

1 Article

2 **Impact of Grid Nudging Parameters on**
3 **Dynamical Downscaling during Summer over**
4 **Chinese Mainland**

5 **Xiaoping Mai¹, Yuanyuan Ma¹, Yi Yang^{1*}, Deqin Li² and Xiaobin Qiu³**

6 ¹ Key Laboratory of Arid Climatic Changing and Reducing Disaster of Gansu Province, College of
7 Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China

8 ² Shenyang Atmospheric Environment Research Institute, China Meteorological Administration,
9 Shenyang 110016, China

10 ³ Tianjin Institute of Meteorological Science, Tianjin 300074, China

11 * Correspondence: yangyi@lzu.edu.cn; Tel.: +86-138-9325-6933

12 **Abstract:** The grid nudging technique is often used in regional climate dynamical
13 downscaling to make the simulated large-scale fields consistent with the driving fields. In this
14 study, we focused on two specific questions about grid nudging: (1) which nudged variable
15 had a larger impact on the downscaling results and (2) what was the “optimal” grid nudging
16 strategy for each nudged variable to achieve better downscaling result during summer over
17 the Chinese mainland. To solve this queries, 41 3-month long simulations for the summer of
18 2009 and 2010 were performed using the Weather Research and Forecasting model (WRF) to
19 downscale National Centers for Environmental Prediction (NCEP) Final Operational Global
20 Analysis (FNL) data to a 30-km horizontal resolution. The results showed that nudging
21 horizontal wind or temperature had significant influence on the simulation of almost all
22 conventional meteorological elements; nudging water vapor mainly affected the
23 precipitation, humidity, and 500 hPa temperature. Moreover, the optimum nudging scheme
24 varied with simulated regions and layers. As a whole, the optimal nudging time was one hour
25 or three hours for nudging wind, three hours for nudging temperature, and one hour for
26 nudging water vapor. The optimal nudged level was above the planetary boundary layer for
27 almost every nudged variable.

28 **Keywords:** grid nudging; downscaling; WRF; nudged variable; nudging time; nudged level

29

30 **1. Introduction**

31 Due to low temporal-spatial resolutions, global climate models (GCMs) and reanalysis
32 data cannot often meet the requirements for the analysis of regional scale information [1–4]. To
33 obtain regional meteorological and climate datasets with a high temporal-spatial resolution,
34 downscaling is usually conducted. Popular downscaling methods include statistical
35 downscaling and dynamic downscaling [5–8]. The former is based on statistical relationships
36 between large- and fine-scale climate information to obtain regional or local atmospheric
37 structures, while the latter nests a regional fine-grid model to GCMs or reanalysis data. The
38 statistical downscaling needs to have enough observation data to establish a statistical model,
39 and is invalid in regions where large-scale climate elements are not correlated with regional
40 climate elements. On one hand, the dynamical downscaling process is forced by the large-scale
41 fields, such as GCMs or reanalysis data. On the other hand, it uses regional climate models

42 (RCMs) to add more detailed descriptions of physical processes, topography, and land
43 coverage of a regional scale.

44 The results of dynamic downscaling are influenced by many factors. These factors may be
45 classified into two categories. The first is the defect of physical processes in RCMs, including
46 cloud microphysical processes, land-atmosphere interaction, cumulus convection process [9],
47 etc.; the second is the choice of initial conditions, boundary conditions, and simulated domains
48 [2]. Due to the influence of the above-mentioned factors, dynamic downscaling contains errors
49 and uncertainties, which accumulate for the integration of RCMs continuously, and make the
50 results of dynamic downscaling gradually deviate from the driving large-scale field.
51 Newtonian relaxation or nudging is a good method to solve this problem as it can effectively
52 assure the dynamic consistency between the simulated large-scale field and the driving field
53 [2,10–13].

54 Developed initially for data assimilation, nudging techniques are being increasingly used
55 in regional climate dynamical downscaling. The concrete method is to increase external forcing
56 in one or a few prediction equations in a period of time before the start of prediction, which
57 makes the model solution approximate to the observation data and realizes dynamic
58 coordination among variables to raise the prediction effect of the model and achieve the
59 purpose of assimilation. The Weather Research and Forecasting (WRF) model is a new-
60 generation meso-scale numerical prediction system jointly developed by the National Center
61 for Atmospheric Research (NCAR) and the National Centers for Environmental Prediction
62 (NCEP) in the United States, etc. In recent years, it has been widely used as a regional climate
63 model to achieve downscaling analysis [10,14,15]. Currently, the nudging assimilation methods
64 of the WRF model applied in the dynamic downscaling process mainly include grid nudging
65 [16] and spectral nudging [11]. The parameters affecting grid nudging simulation results
66 mainly include the choice of nudged variables and nudging time, whether nudging is used in
67 all atmosphere layers, etc.

68 Recently, research on the nudging application and comparison of two nudging schemes
69 (grid nudging and spectral nudging) has been very common [17–23]; however, a consistent
70 conclusion is still lacking. Logically, spectral nudging is superior to grid nudging [24], but
71 many findings [17,22,23] have shown that in some cases, grid nudging is better than spectral
72 nudging. However, the two methods nudge different variables: the default nudged variables
73 of grid nudging in WRF are horizontal wind, potential temperature, and water vapor mixing
74 ratio; and spectral nudging nudges geopotential height instead of humidity. To compare these
75 simply is difficult and insufficiently comprehensive. it should be first considered that the
76 influence of different nudged variables on the simulated meteorological elements and how to
77 select the nudged variables to achieve a better simulation. Few studies have focused on this
78 issue. Pohl and Crefat et al. [25] explored the impact of nudged variables on the simulation of
79 tropical deep atmospheric convection in the WRF model, and discovered nudging temperature
80 was the most efficient way to reduce bias, that nudging horizontal wind increased the
81 covariance between simulations and daily observations, while the model's internal variability
82 was drastically reduced and relied heavily on nudged variables and nudging time. Omrani et
83 al. [26] used “Big-Brother experiment” to inspect the influence of nudged variables on regional
84 model downscaling under ideal conditions and discovered nudging tropospheric horizontal
85 wind was the most effective way to improve simulations of surface temperature, wind, and
86 precipitation. Moreover nudging tropospheric temperature also had certain positive effect.
87 Nudging tropospheric wind or temperature could directly improve the simulation of
88 geopotential height field; while nudging water vapor improved the simulation of precipitation
89 but did not obviously improve other variables. However, the above-mentioned researches only
90 paid attention to tropical zones, or were based on an ideal test. To consider the impact of

91 nudged variables on dynamical downscaling over the Chinese mainland, further research is
92 needed.

93 In addition, grid nudging is sensitive to nudging parameters [18]. However, most research
94 [10,21,27] have still adopted the default nudging schemes, only a few References
95 [10,13,17,18,25,29] have discussed the sensitivity of nudging time and nudged layer. For
96 nudging time, Salameh [13] used a toy model, verified the significant impact of nudging time
97 on regional climate simulation, and predicted the existence of the optimum nudging time that
98 could more effectively resolve small-scale processes not described in GCMs. Bullock et al. [18]
99 applied the nudging method in the WRF model and indicated that an appropriate setting of
100 nudging time could effectively improve the simulation of surface temperature and wind speed.
101 Bowden et al. [17] compared the influence of nudging time on the simulations of meteorological
102 elements and discovered that an increase in nudging time increased variability, but with
103 greater bias. Furthermore, the study put forth the demand for choosing nudging strategy to
104 balance the accuracy and variability of the simulation results. Current researche only states the
105 change in nudging time will affect simulation results, while only a few studies which nudging
106 time was more suitable for the simulation of a specific region and variable. For the nudged
107 layer, Lo et al. [10] used WRF with a grid spacing of 36 km over the conterminous U.S. to
108 compare the nudging throughout the whole atmospheric column to the nudging above the
109 planetary boundary layer (PBL) when downscaling the NCEP Final Operational Global
110 Analysis (FNL) data. Results indicated the two nudging experiments result in much difference
111 in simulated precipitation, nudging above the PBL performed better than nudging all layers.
112 Pohl and Cretat et al. [25] also pointed out that this was less true below the PBL, more
113 turbulent by nature and where the relaxation should be switched off. However, whether there
114 is a more appropriate nudged level or not is still an issue that is yet been discussed. Against
115 this background, this work focus on selecting an optimum nudging scheme according to
116 practical simulation demand.

117 Meanwhile, under the background of vast territory and special climate of the Chinese
118 mainland, how to better set nudging parameters to improve the downscaling results of RCMs
119 has become an important issue. Considering the applicability of analysis data varies with area,
120 this may result in variant optimum nudging schemes in different areas, so discussing a set of
121 nudging parameters by area is more appropriate. For the simulated season, the summer is a
122 disaster-prone season, and there is a lot of uncertainty for the research of summer. Thus the
123 summer for study is selected. In this study, 41 sensitivity experiments with a grid spacing of 30
124 km over conterminous China were conducted to investigate the performance of grid nudging
125 with different nudging parameters (nudged variables, layers, and nudging time) during
126 summer when downscaling 1-degree FNL data using the WRF model. It is expected that, by
127 sensitivity analysis to the nudging parameters, reference nudging schemes would be obtained.

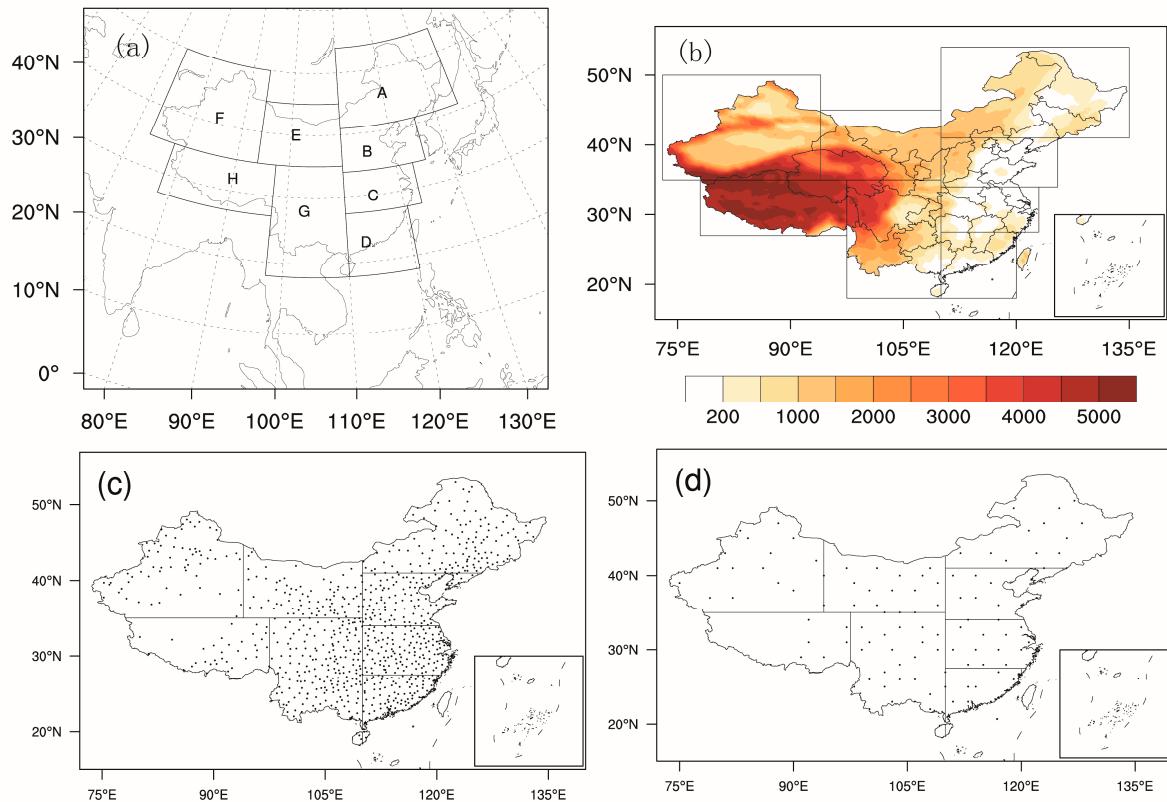
128 This paper is arranged as follows. Section 2 describes grid nudging, the experimental set-
129 up, evaluation data, and methods. Section 3 investigates the sensitivity of the nudged variables,
130 layers, and nudging time, and provides referential nudging schemes, with further verification
131 of the universality of referential nudging schemes. Finally, the discussion and conclusions are
132 presented in Section 4.

