion is that "Cognitive algorithms, Bayesian or otherwise, cannot
ses  be divorced from the information on which they operate and how that information is represented”,
ses  and this has a profound lesson for educators "... to teach representations instead of rules, that is,
ses  to teach people how to translate probabilities into frequency representations rather than how to
se7  insert probabilities into equations ..." and tutoring systems "... that enhance the idea of frequency
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;s representations with instruction, explanation, and visual aids hold out the promise of still greater
380 success.”

390 These concluding comments support the strong notion of cognitive symbiosis. Our suggestion
301 is that key interactions in the symbiotic system can be regarded as a hypothesis about cognitive
sz functioning used to solve tasks. This hypothesis then determines the most useful information for
303 assisting the problem solution. In other words, the information exchanged between the human
3¢ and computer in an effort to solve a problem are predicated on a hypothesis about what kind of
s0s  cognitive algorithm will be used to solve the problem, and precisely what form of information and
s0s representation the algorithm requires.

307 Our vision of cognitive symbiosis is derivative of this approach. We assert that current
ss approaches to Al are not sufficient to emulate the full range of human cognitive abilities, even though
390 they do manage to perform some cognitive tasks at a level comparable to humans (e.g. [39]). However
a0 these successes are limited to very narrow domains and there are barriers which prevent similar
a1 success in others. This, in turn, implies that Al will be limited within the foreseeable future, just as
a2 it was in Licklider’s time. Our suggestion is to adopt a strong view of cognitive symbiotic systems
203 engineering in which the goal is to produce software systems whose interactions with people are
204 optimized to tightly engage with empirically identified weaknesses in human as well as machine
a5 cognition.

a06 Our concrete work on cognitive symbiotic systems has focused on applications which use
207 predominantly natural language. In the area of natural language processing (NLP) and machine
«0s learning, semantic interpretation, or symbol grounding [40] pose one of the most difficult problems
a0 [34]. Two common NLP tasks which depend on semantic interpretation and therefore prove
a0 particularly difficult are keyphrase/term/word extraction and lexical disambiguation [41,42]. Yet
a1 these are tasks on which humans excel. Regarding lexical ambiguity, people are so efficient
a1z that they are typically unaware of alternative interpretations of ambiguous words and sentences
a3 [43]. The psycholinguist David Swinney has studied the time course of ambiguity resolution in
a4 sentence comprehension using the cross modal priming paradigm, His experiments have shown that
a5 humans can automatically resolve lexical ambiguity within three syllables of the presentation of the
ae  disambiguating information [44].

a17 On the other hand humans are poor, but computers much more capable of storing and retrieving
as  information. Jonides argues that memory is an essential component of thinking, and shows evidence
a0 that individual variations in working memory capacity correlate with performance on various
a20 reasoning tasks [45]. Limitations in working memory capacity result in deficiencies in reasoning.
+z2 Minimizing the need to burden working memory ought to improve thinking.

a2 The symbiotic applications we now describe were developed to exploit the human capacity for
a3 keyword selection and disambiguation, and combine it with the computer’s capabilities to store,
s2¢ retrieve and discover vast amounts of text related to specific keyword indexes. We present this as an
«2s  example of strong symbiosis, since each actor contributes to the result according to their respective
a26 cognitive strengths, and neither would be able to perform as accurately on their own.

427 LexiTags [46,47] is a social semantic bookmarking service in which users can save URLs of interest
a2s and annotate them with disambiguated tags that are either WordNet senses or DBPedia identifiers.
a20 The service is very similar to http:/ /delicious.com where users assign personal keywords called tags
a0 to web sites of interest, and the service stores the URL together with the set of tags. The tags can then
a1 be used to refind the web sites. The additional step in LexiTags is that users have to disambiguate
a2 their tags by selecting one of the unambiguous choices offered through the user interface. We call
a3 this semantic tagging. Semantic tagging therefore assigns unambiguous, user specific key topics
a3 to documents and other web resources. While sophisticated statistical algorithms exist for topic
a5 analysis (e.g.[48]), the problem of allocating personalized, contextually significant topic(s) or tags
a6 to documents is more difficult because it relies on the subjective goals and beliefs of the reader [41].
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a37 In return for the additional step to disambiguate semantic tags, the user receives a range
as  of benefits not available in traditional bookmarking services. Semantic tags facilitate accurate
430 classification of the resource. This in turn makes it possible to identify other resources which are
w0 semantically related by precise relations such as taxonomy, meronymy, derivational relatedness,
a1 entailment or antonymy [49]. In addition, word embeddings can be used to identify statistically related
sz semantic concepts [50]. Word embeddings can be made more precise and useful if disambiguation
«3  information is available. For example [51] forms ultradense representations with AutoExtend by
aas  using WordNet synsets and lexemes to create orthogonal transforms of standard word embeddings.
ass To illustrate, Table 1 shows related words for the non disambiguated tag suit using word2vec, the
as state of the art tool for word embedding [52]. The related words indicate that at least two distinct
4z senses have been confounded, the noun suit (of clothes) and the verb to suit(his needs). The table also
ass  shows related words for these two disambiguated senses as encoded in AutoExtend, as well as the
a0 additional noun sense lawsuit. Clearly, recommendations of related items can be more accurate and
ss0  varied when semantic tags are used. For example, the semantically disambiguated tag suit#clothes
a1 could recommend resources tagged with a rich set of the relevant tags attire, garment, trousers, shirt,
a2 tuxedo, tux, pinstripe, and not the more impoverished and mixed set from word2vec.

