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Abstract: We investigate the stationary and dynamic properties of the celebrated Nosé-Hoover1

dynamics of many-body interacting Hamiltonian systems, with an emphasis on the effect of2

inter-particle interactions. To this end, we consider a model system with both short- and long-range3

interactions. The Nosé-Hoover dynamics aims to generate the canonical equilibrium distribution4

of a system at a desired temperature by employing a set of time-reversible, deterministic equations5

of motion. A signature of canonical equilibrium is a single-particle momentum distribution that is6

Gaussian. We find that the equilibrium properties of the system within the Nosé-Hoover dynamics7

coincides with that within the canonical ensemble. Moreover, starting from out-of-equilibrium initial8

conditions, the average kinetic energy of the system relaxes to its target value over a size-independent9

timescale. However, quite surprisingly, our results indicate that under the same conditions and with10

only long-range interactions present in the system, the momentum distribution relaxes to its Gaussian11

form in equilibrium over a scale that diverges with the system size. On adding short-range interactions,12

the relaxation is found to occur over a timescale that has a much weaker dependence on system13

size. This system-size dependence of the timescale vanishes when only short-range interactions14

are present in the system. An implication of such an ultra-slow relaxation when only long-range15

interactions are present in the system is that macroscopic observables other than the average kinetic16

energy when estimated in the Nosé-Hoover dynamics may take an unusually long time to relax to its17

canonical equilibrium value. Our work underlines the crucial role that interactions play in deciding18

the equivalence between Nosé-Hoover and canonical equilibrium.19

20 Keywords: Hamiltonian systems; classical statistical mechanics; ensemble equivalence; long-range 
interacting systems21

1. Introduction22

Often one needs in studies in nonlinear dynamics and statistical physics to investigate the23

dynamical properties of a many-body interacting Hamiltonian system evolving under the condition of24

a constant temperature. For example, one might be interested in studying the dynamical properties of25

the system in canonical equilibrium at a certain temperature T, with the temperature being proportional26

to the average kinetic energy of the system by virtue of the Theorem of Equipartition 1. To this end, one27

may devise a dynamics having a temperature Ttarget as a dynamical parameter that is designed to relax28

1 In this work, we measure temperatures in units of the Boltzmann constant.
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an initial configuration of the system to canonical equilibrium at temperature Ttarget, and then make29

the choice Ttarget = T. A common practice is to employ a Langevin dynamics, i.e., a noisy, dissipative30

dynamics that mimics the interaction of the system with an external heat bath at temperature Ttarget in31

terms of a deterministic frictional force and an uncorrelated, Gaussian-distributed random force added32

to the equation of motion [1]. In this approach, one then tunes suitably the strength of the random33

force such that the Langevin dynamics relaxes at long times to canonical equilibrium at temperature34

Ttarget. The presence of dissipation renders the dynamics to be irreversible in time. A complementary35

approach to such a noisy, dissipative dynamics was pioneered by Nosé and Hoover, in which the36

dynamics is fully deterministic and time-reversible, while achieving the same objective of relaxing the37

system to canonical equilibrium at the desired temperature Ttarget [2,3]; for a review, see Ref. [4]. The38

time evolution under the condition of relaxation at long times to canonical equilibrium at a given39

temperature is said to represent isokinetic ensemble dynamics when taking place according to the40

Nosé-Hoover equation of motion and to represent Langevin/canonical ensemble dynamics when41

taking place following the Langevin equation of motion.42

To illustrate in detail the distinguishing feature of the Nosé-Hoover vis-à-vis Langevin dynamics,
consider an interacting N-particle system characterized by the set {qj, πj} of canonical coordinates and
conjugated momenta. The particles, which we take for simplicity to have the same mass m, interact
with one another via the two-body interaction potential Φ({qj}). In the following, we consider qj’s
and πj’s to be one-dimensional variables for reasons of simplicity; Our analysis however extends
straightforwardly to higher dimensions. The Hamiltonian of the system is given by

Hsystem =
N

∑
j=1

π2
j

2m
+ Φ({qj}), (1)

where the first term on the right hand side stands for the kinetic energy of the system.43