133 2. Data and Methods

134 2.1 Grid Nudging

135 This study used the nudging technique introduced by Hoke and Anthest [29], which is
136 based on an empirical 4D data assimilation method. The core approach is to relax the model
137 state towards the observation by adding a non-physical term to one or a few prediction

138 equations. This nudging term is proportional to the difference between the prediction and the
139 observation. In WRF, the popular nudging methods used for dynamic downscaling include
140 grid nudging and spectral nudging. For grid nudging, each grid-point is nudged towards a
141 value that is time-interpolated from analyses. Spectral nudging only drives the RCM on selected
142 spatial scales, and allows model small scales to evolve with no nudging.


143 In our work, the grid nudging method was adopted. As discussed in Stauffer and Seaman
144 [30], this grid nudging technique was implemented through an extra tendency term in the
145 nudged variable's equations, e.g.

$$\frac{\partial p^* \alpha}{\partial t} = F(a, x, t) + G_\alpha W(x, t) \epsilon(x) p^*(\hat{\alpha}_0 - \alpha), \quad (1)$$

146 $p^* \alpha$ is the flux form of variable α , where $p^* = p_s - p_t$, p_s is the surface pressure and p_t is the
147 constant pressure at the top of the model. $F(a, x, t)$ represents the physical forcing terms, where
148 x is the independent spatial variable and t is time. G_α is a timescale controlling the nudging
149 strength applied to variable α ($G_\alpha = 1/t'$, t' is the nudging timescale, unit: s). Furthermore, W
150 specifies the horizontal, vertical, and time weighting, where $W = w_{xy} w_\sigma w_t$. The analysis
151 quality factor, ϵ , which ranged between 0 and 1, was based on the quality and distribution of
152 the data used to produce the gridded analysis. $\hat{\alpha}_0$ denotes the observation analyzed to the grid
153 and interpolated linearly in time to t . In WRF, α can be the zonal and meridian wind
154 components (uv), the potential temperature (θ), or the water vapor mixing ratio (q). **Various**
155 **nudged variables adjust corresponding variables with Equation (1) in each grid-point of WRF.**
156 **Through the constraint of model internal equations, other meteorological fields were updated**
157 **simultaneously.** Nudging strength, also known as the nudging coefficient, was controlled by
158 the relaxation time, and the smaller the nudging time t' , the stronger the nudging strength and
159 the closer the RCM analysis field α to the observation field $\hat{\alpha}_0$. Nudged layers decide which
160 height the nudging technique is applied.

161 2.2 Experimental Setup

162 The model used in this study was the 3.6.1 version of the WRF (ARW) model. The
163 simulation was performed over a large domain covering East Asia (Figure 1a) with 260×220
164 horizontal grid points with a 30 km single grid and 28 vertical levels. The model top was at 10
165 hPa, and the integration time step was set to 150 s. The main physical options included the
166 WRF double moment 6-class microphysical parameterization [31], the CAM longwave and
167 shortwave radiation [32], the unified Noah land surface model [33], the Kain-Fritsch convective
168 parameterization [34], the Yonsei University planetary boundary layer scheme [35], and the
169 Community Land Model version 4.5 lake scheme [36,37]. The experiments used the grid
170 nudging method and assimilated NCEP FNL data with a 6 h interval between analysis times.
171 The relaxation variables included uv, θ , and q. The $1^\circ \times 1^\circ$ FNL data also provided initial and
172 boundary fields for the model. The boundary conditions and SST data were updated every 6
173 h. The model was integrated from 22 May–1 September, 2009 and 2010, respectively. As per
174 Tang et al. [38] and Lo et al. [10], the initial 10 days were considered as a spin-up period, so
175 only results from 1 June – 1 September were used in the analysis. The simulation results in 2010
176 were used for analysis, and the simulation results in 2009 were used to verify the universality
177 of the referential nudging schemes obtained prior.

178

179 **Figure 1.** (a) simulated domain and sub-regions map (A: Northeast China, B: North China, C:
180 East China, D: South China, E: East of Northwest China, F: West of Northwest China, G:
181 Southwest China, H: Tibet); (b) simulated topography (m); (c) the location of ground stations;
182 (d) the location of sounding stations.

183 From the research of Pohl et al. [25] and Omrani et al. [26], each nudged variable did not
184 have equally important role in the simulated meteorological fields, and even the nudging of
185 some variables did not work or produced a negative effect. Thus, this study basically start with
186 single variable nudged. In this study, a set of 41 simulations was performed for summer 2009
187 and 2010, including non-nudging experiments (also known as traditional downscaling
188 experiments (CTL)) and nudging experiments with varying single nudged variables (uv, θ , and
189 q), nudging time (1 h, 3 h, 6 h, 12 h, and 24 h), and nudged levels (above the planetary boundary
190 layer, above 850 hPa, above 700 hPa, and above 500 hPa) as shown in Table 1. Among them,
191 nudging time changed with modification to the nudging coefficient. The nudging time of 1 h,
192 3 h, 6 h, 12 h, 18 h was approximately equal to the nudging coefficient of 3×10^{-4} , 1×10^{-4} , 5×10^{-5} ,
193 2.5×10^{-5} , and 1.7×10^{-5} , respectively. Nudged level was changed by the adjustment of the model
194 level below which nudging was switched off, and the layers of 850 hPa, 700 hPa, and 500 hPa
195 were approximately equal to the model level of 7, 10, and 13, respectively. Groups 1 and 2 were
196 performed for summer 2009 and 2010, and Group 3 was performed for summer of 2010.
197 Following Lo et al.[10], nudging of all layers was not considered and nudging above the PBL
198 was treated as the default nudged layer.

199 First, the influence of nudged variables on simulation of meteorological elements near the
200 surface (precipitation, 2 m temperature, 2 m relative humidity, and 10 m wind speed) and at
201 500 hPa (temperature, wind speed, geopotential height, and relative humidity) is analyzed,
202 under conditions that nudging time was 1 h and nudged levels were above the PBL. Next,
203 different nudging time and nudged levels were performed to discuss the sensitivity to nudging

204 settings for simulated meteorological elements near the surface and at sounding standard
 205 layers (1000, 925, 850, 700, 500, 400, 300, 250, 200, 150, and 100 hPa).

206 *2.3 Evaluation Data and Methods*

207 To evaluate the impact of nudged variables, the difference of simulated meteorological
 208 elements between nudging experiments and CTL was compared here. Considering that
 209 different circulation, climate, and terrain characteristics and the inconsistent applicability of
 210 the analysis data in different regions may affect nudging performance, the Chinese mainland
 211 is divided into eight sub-regions (as per the regional division of Zhao et al. [39]) to obtain more
 212 representative regional results, as shown in Figure 1a. A-H stands for Northeast China, North
 213 China, East China, South China, East of Northwest China, West of Northwest China, Southwest
 214 China, and Tibet, respectively. Figure 1b shows the topography over the Chinese mainland.

215 **Table 1.** Experiment design (PBL denotes planetary boundary layer, uv denotes horizontal
 216 wind, θ denotes potential temperature, and q is the water vapor mixing ratio. Groups 1 and 2
 217 were performed in summer 2009 and 2010, and Group 3 was performed in summer 2010).

Group	Name	Nudged variable	Nudging time t'	Nudged level
1	CTL	—	—	—
	uv1	uv	1 h	Above the PBL
	t1	θ	1 h	Above the PBL
	q1	q	1 h	Above the PBL
2	uv3	uv	3 h	Above the PBL
	t3	θ	3 h	Above the PBL
	q3	q	3 h	Above the PBL
	uv6	uv	6 h	Above the PBL
	t6	θ	6 h	Above the PBL
	q6	q	6 h	Above the PBL
	uv12	uv	12 h	Above the PBL
	t12	θ	12 h	Above the PBL
	q12	q	12 h	Above the PBL
	uv18	uv	18 h	Above the PBL
3	t18	θ	18 h	Above the PBL
	q18	q	18 h	Above the PBL
	uv_850	uv	1 h	Above 850 hPa
	t_850	θ	1 h	Above 850 hPa
	q_850	q	1 h	Above 850 hPa
	uv_700	uv	1 h	Above 700 hPa
	t_700	θ	1 h	Above 700 hPa
	q_700	q	1 h	Above 700 hPa
	uv_500	uv	1 h	Above 500 hPa
	t_500	θ	1 h	Above 500 hPa
	q_500	q	1 h	Above 500 hPa

219 As there was no available grid data except precipitation, and the Precipitation Grid Data
 220 Set of China Automatic Station and CMORPH (provided by China Meteorological Data Service
 221 Center website) were very close to the station data. The daily mean meteorological observation
 222 data of 838 ground observation stations and the twice daily standard layers detection data of
 223 129 sounding observation stations from the Chinese mainland (provided by China
 224 Meteorological Data Service Center website) were used to evaluate the effects of different
 225 nudging time and nudged levels. The number of ground stations available for A-H was 124,
 226 111, 132, 105, 78, 67, 187, and 34, respectively. The number of sounding stations for each area
 227 was 21, 11, 13, 13, 18, 17, 28, and 8. The location of observation stations is shown in Figure 1c
 228 and Figure 1d. The main evaluation methods were to interpolate simulation results onto the
 229 observation stations, and to quantify the ability of the model to simulate meteorological fields
 230 by using root mean square error (RMSE), mean error (ME), and correlation coefficient (CC).
 231 Considering the comparison of the overall simulations of different meteorological elements,
 232 the mean improvement rate (RATE) based on RMSE is defined here. The definitions of relevant
 233 statistical variables are as follows:

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^N (m_i - o_i)^2}, \quad (2)$$

$$ME = \frac{1}{N} \sum_{i=1}^N (m_i - o_i), \quad (3)$$

$$CC = \frac{\frac{1}{N-1} [\sum_{i=1}^N ((m_i - \bar{m})(o_i - \bar{o}))]}{[\frac{1}{N-1} [\sum_{i=1}^N (m_i - \bar{m})^2]]^{1/2} \cdot [\frac{1}{N-1} [\sum_{i=1}^N (o_i - \bar{o})^2]]^{1/2}}, \quad (4)$$

$$RATE = \frac{1}{nx} \sum_{i=1}^{nx} \frac{CRMSE_i - NRMSE_i}{CRMSE_i} * 100\%, \quad (5)$$

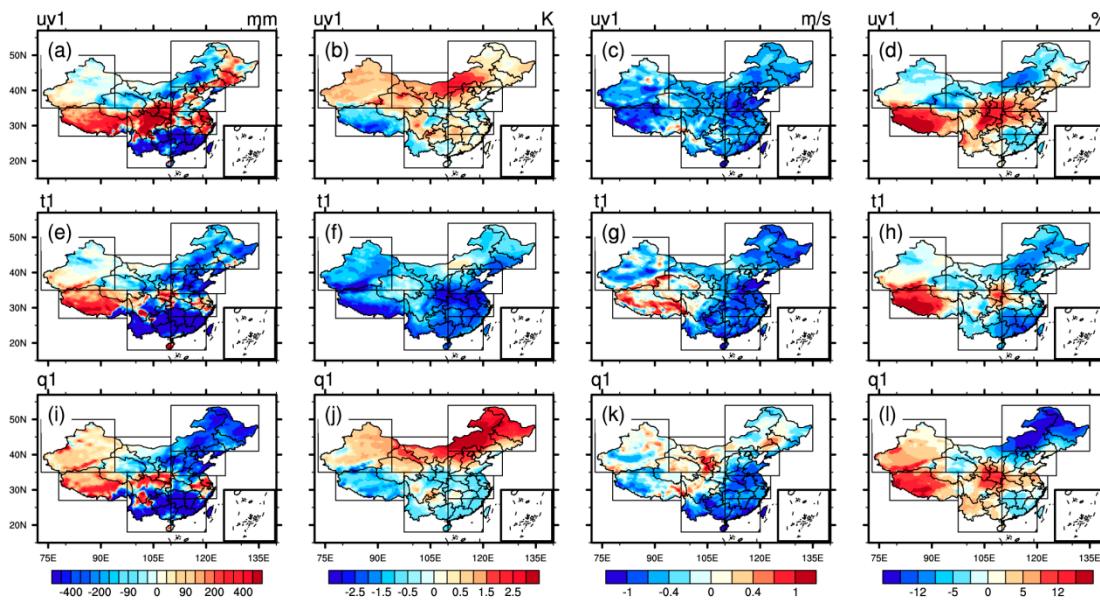
234 where N is the time sample size; m_i is the regional mean of the simulations at time point i; o_i
 235 is the regional mean of the observations at time point i; \bar{m} and \bar{o} are time means of m_i and o_i ,
 236 respectively; nx is the number of variables; CRMSE is the RMSE of CTL, and NRMSE is the
 237 RMSE of the nudging experiment.