Table 1. Ambiguous and disambiguated words and semantically similar words based on word2vec

and AutoExtend.
Word ‘ word2vec ‘ AutoExtend
suit suits, tailor, adapt, customize,
conform, accommodate, tailored,
meet, dress, cater
suit#clothes suit-of-clothes, attire, zoot-suit,
garment, dress, trousers,
pinstripe,shirt, tuxedo,
gabardine, tux, pinstripe,
costume, mumu
suit#faccomodate meet, cater, adapt, provide, fit,
oblige, satisfy
suit#lawsuit lawsuit, countersuit,
counterclaim, sue, violation,
grievance, patent infringement,
punitive damages, injunction
453 A second, related tool shows how disambiguated lexical tags can be used to perform a metadata

asa  reasoning task which might otherwise be very difficult. MaDaME[53] is a web application for
a5 developers who wish to mark up their sites with the http://schema.org classes and properties.
ass  Schema.org is an effort originally proposed by a consortium of search engine providers to promote
457 schemas for structured data on the Internet, on web pages, and in email messages. The tool allows
ass  users to highlight key words in their web site, and disambiguate them by selecting a sense from
«so WordNet or DBPedia with a similar interface as LexiTags. The tool then automatically infers the most
a0 appropriate schema.org concepts and generates markup that adds schema.org as well as WordNet
s2  and SUMO identifiers to the HTML web page. The inference is currently performed via a mapping
sz between WordNet synsets and schema.org classes; a tree search algorithm identifies the closest match
a3 between user selected synsets and the existing mappings. We are currently looking into replacing the
asa  classic search algorithm with one based on statistical methods.

a65 While Strong Cognitive Symbiosis is a new design principle pioneered in this publication,
w6 elements of the approach can be gleaned in other applications. For example [54] discuss visual
a7 analytic decision-making environments for large-scale time-evolving graphs. These pose difficulties
ass  for decision making because they describe phenomena where large volumes of inter related data are
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w0 evolving in complex patterns. Current visualization techniques do not offer a solution for decision
a0 making with such complex data. The authors argue that designing decision-making environments
ann for such complex tasks require systems which "work in symbiosis with humans" (p.85). These
a2 would require an understanding of human thought processes and incorporate those processes into
a3 the computational model to reduce human burden. To this end they propose three HCI principles
a7z« for human-machine interaction in visual analytics regarding: (i)Data and view specifications, (ii) View
azs  manipulations, and (iii) Process and provenance. These principles essentially prescribe that graph
are  browsing interfaces should allow users to select and navigate graph structures according to their
a7 specific needs and goals, and to retain traceability of states. In order to react to user requests with
a7s  time-evolving graphs, the application has to solve some difficult computational problems in terms of
a7 data management, analytics and graph visualization. However, the computational problems almost
a0 exclusively involve formal properties of the graphs themselves rather than the way a human might
a1 process those graphs. For example, summarizing graphs involves the calculation of node-edge
w2 properties such as journey, density, eccentricity, diameter, radius, modularity, conductance, reachability,
a3 and centrality measures. Special techniques are needed for analysis, summary, and visualization of
ssa evolving graphs in which these formal properties are subject to change. The symbiotic aspect of
ses the application is that the visualizations and summaries must be comprehensible for humans, and
sss humans must be able to manipulate those representations to answer their questions.