In the approach due to Langevin, the dynamical equations of the system are given by44

dqj

dt
=

πj

m
,

dπj

dt
= −γ

πj

m
−

∂Φ({qj})
∂qj

+ ηj(t), (2)

where t denotes time, γ > 0 is the dissipation constant, while ηj(t) is a Gaussian, white noise satisfying

ηj(t) = 0, ηj(t)ηk(t′) = 2Dδjkδ(t− t′). (3)

Here, the overbars denote averaging over noise realizations, while D > 0 characterizes the strength of
the noise. The dynamics (2) is evidently not time-reversal invariant. Choosing D = γTtarget ensures
that the dynamics (2) relaxes at long times to the canonical distribution at Ttarget given by [1]

P({qj, πj}) ∝ exp(−Hsystem/Ttarget), (4)

in which the kinetic energy density of the system fluctuates around the average value Ttarget/2.45

In the approach due to Nosé and Hoover, a degree of freedom s augmenting the set {qj, πj} is
introduced, which is taken to characterize an external heat reservoir that interacts with the system
through the momenta πj’s. The Hamiltonian of the combined system is given by

H =
N

∑
j=1

π2
j

2ms2 + Φ({qj}) +
p2

s
2Q

+ (N + 1)Ttarget ln s, (5)
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where Q is the mass and ps is the conjugated momentum of the additional degree of freedom. The46

dynamics of the system is given by the following Hamilton equations of motion:47

dqj

dt
=

πj

ms2 ,
dπj

dt
= −

∂Φ({qj})
∂qj

,

(6)

ds
dt

=
ps

Q
,

dps

dt
=

N

∑
j=1

π2
j

ms3 − (N + 1)
Ttarget

s
.

It may be easily checked that unlike (2), the dynamics (6) is invariant under time reversal. In terms of
new variables

pj ≡
πj

s
, ζ ≡ ps

Q
, (7)

and rescaled time
t̃ ≡ t

s
, (8)

one obtains from the Hamilton equations (6) the following dynamics:48

dqj

dt̃
=

pj

m
, (9)

dpj

dt̃
= −

∂Φ({qj})
∂qj

− ζ pj, (10)

ds
dt̃

= ζs, (11)

dζ

dt̃
=

1
Q

(
N

∑
j=1

p2
j

m
− (N + 1)Ttarget

)
=

1
τ2

(K(P)
K0
− 1
)

, (12)

where K(P) ≡ ∑N
j=1 p2

j /(2m) is the kinetic energy, while we have defined

K0 ≡ (N + 1)
Ttarget

2
, τ2 ≡ Q

2K0
. (13)

From Eqs. (9)-(12), we observe that a complete description of the time evolution of the system is given
in terms of Eqs. (9), (10), and (12), without any reference to Eq. (11) for s, so that as far as the description
of the system is concerned, the variable s is an irrelevant one that may be ignored. We will from now
on drop the tilde over time in order not to overload the notation. Let us note that in terms of the
variables pj’s, the Hamiltonian (5) takes the form

H =
N

∑
j=1

p2
j

2m
+ Φ({qj}) +

Qζ2

2
+ (N + 1)T ln s. (14)

From Eq. (12), we find that in the stationary state (dζ/dt = 0), the kinetic energy of the system
equals (N + 1)Ttarget/2 (the extra factor of unity takes care of the presence of the additional degree of
freedom s). For large N � 1, we then have the desired result: An ensemble of initial conditions under
the evolution given by Eqs. (9), (10), and (12) evolves at long times to a stationary state in which the
average kinetic energy density has the value Ttarget/2. The quantity τ in Eq. (12) denotes a relaxation
timescale over which the kinetic energy relaxes to its target value. Beyond the average kinetic energy,
it has been demonstrated by invoking the phase space continuity equation that the distribution

f ∝ exp

[
−
(

N

∑
j=1

p2
j

2m
+ Φ({qj}) + Qζ2/2

)
/Ttarget

]
(15)
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is a stationary state of the Nosé-Hoover dynamics [3]. It then follows that the corresponding stationary
distribution for the system variables {qj, pj} is the canonical equilibrium distribution:

P({qj, pj}) ∝ exp

[
−
(

N

∑
j=1

p2
j

2m
+ Φ({qj})