238 The RATE, which is a dimensionless amount, can be used to evaluate multivariable
 239 simulation results. The calculation of RATE for simulated meteorological elements near the
 240 surface included precipitation, 2 m temperature, 2 m relative humidity, and 10 m wind speed.
 241 The calculation of RATE for meteorological elements at sounding standard layers included
 242 geopotential height, temperature, relative humidity, and wind speed. A positive RATE meant
 243 that the nudging experiment outperformed CTL, and a larger value indicated more significant
 244 improvement, and a negative one suggested CTL was better.

245 For ME, it is noteworthy that positive and negative bias may offset each other during the
 246 calculation and cannot accurately reflect simulations. As a consequence, ME only indicates
 247 whether the simulation over- or under-estimates the mean magnitude of the observations and
 248 could not be used as a standard to measure the nudging scheme was good or bad in this study.

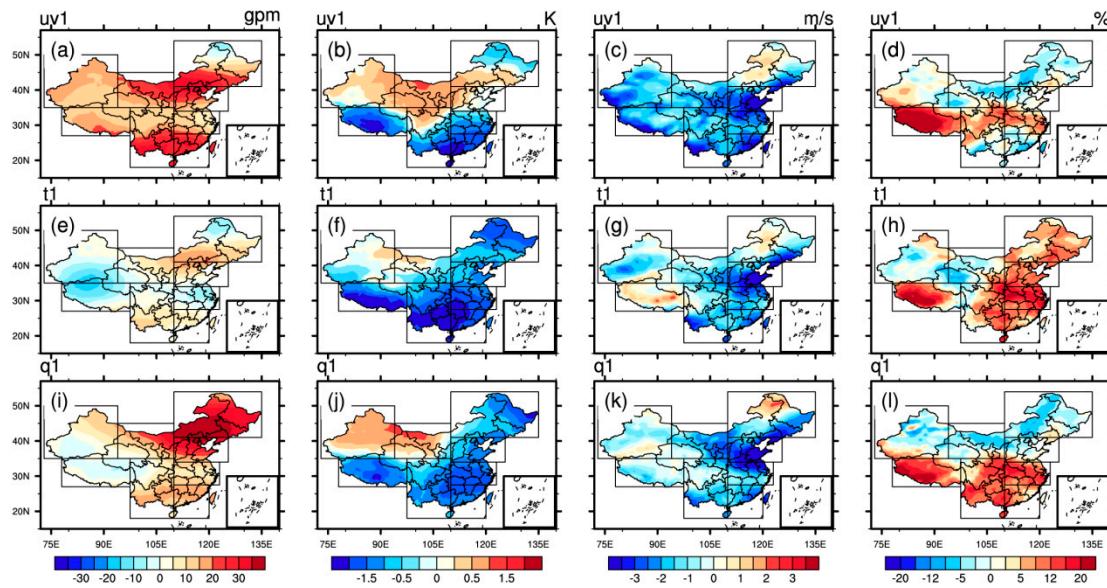
249 To ensure the reliability of the simulated results, a significance t test of CC was conducted,
 250 based on the CC of the samples to estimate whether the parents were correlated. The method
 251 was to compare the CC and CC threshold r_c . When $CC \geq r_c$, CC passes the t test. The equation
 252 to calculate r_c is as follows:

$$r_c = \sqrt{\frac{t_{\alpha}^2}{n-2+t_{\alpha}^2}}, \quad (6)$$


253 where n is the sample size; t_{α} is the statistics t threshold under significance level α , which can
 254 be obtained from t -tables.

255 Next, to investigate the universality of the optimal nudging strategy, the RATE of the
 256 simulations with the same nudging time schemes in summer 2009 were adopted. In this
 257 evaluation, difference and statistical variables were calculated by area.

258 **3. Results**


259 *3.1 Sensitivity Analysis to Nudged Variables*

260 To reveal the impact of different nudged variables on the simulation of meteorological
 261 elements, the difference of simulated meteorological elements between the nudging
 262 experiments and CTL was compared. The difference field of simulated meteorological elements
 263 near the surface (seasonal accumulated precipitation, seasonal mean surface temperature,
 264 seasonal mean surface wind speed, and seasonal mean relative humidity) over the Chinese
 265 mainland in summer 2010 is shown in Figure 2. Nudging tropospheric uv, θ , or q all had a
 266 large influence on the simulation of precipitation. The simulated precipitation is reduced
 267 with nudging θ or q in most areas (Figures 2a, 2e, and 2i). In particular, nudging q had a significant
 268 impact on the simulation of precipitation in Northeast (A), and when uv, θ , or q was nudged,
 269 the simulated precipitation increased in Tibet (H) and decreased in South China (D). For the
 270 simulation of surface temperature (Figures 2b, 2f, and 2j), nudging θ had the most significant
 271 influence and resulted in the decrease of simulated temperature over almost the whole domain,
 272 particularly in East China (C). Nudging uv or q had a weak impact over the Chinese mainland,
 273 with the exception of nudging q in Northeast (A). For the simulation of 10 m wind speed
 274 (Figures 2c, 2g, 2k), nudging tropospheric uv had the strongest influence and decreased
 275 simulated wind speed over the entire domain. The impact of nudging θ was also obvious, and
 276 nudging q only notably affected North China (B), East China (C), and South China (D). For the
 277 2 m relative humidity simulation (Figure 2d, 2h, and 2l), the simulations increased obviously
 278 in Tibet (H) when uv, θ , or q was nudged. In addition, nudging q in Northeast (A) and nudging
 279 uv in Southwest (G) also had an apparent impact on the simulations.

280

281 **Figure 2.** Difference of simulated near-surface meteorological elements with and without
 282 nudging in 2010 summer: (a-d) simulated precipitation, temperature, wind speed, and relative
 283 humidity, respectively with nudging uv; (e-h) same as a-d, but nudging θ ; and (i-l) same as
 284 a-d, but nudging q.

285

286 **Figure 3.** Same as Figure 2, but for meteorological elements at 500 hPa, including
 287 geopotential height (first column), temperature (second column),
 288 and relative humidity (last column).

289 Figure 3 displays the difference field maps of simulated seasonal mean geopotential
 290 height, temperature, wind speed, and relative humidity at 500 hPa between the nudging
 291 experiment and CTL. From Figures 3a, 3e, and 3i, it was found that for the simulation of
 292 geopotential height at 500 hPa, nudging uv had the strongest influence and resulted in the
 293 increase of simulated geopotential height throughout the country; whereas nudging q had a
 294 sizable impact in Northeast (A) and North China (B); and nudging θ had a small impact. Similar
 295 to the 2 m temperature, nudging tropospheric θ had the most obvious influence on simulations
 296 of 500 hPa temperature, where nudging uv or q also had significant influence (Figure 3b, 3f,
 297 and 3j). From Figure 3c, 3g, and 3k, it was seen that the assimilation of uv had an obvious
 298 impact on the simulation of 500 hPa wind speed, and the assimilation of θ or q only had an
 299 apparent influence on simulation in North China (B). For the simulation of wind speed at 500
 300 hPa in most areas of China, the addition of a nudging scheme weakened simulated wind speed
 301 at 500 hPa. For the simulation of relative humidity (Figures 3d, 3h, and 3l), nudging uv
 302 increased simulations in Tibet (H), nudging θ mainly affected simulations in Eastern China (A-
 303 D); and nudging q had a strong influence in Southern China (C, D, G, and H).

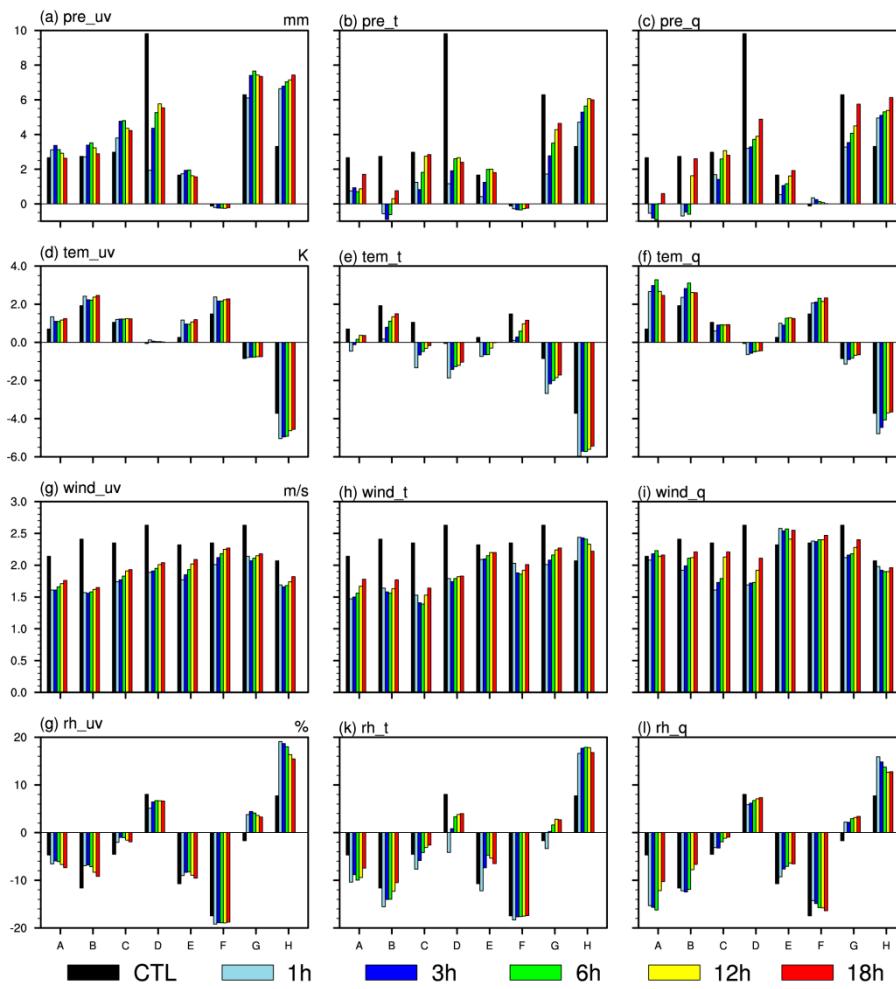
304 In general, nudging uv, θ , or q affects the simulation of meteorological elements near the
 305 surface and at 500 hPa, but the main meteorological elements that were influenced and the
 306 intensity were different. To be specific, nudging tropospheric uv affected almost all
 307 meteorological elements obviously, except for the negligible influence on the simulation of
 308 relative humidity at 500 hPa. Nudging θ also had an obvious influence on the simulation of all
 309 meteorological elements except 500 hPa geopotential height and wind. Nudging q had an weak
 310 influence on almost all variables except precipitation, relative humidity, and 500 hPa
 311 temperature, which possessed obvious regional characteristics. For the simulation of
 312 precipitation, 2 m temperature, relative humidity, and geopotential height at 500 hPa, nudging
 313 q had a sizable influence in Northeast (A).

314 3.2 Sensitivity Analysis to the Nudging Time

315 To further reveal the impact of nudging time t' on meteorological elements near the
 316 surface and at different layers, the simulations performed in the absence of nudging and in the

317 presence of nudging with various relaxation time was compared, then apply statistical
 318 variables (RATE, ME, and CC) to quantify the effects by area.