sz 5. Discussion

ass The rise in the awareness of Artificial Intelligence in public consciousness has been phenomenal
a0 in the past few years. Many leading technology companies have declared that "it’s superior AI" are
a0 key to its continued success: Amazon, Google, Apple [55-57]. Russia’s president Vladimir Putin has
401 publicly declared that whoever masters Al will "rule the world" [58].

a02 Together with this awareness have come warnings from prominent scientific and business
a3 figures about the dangers of an Al which becomes more powerful than the human mind. The so-called
04 singularity has profound warnings about what can happen if humans lose control of the machines
a5 [59-61].

a96 We think that fears of singularity are overstated. While we are suitably impressed with recent
a7 progress in image recognition, text processing, and so on, we are also acutely aware of remaining
w8 limitations. A technology which has difficulties with resolving lexical ambiguity, it seems to us, does
ass not appear to be on the verge of attaining human-level cognition in the immediate future.

500 The biggest question of practical and commercial interest, then, is how to best use our human
so.  knowledge of statistical learning systems and Al in general, to construct computing platforms and
so2 information systems that can help humans perform complex cognitive tasks. What is the best way
so3  to benefit from Cognitive Computing?. A preconception that machines can perform tasks "just like
ses  humans" is counter productive if it is not true, because it sets up an industry expectation that cannot
sos be fulfilled and might stifle alternative approaches. For example if company A markets a fully
sos automatic cognitive solution for managing unstructured data, then a competing company B will
so7 have a hard time developing a semi automated, symbiotic solution to the same problem, even if the
sos  symbiotic solution would prove more effective. In this paper we have argued that the preconception
soo 1is in fact, not true. Computers are still very far from thinking like humans. It is therefore time to
s10  take a step back, and focus on systems which use modern Al techniques to realize a strong symbiotic
su relation between human and machine.

s12 We acknowledge that Strong Cognitive Symbiosis is difficult to achieve because it requires a
s13  design in which the operation of the machine and human can interact at a deep algorithmic level.
s1a  This is not typical of modern Al systems, especially those constructed around neural network or
sis  deep-learning frameworks. Such programs typically learn end-to-end generalizations from large
sie  data sets, and the focus is the input-output mappings they can learn. In the rare cases where an
si7  intervention is made at an algorithmic level, it is to the detriment of the result [23,24]. However, there
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sie  is an emerging approach which is highly compatible with our suggestions, Neural-Symbolic Learning
sie  and Reasoning [62]. The goal of neural-symbolic computation is to integrate neural network learning
s20 and symbolic reasoning, for example by extracting logical expressions from trained neural networks,
sz Or using an independent feature space to enable heterogeneous transfer learning. The latter example
s22 is particularly interesting. [63] show how it is possible to train a network on an image clustering
s2s task where the training data is from a feature set that is different from the test set. In essence, they
s2« Use an independent set of invariant image features derived from local image descriptors [64], to
s2s mediate between the training and test set. The technique works by computing co occurrence matrices
s2s between the invariant features F and an image space A, and between the features F and a second,
s27  text labeled image space W. Finally, [63] show a transfer of learning from text space W to image
s22  space A. The intriguing possibility for a strong symbiosis perspective is to use a similar technique in
s20 a domain where the invariant features are tuned through close interaction between human users and
ss.0 the computer, to obtain the best results for each individual user.

a1 6. Conclusions

532 In conclusion we propose that, recent advances in deep neural network technology
ss3  notwithstanding, we are no closer to predicting the arrival of "real" Artificial Intelligence than
ss  Licklider was 50 years ago. We are still in that interim period of "between 10 and 500 years". In this
sss  paper we argued that the false belief that we are in fact close to constructing computers with genuine
s, cognitive abilities is disingenuous, for it diverts efforts away from investigating strong symbiotic
s37  systems which are constructed around their inherent but well understood cognitive limitations. We
ss.s need to develop a principled framework which incorporates the shared and equal contribution of
s cognitive theories and technical solutions in programming smart machines, and not oversell short
se0 term, domain restricted engineering successes. Strong Cognitive Symbiosis is an attempt at such a
s framework.
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sas  Abbreviations

sasa The following abbreviations are used in this manuscript:

sas  IEEE: Institute of Electrical and Electronics Engineers
saz Al Artificial Intelligence

sas  IBM: International Business Machines

sas  SPARQL: SPARQL Protocol and RDF Query Language
sso RDF: Resource Description Framework

ss1  MIT: Massachusetts Institute of Technology

ss2 HCL: Human Computer Interaction

sss  CEL: Cognitive Environments Laboratory

ssa SUMO: Suggested Upper Merged Ontology

sss  HTML: Hypertext Markup Language
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