)
/Ttarget

]
, (16)

normalized as
∫ (

∏N
j=1 dqjdpj

)
P({qj, pj}) = 1. Equation (16) implies that the single-particle

momentum distribution P(p), defined such that P(p)dp gives the probability that a randomly chosen
particle has its momentum between p and p + dp, is a Gaussian distribution with mean zero and width
equal to Ttarget:

P(p) =
1√

2πmTtarget
exp

(
− p2

2mTtarget

)
. (17)

Consequently, the moments 〈pn〉 ≡
∫ ∞
−∞ dp pnP(p), with n = 1, 2, 3, . . ., satisfy 〈p4〉/〈p2〉2 = 3.49

In the above backdrop, the principal objective of this work is to answer the question: what is50

the effect of inter-particle interactions on the relaxation properties of the Nosé-Hoover dynamics?51

More specifically, considering a system embedded in a d-dimensional space, we ask: do systems with52

long-range interactions, in which the inter-particle interaction decays slower than 1/rd, behave in a53

similar way to short-range systems that have the inter-particle interaction decaying faster than 1/rd?54

How does the timescale over which the phase space distribution relaxes to its canonical equilibrium55

form behave in the two cases, and in particular, is there a system-size dependence in the timescale for56

long-range systems with respect to short-range ones? Studying these issues is particularly relevant and57

timely in the wake of recent surge in interest across physics in long-range interacting (LRI) systems.58

LRI systems may display a notably distinct thermodynamic behavior with respect to short-range59

ones [5–9]. These systems are characterized by a two-body interaction potential V(r) that decays60

asymptotically with inter-particle separation r as V(r) ∼ r−α, with 0 ≤ α ≤ d in d spatial dimensions.61

The limit α → 0 corresponds to the case of mean-field interaction. Examples of LRI systems are62

self-gravitating systems, plasmas, fluid dynamical systems, and some spin systems. One of the63

striking dynamical features resulting from long-range interactions is the occurrence of non-equilibrium64

quasi-stationary states (QSSs) during relaxation of LRI systems towards equilibrium. These states65

have lifetimes that diverge with the number of particles constituting the system, so that in the66

thermodynamic limit, the system remains trapped in QSSs and does not attain equilibrium. Only for a67

finite number of particles do the QSSs eventually evolve towards equilibrium. Even in equilibrium,68

LRI systems may exhibit features such as ensemble inequivalence and a negative heat capacity in the69

microcanonical ensemble that are unusual for short-range systems.70

In this work, we address our aforementioned queries within the ambit of a model system71

comprising classical XY-spins occupying the sites of a one-dimensional periodic lattice and interacting72

via a long-range (specifically, a mean-field interaction in which every spin interacts with every other73

and a short-range (specifically, a nearest-neighbor interaction in which every spin interacts with its74

left and right neighbors) interaction. With an aim to study the equilibrium properties as well as75

relaxation towards equilibrium, we simulate the Nosé-Hoover dynamics of the model by integrating76

the corresponding equations of motion in time. A signature of canonical equilibrium is a single-particle77

momentum distribution that is Gaussian, see Eq. (17). We find that the equilibrium properties78

of our model system evolving under the Nosé-Hoover dynamics coincide with those within the79

canonical ensemble. As regards relaxation towards canonical equilibrium, we observe that starting80

from out-of-equilibrium initial conditions, the average kinetic energy of the system relaxes to its target81

canonical-equilibrium value over a size-independent timescale. However, quite surprisingly, our results82

indicate that under the same conditions and with only long-range interactions present in the system,83

the momentum distribution relaxes to its Gaussian form in equilibrium over a scale that diverges with84

the system size. On adding short-range interactions, the relaxation is found to occur over a timescale85
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that has a much weaker dependence on system size. This system-size dependence vanishes when only86

short-range interactions are present in the system. An implication of such an ultra-slow relaxation87

when only long-range interactions are present in the system is that macroscopic observables other than88

the average kinetic energy when estimated in the Nosé-Hoover dynamics may take an unusually long89

time to relax to its canonical equilibrium value. Our work underlines the crucial role that interactions90

play in deciding the equivalence between Nosé-Hoover and canonical equilibrium.91

The paper is organized as follows. In Section 2, we describe the model of study. In Section 3, we92

obtain the so-called caloric curve of the model within the canonical ensemble, which we eventually93

invoke in later parts of the paper to decide on the equivalence of the equilibrium properties of the94