319 The RATE of simulated near-surface meteorological elements was calculated and are
 320 listed in Table 2. Of the three nudged variables, nudging θ greatly improves the simulations
 321 everywhere, except in Tibet (H). Between nudging uv and q, nudging uv showed more obvious
 322 improvement in Northern China (A, B, E, and F), while nudging q showed slightly greater
 323 improvement in Southern China (C, D, and G). Of all the concerned areas, the improvement
 324 from nudging to the simulated meteorological elements in East China (C) and South China (D)
 325 was obviously greater than those in other areas. To be specific, for nudging uv, the simulations
 326 benefited the most in Northeast China (A) and Northwest China (E and F) when nudging time
 327 was 3 h. Improvement is even greater in North China (B), East China (C), South China (D), and
 328 Southwest China (G) when nudging time was 1 h. Furthermore, CTL was better for simulations
 329 in Tibet (H). For nudging θ , near-surface meteorological elements were simulated the best
 330 when nudging time was 3 h in all areas except North China (B) and Tibet (H). In North China
 331 (B) nudging time of 1 h was better, whereas in Tibet (H) the simulation of nudging experiments
 332 were worse than that of CTL. For nudging q, improvement was obviously better when nudging
 333 time as 1 h in many areas except Northeast China (A), West of Northwest (F), and Tibet (H),
 334 where the performance of CTL was better.

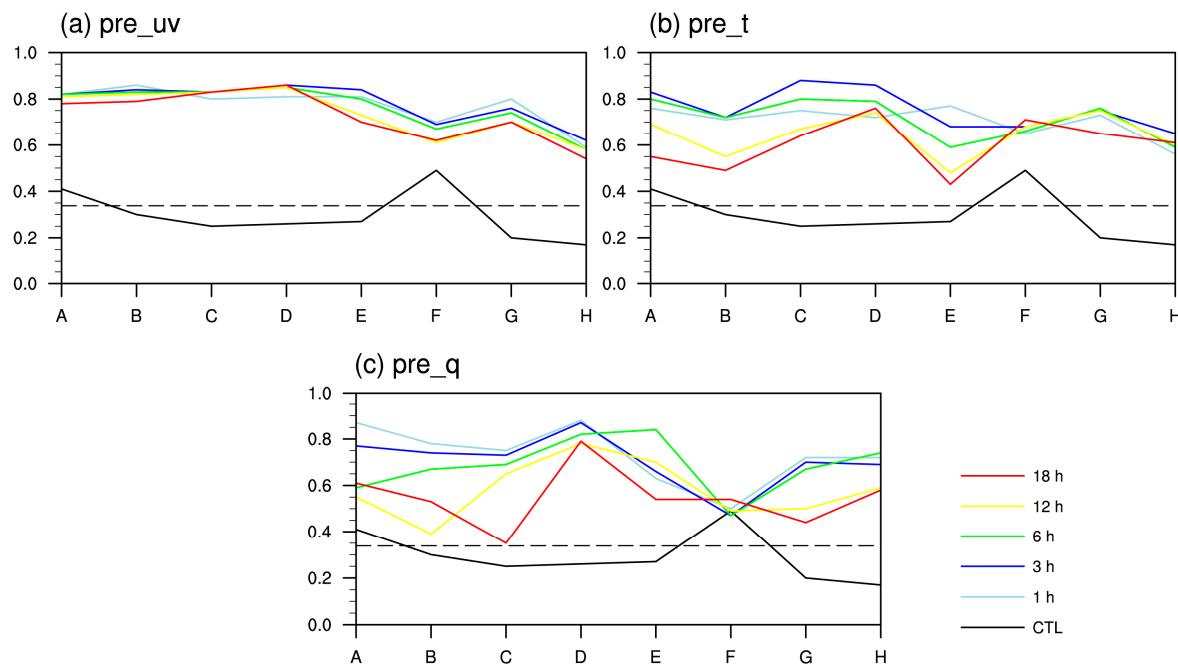

335 Figure 4 shows the bars for ME of simulated meteorological elements near the surface. For
 336 the simulation of precipitation (Figure 4a–4c), a wet bias occurred over most areas in all
 337 experiments regardless of whether nudging was used. Nudging θ or q adopting higher
 338 nudging strength (nudging time 1 h or 3 h) extremely reduced the wet bias of precipitation,
 339 particularly in South China (D). Nudging uv did not improve precipitation simulations as
 340 perfectly as nudging θ or q except in South China (D). For the simulation of surface
 341 temperature (Figure 4d–4f), the result simulated from CTL was a cold bias in South China (D),
 342 Southwest (G), and Tibet (H) and a warm bias in other areas. Nudging uv or q increased the
 343 bias, while nudging θ reduced the warm bias and increased cold bias, particularly in Tibet (H).
 344 CTL showed positive bias for the wind speed simulation. The nudging scheme effectively
 345 reduced the positive bias of simulated wind speed, and the effect was most significant when
 346 nudging time as 1 h or 3 h (Figure 4g–4i). In CTL, the relative humidity simulation showed a
 347 negative bias in all areas except South China (D) and Tibet (H) (Figure 4j–4l). When the nudging
 348 scheme was adopted, the simulation of relative humidity in Southwest (G) showed a positive
 349 bias conversely.

350
 351 **Table 2.** The mean improvement rate (RATE) (%) of simulated meteorological elements near
 352 the surface with different nudging time (Bold type indicates the optimum nudging time in this
 region).

Scheme	A	B	C	D	E	F	G	H
uv1	24.2	31.0	36.8	36.0	27.6	0.6	24.2	-32.5
uv3	26.4	29.0	33.9	30.4	28.0	1.6	20.1	-31.7
uv6	25.9	27.7	32.0	27.2	25.8	0.0	19.5	-33.0
uv12	23.2	24.0	30.5	25.0	22.7	-3.1	20.4	-29.5
uv18	20.4	22.0	29.1	25.7	19.0	-2.7	20.9	-31.0
t1	32.0	41.5	36.3	25.2	35.9	22.1	18.7	-33.1
t3	38.9	40.7	48.6	38.8	38.2	23.3	31.1	-35.2
t6	34.2	38.1	45.8	33.8	34.1	20.8	28.1	-38.5
t12	29.3	31.3	39.2	29.4	27.7	18.0	23.4	-38.4

t18	26.2	28.1	36.4	31.1	23.9	16.1	23.6	-33.6
a1	-14.3	24.4	37.8	36.4	25.0	-10.7	33.2	-19.0
q3	-22.5	17.6	33.5	34.5	22.5	-9.8	32.5	-15.6
q6	-32.4	11.9	27.9	31.2	23.6	-11.7	28.8	-12.3
q12	-14.6	7.6	23.0	27.0	21.1	-7.4	24.5	-10.1
q18	-6.7	10.2	20.1	22.5	9.0	-10.6	18.6	-16.2

353

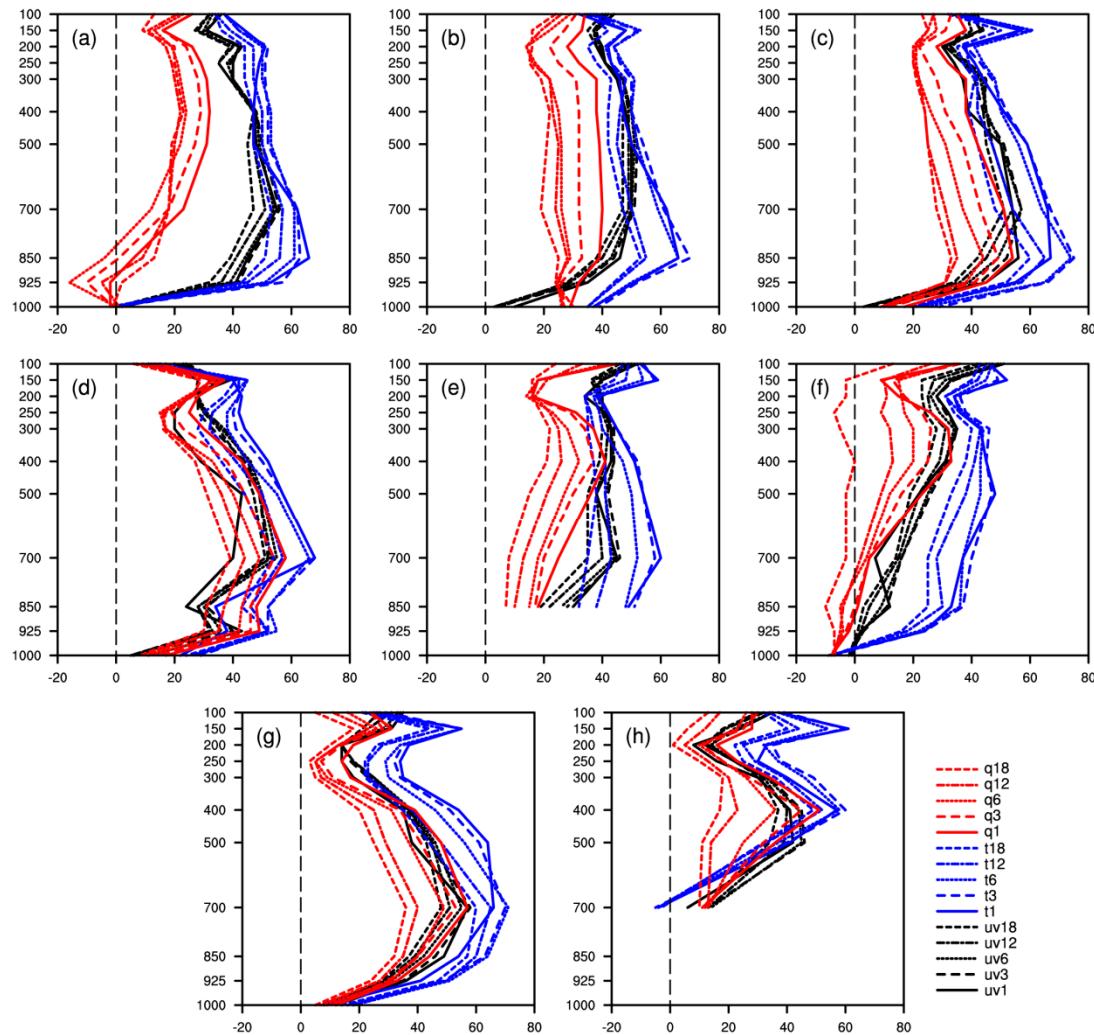


354

355 **Figure 4.** Mean error (ME) of simulated near-surface meteorological elements with different
 356 nudging time: simulated precipitation (a–c), temperature (d–f), wind speed (g–i), and relative
 357 humidity (g–l), which are derived from nudging uv (left column), nudging θ (middle column),
 358 and nudging q (right column).

359 Different schemes were also compared in the correlation of near-surface meteorological
 360 elements between simulations and observations. Figure 5 shows the CC about precipitation.
 361 For CTL, except in Northeast (A) and West of Northwest (F), the simulated precipitation failed
 362 in the significance test at 0.1% significance level. With the presence of nudging, the CC was
 363 extremely raised and passed the significance test in each sub-region. A comparison of the
 364 different nudging schemes showed that when uv is nudged, nudging time of 1 h and 3 h had
 365 the best performance; when θ is nudged, nudging time of 3 h improved the CC the most except
 366 in East of Northwest (E) and Southwest (G); and when q is nudged, nudging time of 1 h had
 367 the best result in almost all areas. It was noted that the CC was slightly poorer in West of

368 Northwest (F) and Tibet (H), than that in other sub-regions. The CC of other near-surface
 369 meteorological elements showed similar conclusions, with the exception of the simulated wind
 370 speed when q was nudged in North China (B) and East China (C), where the simulation results
 371 of all other nudging experiments passed the significance test at a 0.1% significance level.

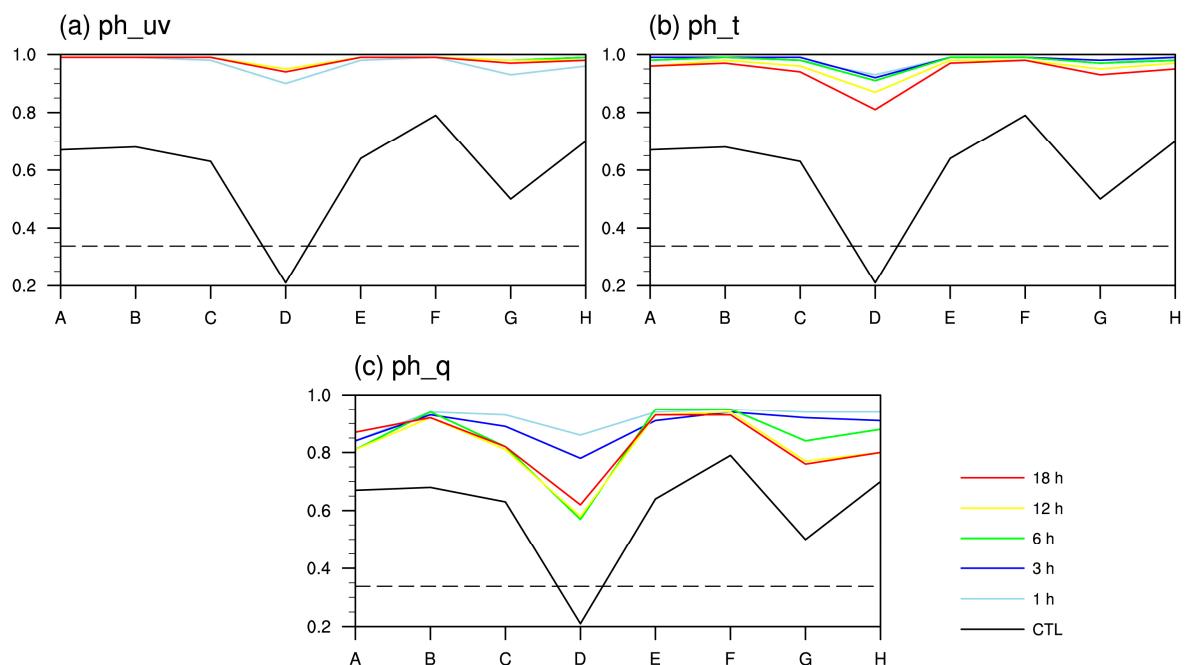

372

373 **Figure 5.** The variation of the correlation coefficient (CC) between the simulated
 374 and observed precipitation in sub-region A-H when various nudging time were
 375 adopted (the dashed line indicates the CC threshold passing significance t test at
 376 0.1% significance level): (a) nudging uv; (b) nudging θ ; and (c) nudging q .

377 To compare the overall simulation results of meteorological elements at different
 378 sounding levels, this study selected geopotential height, temperature, wind speed, and relative
 379 humidity at each standard layer above the surface and analyzed the RATE when nudging
 380 scheme was adopted, the results of which are shown in Table 3. Overall, when tropospheric θ
 381 was nudged, the simulation improved the most, followed by uv and q . For different regions,
 382 the nudging scheme showed more improvement in the simulation of meteorological elements
 383 in Eastern China (A-D) than that in Western China (E-H). For nudging uv, there was the most
 384 dramatic improvement for simulated meteorological elements in all areas except South China
 385 (D) when nudging time was 3 h. Furthermore, in South China (D), nudging time of 1 h
 386 improved the simulations more. For nudging θ , the advantage was obvious in all areas when
 387 nudging time was 3 h. Finally, for nudging q , nudging time of 1 h provided the best
 388 performance.

389 In view of the RATE to simulated meteorological elements in different layers (Figure 6),
 390 the layers showing apparent improvement were mainly at 850–400 hPa. At lower levels, the
 391 nudging scheme showed poor improvement, especially in Northeast (A) and West of
 392 Northwest (F), where even a negative effect appeared when q was nudged. The layers that are
 393 more influenced by the setting of different nudging time are also at 850–400 hPa, and the
 394 improvement of meteorological elements simulation at lower and upper layers was less
 395 sensitive to the change of nudging time. Like the results in Table 3, when an appropriate
 396 nudging time was selected, nudging θ improved the simulation the most, and nudging uv was
 397 obviously superior to nudging q in Northeast (A), North China (B), and Northwest (E and F).
 398 In addition, nudging q at 18 h-nudging-time nearly appeared the worst performance in each

399 sub-region, especially in West of Northwest (F), where there was always a negative effect from
 400 1000 hPa to 150 hPa.



402 **Figure 6.** The variation of RATE (%) of simulated meteorological elements at standard
 403 sounding layers along with height (hPa) with different nudging time: (a) Northeast China; (b)
 404 North China; (c) East China; (d) South China; (e) East of Northwest China; (f) West of
 405 Northwest China; (g) Southwest China; and (h) Tibet.

406 The ME of the simulated meteorological elements at standard sounding layers was
 407 analyzed (data not shown). For geopotential height, the results simulated from CTL at upper
 408 levels had an obvious positive bias, and low levels had negative bias. Nudging could effectively
 409 reduce the negative bias of the simulation at lower levels. For temperature, wind speed, and
 410 relative humidity, the simulation of CTL had positive bias, which meant that the simulated
 411 temperature was warmer, wind larger and humidity wetter than the observations. Furthermore,
 412 the nudging experiments, particularly nudging θ , could effectively reduce the positive bias of
 413 simulated temperature, and nudging also obviously reduced the bias of simulated wind speed
 414 at low layers.

415 Figure 7 illustrates the CC between the simulation and observation of geopotential height
 416 at 500 hPa in each region and scheme. The simulated geopotential height of CTL had a high
 417 correction with the observed value except in South China (D), and nudging experiments
 418 improved it further. In particular, the CC of nudging experiments was close to 1 (Figures 7a
 419 and 7b). When uv was nudged, nudging time of 1 h showed the lowest CC, and it was difficult

420 to distinguish which nudging scheme was best; when θ was nudged, nudging time of 3 h
 421 provided the best performance; when q was nudged, nudging time of 1 h had the highest CC
 422 obviously. Comparing the correlation of other meteorological elements between simulations
 423 and observations or at other standard layers (not shown), it was concluded that the adoption
 424 of nudging scheme could effectively raise the correlations. With the exception of the simulation
 425 of some meteorological elements at 1000 hPa and 925 hPa, all nudged results passed the
 426 significance test at a 0.1% significance level.

427

428

Figure 7. Same as Figure 5, but for the geopotential height at 500 hPa.

429

Table 3. Same as Table 2, but for simulations at sounding standard layers.

Scheme	A	B	C	D	E	F	G	H
uv1	41.5	42.7	39.7	28.7	40.2	23.8	30.7	25.0
uv3	42.0	43.1	40.3	33.8	41.4	25.1	31.4	29.2
uv6	40.9	42.3	39.7	34.2	40.9	24.0	30.9	28.8
uv12	38.8	40.9	38.4	32.6	38.5	21.3	29.1	26.2
uv18	37.3	39.8	37.2	31.2	36.1	19.1	27.6	24.3
t1	49.2	48.3	48.4	41.1	49.9	38.0	43.2	36.1
t3	50.6	51.3	52.3	44.2	50.0	39.2	45.4	38.7
t6	49.6	50.6	51.2	43.5	46.2	37.3	43.7	36.6
t12	45.8	45.4	45.0	39.3	40.3	33.7	38.6	31.2
t18	43.0	41.9	41.5	36.3	37.1	30.8	35.8	28.6
q1	21.4	35.2	38.0	36.2	29.7	16.8	30.8	28.5
q3	18.1	29.2	31.9	32.5	26.9	14.9	26.6	24.9
q6	13.3	23.6	27.7	28.6	23.9	11.8	24.3	22.0
q12	15.0	22.2	24.3	26.3	20.7	7.4	20.4	14.7
q18	15.4	20.1	23.7	23.7	16.2	-3.4	16.7	10.9

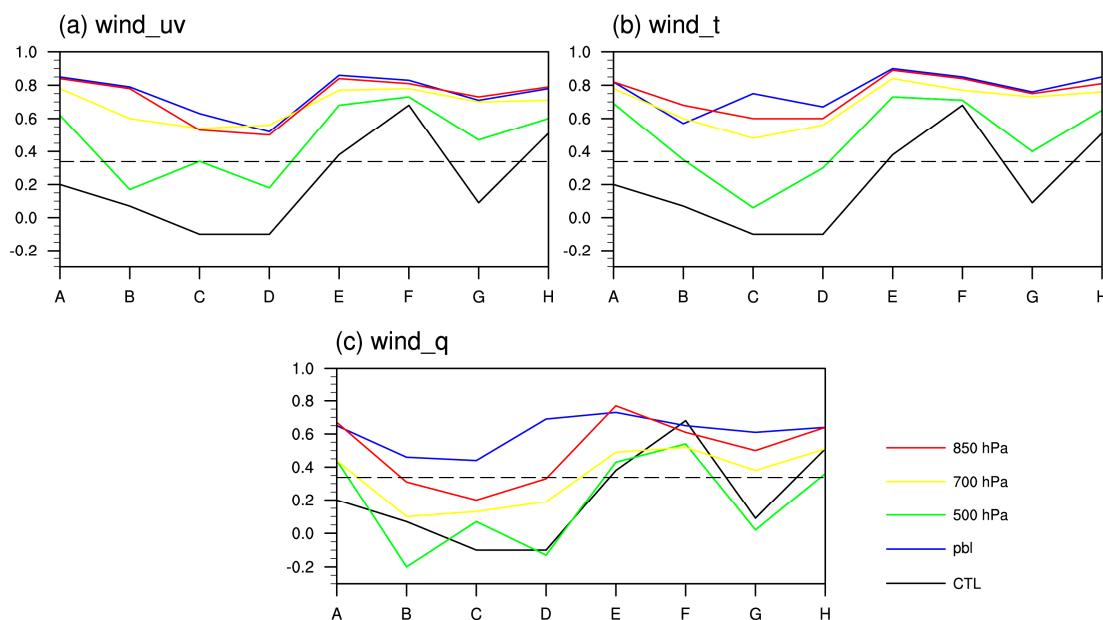
430 Among the three nudged variables, nudging θ improved the simulations the most,
 431 followed by nudging uv, and nudging q. Moreover, nudging improved the simulation of
 432 meteorological elements in Eastern China (A-D) more than that in Western China (E-H). To set
 433 nudging time, the effect was best when uv was nudged with nudging time of 1 h or 3 h, when
 434 θ was nudged with nudging time of 3 h, and q was nudged with nudging time of 1 h. If a
 435 simulation was conducted in different areas, the most suitable nudging time for each area could
 436 be selected according to Tables 2 and 3. From a correlation perspective, the simulated
 437 meteorological elements that failed in the significance test when nudging technique was not
 438 adopted, could almost all pass the significance test at a 0.1% significance level with the presence
 439 of nudging, suggesting that the nudged results were highly reliable.

440 *3.3 Sensitivity Analysis to the Nudged Levels*

441 By comparing the simulation results of meteorological elements with different nudging
 442 time, it is noteworthy that nudging above the PBL obviously improved the simulation of
 443 meteorological elements at the upper layers, but was not ideal for simulations near the surface
 444 and at lower layers in some areas. Thus, it is further considered if the increase of nudged levels
 445 could improve the simulation results of meteorological elements near the surface and at low
 446 levels, without affecting the simulations at upper levels. In this section, with the nudging time
 447 set as 1 h, four groups of sensitivity experiment were designed: the nudged level of above the
 448 PBL; above 850 hPa; above 700 hPa; and above 500 hPa. Statistical variables including RATE,
 449 ME, and CC were used to evaluate the sensitivity of the simulations to nudged levels.

450 Table 4 shows the RATE of simulated meteorological elements near the surface with
 451 different nudged levels. For nudging tropospheric uv, improvement was especially significant
 452 in North China (B), East China (C), and South China (D), when the nudged level was above the
 453 PBL. In Northeast (A), East of Northwest (E), and Southwest (G), the simulation result was
 454 better when the nudged level was above 850 hPa. However, in Tibet (H), nudging uv showed
 455 an adverse effect, and in West of Northwest (F), nudging uv had barely any improvement on
 456 near-surface meteorological elements simulations. For nudging θ , except that nudging above
 457 the PBL in North China (B), above 700 hPa in South China (D) and Southwest (G) and non-
 458 adoption of nudging scheme in Tibet (H) showed a better effect, the improvement was most
 459 obvious when the nudged level is above 850 hPa in other areas. For nudging q, the results were
 460 similar to the simulations with different nudging time, and the adoption of nudging schemes
 461 were not suitable for the simulations in Northeast (A), West of Northwest (F), and Tibet (H).
 462 Furthermore, performance was the best when the nudged level was above the PBL in other
 463 areas. Moreover, the simulations improved the least when the nudged level was above 500 hPa
 464 in almost all nudging experiments. In particular, when q was nudged with levels above 500
 465 hPa, the effect was even poorer than that of CTL in most areas.

466 **Table 4.** RATE (%) of simulated near-surface meteorological elements with different nudged
 467 levels.


Scheme	A	B	C	D	E	F	G	H
uv1	24.2	31.0	36.8	36.0	27.6	0.6	24.2	-32.5
uv 500	14.8	15.1	20.2	23.5	13.0	-2.8	26.6	-34.3
uv 700	19.0	22.0	25.7	26.1	20.9	1.2	29.1	-23.9
uv 850	25.2	26.9	30.0	28.4	28.4	3.0	34.4	-27.0
t 1	32.0	41.5	36.3	25.2	35.9	22.1	18.7	-33.1
t 500	12.3	8.4	14.0	27.2	11.9	-4.1	25.0	-15.4
t 700	26.6	23.2	43.9	37.2	32.4	2.9	35.5	-29.3

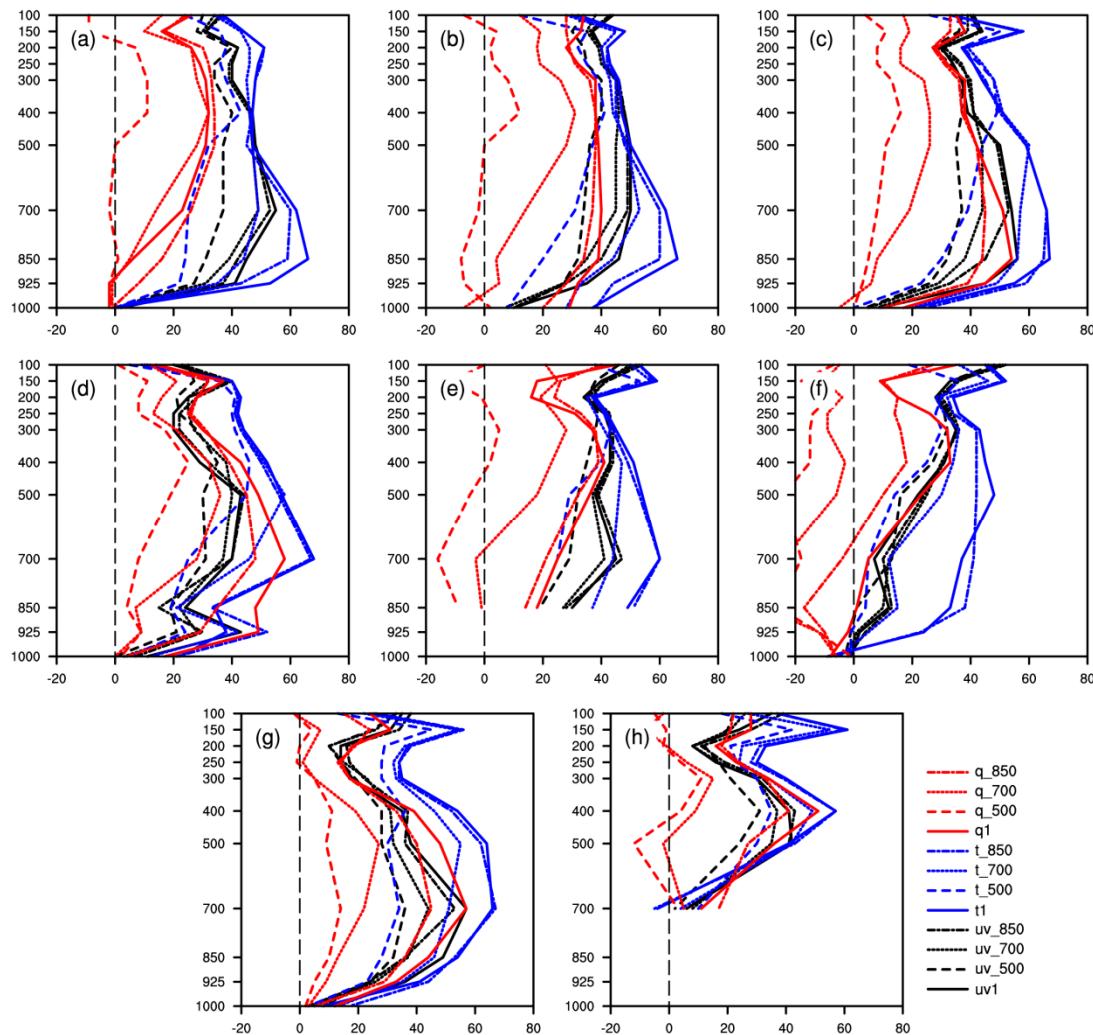
t 850	32.9	38.3	46.8	33.7	38.1	23.1	28.9	-33.7
q1	-14.3	24.4	37.8	36.4	25.0	-10.7	33.2	-19.0
q 500	-9.9	-26.4	-10.0	2.3	-9.2	-22.9	8.3	-25.8
q 700	-2.5	-1.6	-6.2	11.4	-3.0	-27.4	5.3	-9.4
q 850	-1.5	22.0	33.3	25.5	18.7	-19.7	21.7	-3.5

468

469 The ME of the simulated near-surface meteorological elements with different nudged
 470 levels was analyzed (data not shown). In general, when compared with the observations, the
 471 simulated amount of precipitation was larger and the simulated wind speed stronger; however,
 472 the simulated relative humidity showed a drier feature in all areas except South China (D),
 473 Southwest (G), and Tibet (H). Thus, it was clear that the addition of a nudging scheme could
 474 greatly reduce the positive bias for the simulation of precipitation and wind speed, especially
 475 when the nudged level was above the PBL.

476 Based on the CC analysis, for the simulation of 2 m wind speed (Figure 8), the CTL
 477 provided the lowest CC and failed in the significance t test at 0.1% significance level in all areas
 478 except West of Northwest (F) and Tibet (H). When uv or θ was nudged, the CC improved
 479 extremely; when q was nudged, the improvement was slight poorer. Among the nudged level
 480 schemes, nudging above the PBL provided the best performance, and the performance of
 481 nudging above 850 hPa was very close to that of nudging above the PBL. Nudging above 500
 482 hPa was worst, especially when q was nudged as the significant test was not passed in almost
 483 all areas. For other near-surface meteorological elements (data not shown), when the nudged
 484 level was above the PBL or 850 hPa, the correlation between the simulations and observations
 485 also rised dramatically. Furthermore, by the significance t test, the confidence level can reach
 486 99.9%.

487


488 Figure 8. The variation of CC between the simulated and observed 2 m wind with
 489 sub-region A-H when various nudged levels are adopted (the dashed line indicates
 490 the CC threshold of significance t test at 0.1% significance level): (a) nudging uv ; (b)
 491 nudging θ ; and (c) nudging q .

492 To evaluate the simulation results of meteorological elements at vertical layers, the RATE
 493 of simulated meteorological elements at standard layers above the surface was calculated and
 494 are shown in Table 5. For nudging uv , in Northwest (E and F) and Tibet (H), the simulations
 495 had higher skills when the nudged level was above 850 hPa, and in other areas, improvement
 496 was even greater when the nudged level was above the PBL. For nudging θ , the best
 497 performance was when the nudged level was above the PBL or 850 hPa. In detail, performance
 498 was slightly better when the nudged level was above 850 hPa in East China (C), South China
 499 (D), and Southwest (G), and the simulation was best when nudged level was above the PBL in
 500 other areas. For nudging q , the simulation was perfect in Northeast (A) when the nudged level
 501 was above 850 hPa, and even better in other areas when the level was above the PBL. Consistent
 502 with the simulations of near-surface meteorological elements, the overall performance was
 503 poorest when the nudged level was above 500 hPa. In particular, nudging q above 500 hPa
 504 showed little improvement or even a negative effect on the simulated meteorological elements.

505 Based on the RATE analysis with varying nudged levels at different layers (shown as
 506 Figure 9), in general, nudging θ showed the best behavior, with obvious improvement on the
 507 simulation of meteorological elements at 850–400 hPa when the nudged level was above the
 508 PBL. Furthermore, the layers that were sensitive to the varying settings of nudged level were
 509 also at 850–400 hPa. In addition, when uv or θ was nudged, nudging above 850 hPa or the PBL
 510 provided the best performance and showed a small difference. When q was nudged, the RATE
 511 varied widely with different nudged level schemes, and nudging above 500 hPa had the
 512 poorest improvement out of all nudging schemes. When the nudged level was above 500 hPa,
 513 although the overall effect was not ideal, the improvement of simulated meteorological
 514 elements above 500 hPa was still obvious.

515 **Table 5.** Same as Table 4, but for the simulations at sounding standard layers.

Scheme	A	B	C	D	E	F	G	H
uv1	41.5	42.7	39.7	28.7	40.2	23.8	30.7	25.0
uv 500	33.0	33.6	30.8	23.6	34.2	21.3	22.5	18.6
uv 700	38.6	38.7	34.6	27.4	39.8	24.8	25.5	22.6
uv 850	40.6	41.4	38.1	27.5	41.4	25.0	28.7	27.0
t 1	49.2	48.3	48.4	41.1	49.9	38.0	43.2	36.1
t 500	31.0	29.0	35.1	29.9	35.4	18.3	26.9	25.9
t 700	42.4	41.5	46.7	36.9	43.3	25.8	38.6	31.9
t 850	47.0	46.4	49.1	41.2	49.2	37.4	44.2	35.5
q1	21.4	35.2	38.0	36.2	29.7	16.8	30.8	28.5
q 500	1.5	0.6	7.9	10.2	-3.5	-15.5	5.5	0.4
q 700	17.9	16.9	15.5	17.8	16.8	-11.6	10.2	3.5
q 850	25.0	32.5	34.2	30.1	29.5	7.0	25.3	25.5

517

518

Figure 9. Same as Figure 6 but for different nudged levels.

519 From the ME analysis for simulated meteorological elements at standard layers with
 520 different nudged levels (data not shown), the simulation of geopotential height was higher at
 521 the upper levels, and lower at lower levels than the observations. When the nudged level was
 522 above the PBL, positive bias was effectively reduced. For temperature, the simulations
 523 displayed warm bias as a whole, but nudging θ significantly reduced bias, especially when the
 524 nudged level was above the PBL. The simulation of wind speed was also stronger, and nudged
 525 simulations had a significant improvement at most layers. For relative humidity, when
 526 compared with the observation, the simulation was wetter at the upper levels, and drier at low
 527 levels. When the nudged level was above the PBL, the negative bias of the simulations at low
 528 levels were reduced significantly.

529 The CC analysis between the simulations and observations of meteorological elements at
 530 standard layers (data not shown) revealed that the nudging experiments that adopted different
 531 nudged levels significantly improved the correlation between the simulation and observation.
 532 In detail, with the exception that the correlation of some meteorological elements at low (1000
 533 hPa, 925 hPa) and upper levels (150 hPa, 100 hPa) could not pass the significance test, the
 534 correlation at all other levels passed the significance test at a 0.1% significance level.

535 The adoption of varying nudged levels showed different effects on simulated
 536 meteorological elements near the surface and at standard layers. In general, the optimal
 537 nudged level was above the PBL or 850 hPa when uv or θ was nudged and above the PBL

538 when q was nudged. The behavior was the poorest in all areas when the nudged level was
 539 above 500 hPa. If the simulated domain was divided into different areas, the most suitable
 540 nudged levels for different areas could refer to the Tables 4 and 5. It was noteworthy that for
 541 the simulation of meteorological elements near the surface, a nudging scheme as not suitable
 542 for the simulations in Tibet (H). In addition, in Northeast (A) and West of Northwest (F), the
 543 results were better without nudging q . From the perspective of the CC, nudging significantly
 544 refined the correlation between the simulation and observation. Meanwhile, almost all
 545 simulations of meteorological elements passed the significance test at a 0.1% significance level,
 546 suggesting that the simulation results were highly reliable.

547 *3.4 Verification of the Optimum Nudging Scheme*

548 In this section, the universality of the above conclusions were verified. The RATE of the
 549 simulated meteorological elements near the surface and at standard layers in summer 2009
 550 with varying nudging time was selected as the key variable to evaluate, and the results are
 551 shown in Tables 6 and 7. For the simulation of near-surface meteorological elements (Table 6),
 552 when uv was nudged, the optimum nudging time in 2010 had a very good application, and
 553 only in Southwest (G) was the optimum nudging time different. When θ was nudged, nudging
 554 time of 3 h still showed the best effect on a whole, but in North China (B), East China (C), South
 555 China (D), and Southwest (G), the optimum nudging time was inconsistent with that in 2010.
 556 To be specific, when the nudging time in North China (B), East China (C), and Southwest (G)
 557 was 6 h and in South China (D) was 12 h, the effect was slightly better. When q was nudged,
 558 nudging time of 1 h was still best in most areas, but in Northeast (A), North China (B), and
 559 Northwest (E-F), the optimum nudging time was different from that in 2010. Considering the
 560 overall simulation of meteorological elements at sounding standard layers (Table 7), as the
 561 same with the simulation of meteorological elements near the surface, when uv was nudged
 562 the nudging time was also desirably applicable, and the applicability was slightly poor in Tibet
 563 (H). When θ or q was nudged, the results obtained in 2010 were fully applicable.

564 **Table 6.** Same as Table 2, except that the simulation results from 2009 were adopted (* denotes
 565 the optimum nudging time in 2010)

Scheme	A	B	C	D	E	F	G	H
uv1	40.2	37.8*	37.5*	37.6*	24.2	20.3	16.5*	-28.6
uv3	41*	36.1	33	33	24.5*	22*	14.2	-27.6
uv6	38.3	33.7	29.9	30.8	24.5	21.9	15	-26.2
uv12	34.7	30.8	26	27.5	22.8	21.3	17.1	-22.6
uv18	31.7	29	25.5	25.5	20.5	21.6	18	-21
t1	45.1	43.7*	35.7	18.1	32.5	34.7	4.2	-26.3
t3	50.1*	45.7	48.1*	35*	35.2*	36.5*	22.1*	-24.8
t6	49.2	46.2	49.6	34.6	31.9	36.1	23	-23.1
t12	45.5	42.3	47.1	35.9	32.9	34.8	20.1	-20.6
t18	44.2	41.5	45.8	35	30.6	33.8	19.5	-20.4
q1	-10.8	26.4*	44.7*	33.9*	23.6*	27.8	33.5*	-13.5
q3	-13.8	27.3	41.9	32.4	26.2	28.3	30.3	-11.7
q6	-13.3	27.1	39.3	30.4	22.4	27.5	25.2	-12.3
q12	1.7	24.5	31	27.8	25.2	28.4	17	-9
q18	7.9	19.7	27.3	25	18.3	26.7	15.9	-9.1

566

567
568**Table 7.** Same as Table 3, except that the simulation results from 2009 were adopted (* denotes the optimum nudged level in 2010)

Scheme	A	B	C	D	E	F	G	H
uv1	42.5	46.2	39	38.6	35.5	26	29.2	28.9
uv3	42.6*	46.9*	39*	41	36.9*	27.6*	32*	34.2*
uv6	40.9	46	38.7	41.1*	36.8	27.4	31.7	34.8
uv12	38.7	43.7	37.3	39.6	35.4	26	29.7	33.7
uv18	37.8	42.7	36.5	38.3	34.6	24.8	28.6	32.2
t1	53.8	50.7	44.4	43.9	39.6	37.6	44.5	40.2
t3	55.4*	52.6*	47.6*	46.4*	41.6*	39.3*	46.1*	40.9*
t6	53.7	52.1	47	45.5	41	38.3	45.5	40.9
t12	47.5	47.3	45.6	42.8	37.8	35.3	41.9	39.5
t18	45.2	44.7	43.7	41.2	37.1	33	41	38.4
q1	22.2*	33.2*	37*	36.4*	28.4*	27.7*	30.1*	34*
q3	18.6	30.8	34.5	33.2	25.2	25.1	27.2	32
q6	15.4	28.1	31.3	29.6	22	21.3	25.2	28.8
q12	17.3	24.5	25.3	23.7	21.6	16.4	19.4	25.4
q18	17.2	23.1	21.7	22	18.9	11.3	17	21.6

569

570 On the whole, certain universality exists in the referential nudging scheme based on
 571 simulated meteorological elements near the surface and at different vertical levels in the
 572 summer of 2010. Still, the simulations improve the most when nudging time is 1 h or 3 h for
 573 nudging uv, 3 h for nudging θ and 1 h for nudging q , but nudging schemes are variously
 574 applicable for different nudged variables, simulated areas and layers. Among the nudged
 575 variables, nudging strategy is universally applicable when uv is nudged. Among the concerned
 576 areas, the applicability of nudging scheme is better for the simulations in Northeast (A), East
 577 China (C), South China (D), East of Northwest (E), and Tibet (H). Between the surface and
 578 sounding standard layers, the scheme for the simulation of meteorological elements at
 579 sounding layers possesses better applicability.

580 4. Discussion and Conclusions

581 The grid nudging technique has been used extensively to prevent dynamic downscaling
 582 results from drifting away from the large-scale driving fields. However, the impact of nudging
 583 options (nudged variables, layers, and nudging time) and the choice of optimal nudging
 584 strategy over the Chinese mainland remains scarce. In this paper, the performances of
 585 simulations with varying nudged variables, levels, and nudging time were compared. Using
 586 the WRF model as a RCM, 41 continuous sensitivity experiments with different nudging
 587 parameters from June to August 2009 and 2010 were evaluated when downscaling the FNL
 588 data to a 30 km resolution over the Chinese mainland. To compare the impact of nudged
 589 variables, this study applied the difference field analysis between the simulations in the
 590 absence of nudging and presence of nudging. Furthermore, RATE, ME, and CC were applied
 591 to quantify the effect of different nudged layers and nudging time.

592 Nudging tropospheric horizontal wind, temperature, or water vapor mixing ratio also
593 influenced the simulation of meteorological elements near the surface and at 500 hPa. Of the
594 three nudged variables, nudging tropospheric uv affected more variables. With the exception
595 of a weak impact on the simulation of 500 hPa relative humidity, nudging uv significantly
596 affected the simulation of other variables. Nudging θ had an obvious influence on the
597 simulation of all meteorological elements except 500 hPa geopotential height and wind.
598 Nudging q had more obvious influence on precipitation, relative humidity, and 500 hPa
599 temperature, and barely affected other meteorological elements. Meanwhile, nudging q
600 possessed obvious regional features. In the simulation of precipitation, 2 m temperature,
601 relative humidity, and 500 hPa geopotential height, nudging q had a larger influence in
602 Northeast (A).

603 Comparing the three nudged variables, nudging θ had the largest improvement to the
604 simulation of meteorological elements, followed by nudging uv and nudging q. Furthermore,
605 the adoption of nudging scheme showed more improvement to the simulation of
606 meteorological elements in Eastern China (sub-regions A-D) than that in Western China (E-H).
607 In view of the effect of different nudging time on the simulation of meteorological elements,
608 the optimum nudging time was inconsistent for different areas and nudged variables. Overall,
609 1 h or 3 h was the optimal nudging time for nudging uv, while it was 3 h for nudging θ , and 1
610 h for nudging q. In view of the effect of different nudged levels, the optimum nudged level also
611 relied on the area and nudged variables. However, in general, the performance was best when
612 the nudged level was above the PBL or 850 hPa for nudging uv or θ and above the PBL for
613 nudging q; and performance was poorest when the nudged level was above 500 hPa.

614 Validation by using the simulation results of meteorological elements with the same
615 nudging time scheme in summer 2009 found that the conclusion had good universality on the
616 whole, despite not being fully applicable in some areas and only possessed referential
617 significance. To be specific, among the nudged variables, the nudging scheme had the best
618 application when uv was nudged; of the concerned areas, the applicability was better for the
619 simulations in Northeast (A), East China (C), South China (D), East of Northwest (E), and Tibet
620 (H); among the simulated layers, the simulation of meteorological elements at sounding
621 standard layers had better applicability.

622 The significance of this optimum may be questioned, but there is a good chance that such
623 optimum existed as expected from the previous studies [13,17,25,26,40], and the optimal
624 nudging time and nudged layers could be treated as a result of the balance of the representation
625 of large-scale circulation and development of fine-scale fields. Moreover, an optimum nudging
626 time of 3.4 h was found by Salameh [13] and 3 h by Omrani et al. [26], which were very close
627 to our results. When q was nudged, the optimal nudging time could be smaller than 1 h but
628 this has not been investigated, in part due to the numerical instabilities produced for very small
629 values of nudging time.

630 What should be pointed out is that for the simulated near-surface meteorological elements,
631 it was not suitable for the simulations in Tibet (H) to adopt nudging scheme and nudging q is
632 not recommended in Northeast (A) and West of Northwest (F). Considering the reasons for the
633 inapplicability of the nudging scheme, it may have due to the poor quality of the FNL data
634 resulting from complex landform and sparse observation stations in these areas [41–43]. In
635 addition, the nudging performance was worse than that in the East (A-D), which may share the
636 same reason. Other possible reasons for poor performance in the West (E-H) were the
637 inconsistent performance of physical options for each sub-region and the role of boundary
638 forcing. In fact, boundary forcing was stronger in Western China (E-H), where the circulation
639 was coming, than that in the East (A-D).

640 The reason that nudging tropospheric uv or θ has more obvious improvement on the
641 simulation of the meteorological elements, which is also found by Pohl et al. [25] and Omrani
642 et al. [26], may be that it directly affected the geopotential height and thus the synoptic-scale
643 atmospheric circulation [26], while q did not have large-scale features as strong as other fields
644 and was poorly described in the FNL data. Without nudging, the WRF simulation was warmer
645 than the observation at each vertical layer, and the results were consistent with the findings of
646 Bowen et al. [17] and Omrani et al. [26,28]. The mechanism invoked in Omrani et al. [28] was
647 that the increase in summer temperature corresponded to an atmospheric blocking situation
648 created by the model artificially when nudging was not used. This hypothesis was also verified
649 by the ME analysis of the simulated geopotential height at different levels (data not
650 shown). Furthermore, a very consistent result was the overestimation of wind in the CTL, and
651 was in good agreement with previous studies [20,44,45], which believed that it was partly due
652 to the poor representation of the unresolved topography. Gómez-Navarro et al. [20] pointed
653 out that the bias could be reduced effectively by a change of PBL scheme, the use of nudging,
654 and improvement of horizontal resolution. Through our experiments, the role of nudging was
655 further verified. For simulated precipitation, a wet bias occurred in nearly all experiments and
656 regions, especially in the CTL. A lot of the summer rainfall over the Chinese mainland is
657 convective in nature, and related to mesoscale dynamics such as low-level jets and mesoscale
658 convective systems. Moisture is also necessary to produce large precipitation totals. The over-
659 development of fine-scale fields and excessive transmission caused by lack of constraint may
660 be one of the reasons, which was confirmed by the finding of Miguez-Macho et al. [11].

661 Our numerical experiments were based on only one model simulation covering a short
662 period of $2 \times$ three-months, and considered the behavior of single nudged variable in summer
663 when various nudged levels and nudging time are adopted. However, the combination of
664 different nudged variables, simulated time, model configuration (domain, resolution, and
665 physical options), and even observational data may affect the performance of nudging. For all
666 these reasons, it must be clear that the optimal nudging strategy of the WRF discussed in this
667 study may not always produce the best results, and further research is required on setting the
668 optimum nudging scheme under the condition of combination of different nudged variables,
669 different model configuration, and other seasons. Furthermore, considering that the optimal
670 nudging schemes are dependent on regions, nudged variables, and sometimes vary with
671 simulated time, It must be honestly put that there may be no best option in all variables and
672 cases. For the comparison of grid nudging and spectral nudging, as mentioned in the
673 introduction, the conclusions were not the same under different conditions. Apart from the
674 different nudged variables, grid nudging was sensitive to nudging time. Spectral nudging is
675 not sensitive to nudging time but sensitive to cut-off wavelength [18]; and the wavelength
676 cannot be set separately for each nudged variable. Putting them together would make it
677 difficult to compare and analyze the role of each nudging parameter. Based on this, the grid
678 nudging was only considered in this study. In our future work, similar approach will be taken
679 for spectral nudging.

680 **Acknowledgments and Data:** This work was supported by the National Nature Science Foundation of
681 China (41675098), the Key Program of the National Nature Science Foundation of China (41330527) and
682 Climate Change Program of China Meteorological Administration (CCSF201608). WRF was provided by
683 the University Corporation for Atmospheric Research website
684 (http://www2.mmm.ucar.edu/wrf/users/download/get_source.html). FNL data was provided by
685 National Centers for Environmental Prediction. Observation data was provided by China Meteorological
686 Data Service Center website (<http://data.cma.cn>).

687 References

688 1. Giorgi, F. Regional climate modeling: Status and perspectives. *Journal De Physique IV* **2006**, 139, 101-

689 118.

690 2. IPCC. 2013: Climate change 2013: The physical science basis. Contribution of working group i to the
691 fifth assessment report of the intergovernmental panel on climate change. 2013.

692 3. Leung, L.R.; Mearns, L.O.; Giorgi, F.; Wilby, R.L. Regional climate research: Needs and
693 opportunities. *Bull. amer. meteor. soc.* **2003**, *84*, 89-95.

694 4. Wang, Y.; Ruby, L.L.; McGregor, J.L.; Dong-Kyou, L.; Wang, W.C.; Ding, Y.; Fujio, K. Regional
695 climate modeling: Progress, challenges, and prospects. *Journal of the Meteorological Society of Japan*
696 **2004**, *82*, 1599-1628.

697 5. Giorgi, F.; Marinucci, M.R.; Visconti, G. Use of a limited-area model nested in a general circulation
698 model for regional climate simulation over europe. *Journal of Geophysical Research Atmospheres* **1990**,
699 *95*, 18413 - 18431.

700 6. Giorgi, F.; Mearns, L.O. Approaches to the simulation of regional climate change: A review. *Reviews*
701 of *Geophysics* **1991**, *29*, 191-216.

702 7. Tang, J.; Niu, X.; Wang, S.; Gao, H.; Wang, X.; Wu, J. Statistical and dynamical downscaling of
703 regional climate in china: Present climate evaluations and future climate projections †. *Journal of*
704 *Geophysical Research Atmospheres* **2016**, *121*.

705 8. Wilby, R.L.; Wigley, T.M.L.; Conway, D.; Jones, P.D.; Hewitson, B.C.; Main, J.; Wilks, D.S. Statistical
706 downscaling of general circulation model output: A comparison of methods. *Water Resources*
707 *Research* **1998**, *34*, 2995 - 3008.

708 9. Lynn, B.H.; Healy, R.; Druyan, L.M. Quantifying the sensitivity of simulated climate change to
709 model configuration. *Climatic Change* **2009**, *92*, 275-298.

710 10. Lo, C.F.; Yang, Z.L.; Sr, R.A.P. Assessment of three dynamical climate downscaling methods using
711 the weather research and forecasting (wrf) model. *Journal of Geophysical Research Atmospheres* **2008**,
712 *113*, D09112.

713 11. Miguez-Macho, G.; Stenchikov, G.L.; Robock, A. Spectral nudging to eliminate the effects of domain
714 position and geometry in regional climate model simulations. *Journal of Geophysical Research*
715 *Atmospheres* **2004**, *109*, 1025-1045.

716 12. Raluca, R.; Michel, D.; Samuel, S. Spectral nudging in a spectral regional climate model. *Tellus Series*
717 *A-dynamic Meteorology & Oceanography* **2010**, *60*, 898-910.

718 13. Salameh, T. The effect of indiscriminate nudging time on large and small scales in regional climate
719 modelling: Application to the mediterranean basin. *Quarterly Journal of the Royal Meteorological*
720 *Society* **2010**, *136*, 170-182.

721 14. Gao, Y.; Xu, J.; Chen, D. Evaluation of wrf mesoscale climate simulations over the tibetan plateau
722 during 1979-2011. *Journal of Climate* **2015**, *28*, 2823-2841.

723 15. Maussion, F.; Scherer, D.; Mölg, T.; Collier, E.; Curio, J.; Finkelburg, R. Precipitation seasonality
724 and variability over the tibetan plateau as resolved by the high asia reanalysis *. *Journal of Climate*
725 **2013**, *27*, 1910-1927.

726 16. Stauffer, D.R.; Seaman, N.L. Use of four-dimensional data assimilation in a limited-area mesoscale
727 model. Part i: Experiments with synoptic-scale data. *Monthly Weather Review* **1990**, *118*, 1250-1277.

728 17. Bowden, J.H.; Otte, T.L.; Nolte, C.G.; Otte, M.J. Examining interior grid nudging techniques using
729 two-way nesting in the wrf model for regional climate modeling. *Journal of Climate* **2012**, *25*, 2805-
730 2823.

731 18. Bullock, O.R.; Alapaty, K.; Herwehe, J.A.; Mallard, M.S.; Otte, T.L.; Gilliam, R.C.; Nolte, C.G. An

732 observation-based investigation of nudging in wrf for downscaling surface climate information to
733 12-km grid spacing. *Journal of Applied Meteorology & Climatology* **2014**, *53*, 20-33.

734 19. Glisan, J.M.; Gutowski, W.J., Jr; Cassano, J.J.; Higgins, M.E. Effects of spectral nudging in wrf on
735 arctic temperature and precipitation simulations. *Journal of Climate* **2013**, *26*, 3985-3999.

736 20. Gómeznavarro, J.J.; Raible, C.C.; Dierer, S. Sensitivity of the wrf model to pbl parametrisations and
737 nesting techniques: Evaluation of wind storms over complex terrain. *Geoscientific Model Development*
738 **2015**, *8*, 3349-3363.

739 21. Liu, P.; Tsimpidi, A.P.; Hu, Y.; Stone, B.; Russell, A.G.; Nenes, A. Differences between downscaling
740 with spectral and grid nudging using wrf. *Atmospheric Chemistry & Physics* **2012**, *12*, 1191-1213.

741 22. Ma, Y.; Yang, Y.; Mai, X.; Qiu, C.; Long, X.; Wang, C. Comparison of analysis and spectral nudging
742 techniques for dynamical downscaling with the wrf model over china. *Advances in*
743 *Meteorology*, 2016,(2016-12-29) **2016**, *2016*, 1-16.

744 23. Otte, T.L.; Nolte, C.G.; Otte, M.J.; Bowden, J.H. Does nudging squelch the extremes in regional
745 climate modeling? *Journal of Climate* **2012**, *25*, 7046-7066.

746 24. Castro, C.L.; Pielke, R.A.; Leoncini, G. Dynamical downscaling: Assessment of value retained and
747 added using the regional atmospheric modeling system (rams). *Journal of Geophysical Research: Atmospheres* **2005**, *110*.

749 25. Pohl, B.; Crétat, J. On the use of nudging techniques for regional climate modeling: Application for
750 tropical convection. *Climate Dynamics* **2014**, *43*, 1693-1714.

751 26. Omrani, H.; Drobinski, P.; Dubos, T. Using nudging to improve global-regional dynamic consistency
752 in limited-area climate modeling: What should we nudge? *Climate Dynamics* **2015**, *44*, 1-18.

753 27. Maussion, F.; Scherer, D.; Finkelburg, R.; Richters, J.; Yang, W.; Yao, T. Wrf simulation of a
754 precipitation event over the tibetan plateau, china-an assessment using remote sensing and ground
755 observations. *Hydrology and Earth System Sciences* **2011**, *15*, 1795.

756 28. Omrani, H.; Drobinski, P.; Dubos, T. Optimal nudging strategies in regional climate modelling:
757 Investigation in a big-brother experiment over the european and mediterranean regions. *Climate*
758 *Dynamics* **2013**, *41*, 2451-2470.

759 29. Hoke, J.E.; Anthes, R.A. The initialization of numerical models by a dynamic-initialization technique.
760 *Monthly Weather Review* **1976**, *104*, 1551.

761 30. Stauffer, D.R.; Seaman, N.L. Multiscale four-dimensional data assimilation. *Journal of Applied*
762 *Meteorology* **1994**, *33*, 416-434.

763 31. Lim, K.S.S.; Hong, S.Y. Development of an effective double-moment cloud microphysics scheme
764 with prognostic cloud condensation nuclei (ccn) for weather and climate models. *Monthly Weather*
765 *Review* **2010**, *138*, 1587-1612.

766 32. Collins, W.D.; Rasch, P.J.; Boville, B.A.; Hack, J.J.; Mccaa, J.R.; Williamson, D.L.; Briegleb, K.J.T.B.
767 Description of the ncar community atmosphere model (cam 3.0). *National Center for Atmospheric*
768 *Research Ncar Koha Opencat* **2004**, *tn-464+str*.

769 33. Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A
770 revised scheme for the wrf surface layer formulation. *Monthly Weather Review* **2012**, *140*, 898-918.

771 34. Chen, F.; Dudhia, J. Coupling an advanced land surface hydrology model with the penn state ncarr
772 mm5 modeling system. Part ii: Preliminary model validation. *Monthly Weather Review* **2001**, *129*, 569-
773 585.

774 35. Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of

775 entrainment processes. *Monthly Weather Review* **2006**, *134*, 2318.

776 36. Gu, H.; Jin, J.; Wu, Y.; Ek, M.B.; Subin, Z.M. Calibration and validation of lake surface temperature
777 simulations with the coupled wrf-lake model. *Climatic Change* **2015**, *129*, 471-483.

778 37. Oleson, K.W.; Lawrence, D.M.; Bonan, G.B.; Drewsniak, B.; Huang, M.; Koven, C.D.; Levis, S.; Li, F.;
779 Riley, W.J.; Subin, Z.M. *Technical description of version 4.5 of the community land model (clm)*. **2013**; p
780 256-265.

781 38. Tang, J.; Song, S.; Wu, J. Impacts of the spectral nudging technique on simulation of the east asian
782 summer monsoon. *Theoretical & Applied Climatology* **2010**, *101*, 41-51.

783 39. Zhao, J.H.; Feng, G.L.; Zhang, S.X.; Sun, S.P. Seasonal changes in china during recent 48 years and
784 their relationship with temperature extremes. *Acta Phys Sin* **2011**, *60*, 099205-092592.

785 40.. Omrani, H.; Drobinski, P.; Dubos, T. Investigation of indiscriminate nudging and predictability in a
786 nested quasi-geostrophic model. *Quarterly Journal of the Royal Meteorological Society* **2012**, *138*, 158-
787 169.

788 41. Chuan, L.I.; Zhang, T.J.; Chen, J. Climatic change of qinghai-xizang plateau region in recent 40-year
789 reanalysis and surface observation data— contrast of observational data and ncep, ecmwf surface
790 air temperature and precipitation. *Plateau Meteorology* **2004**.

791 42. Zhao, T.; Fu, C. Applicability evaluation for several reanalysis datasets using the upper-air
792 observations over china. *Chinese Journal of Atmospheric Sciences* **2009**, *33*, 634-648.

793 43. Zhao, T.B.; Fu, C.B. Preliminary comparison and analysis between era-40, ncep-2 reanalysis and
794 observations over china. *Climatic & Environmental Research* **2006**, *11*, 14-32.

795 44. Cheng, W.Y.Y.; Steenburgh, W.J. Evaluation of surface sensible weather forecasts by the wrf and the
796 eta models over the western united states. *Weather & Forecasting* **2015**, *20*, 812-821.

797 45. Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A
798 revised scheme for the wrf surface layer formulation. *Monthly Weather Review* **2012**, *140*, 898-918.

799

800