Nosé-Hoover dynamics and canonical equilibrium. In Section 4, we present results from simulations95

of the Nosé-Hoover dynamics of the model, and discuss the implications and relevance of the results.96

The paper ends with conclusions in Section 5.97

2. Model of study98

Our system of study comprises a one-dimensional periodic lattice of N sites. Each site of the99

lattice is occupied by a unit-inertia rotor characterized by its angular coordinate θj ∈ [0, 2π) and the100

corresponding conjugated momentum pj, with j = 1, 2, . . . , N. One may also think of the rotors as101

representing classical XY-spins. Note that both the θj’s and the pj’s are one-dimensional variables.102

There exist both a long-range (specifically, a global or a mean-field) coupling and a short-range103

(specifically, nearest-neighbor) coupling between the rotors. Thus, a rotor on site j interacts with104

strength J/(2N) with rotors on all the other sites and with strength K with the rotor occupying the105

(j− 1)-th and the (j + 1)-th site. The Hamiltonian of the system is given by [10,11]106

H =
N

∑
j=1

p2
j

2
+

J
2N

N

∑
j,k=1

[
1− cos(θj − θk)

]
+ K

N

∑
j=1

[
1− cos(θj+1 − θj)

]
; θN+1 ≡ θ1, pN+1 ≡ p1. (18)

Note that for K = 0, the Hamiltonian (18) reduces to that of the widely-studied Hamiltonian mean-field107

(HMF) model [12], which is regarded as a paradigmatic model to study statics and dynamics of LRI108

systems [7]. On the other hand, for J = 0, the model (18) reduces to a short-ranged XY model in one109

dimension.110

In the following, we take both the mean-field coupling J and the short-range coupling K to be111

positive, thereby modeling ferromagnetic global and nearest-neighbor couplings. Consequently, both112

the long-range and the short-range coupling between the rotors favor an ordered state in which all the113

rotor angles are equal, thereby minimizing the potential energy contribution to the total energy. Such a114

tendency is however opposed by the kinetic energy contribution whose average in equilibrium may115

be characterized by a temperature by invoking the Theorem of Equipartition. Noting that for a given116

N, the total potential energy is bounded from above while the total kinetic energy is not, one expects117

the system to show in equilibrium an ordered/magnetized phase at low energies/temperatures and a118

disordered/unmagnetized phase at high energies/temperatures. This scenario holds even with K = 0.119

The amount of order in the system is characterized by the XY magnetization

m ≡ 1
N

(
N

∑
j=1

cos θj,
N

∑
j=1

sin θj

)
, (19)

which is a vector whose length m has the thermodynamic value in equilibrium denoted by meq that is120

nonzero in the ordered phase and zero in the disordered phase. For K = 0, the corresponding HMF121

model is known to display a second-order phase transition between a high-temperature unmagnetized122

phase and a low-temperature magnetized phase at the critical temperature Tc = J/2, with the123

corresponding critical energy density being uc = 3J/4 [7]. On the other hand, invoking the Landau’s124

argument for the absence of any phase transition at a finite temperature in a one-dimensional model125
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with only short-range interactions, one may conclude for J = 0 that the corresponding short-ranged126

XY model does not display any phase transitions, though it has been shown to have interesting127

dynamical effects [13]. For general J 6= 0, K 6= 0, when both long-range and short-range interactions128

are present, the model displays a second-order phase transition between an ordered and a disordered129

phase [10,11]. Note that all the mentioned phase transitions are continuous. Although ensemble130

equivalence is not guaranteed for LRI systems, it has been argued that inequivalence arises when one131

has a first-order phase transition in the canonical ensemble, and not when one has a second-order132

transition [14]. Consequently, we may regard the phase diagram of the model (18) to be equivalent133

within microcanonical and canonical ensembles. For an explicit demonstration of ensemble equivalence134

for the model (18), one may refer to Ref. [11].135

In the following section, we will obtain the caloric curve of the model (18) that relates the136

equilibrium internal energy with the equilibrium temperature of the system.137

3. The caloric curve within the canonical ensemble138

As mentioned in the preceding section, the model (18) is known to have equivalent microcanonical139

and canonical ensemble descriptions in equilibrium. Consequently, in obtaining the caloric curve of140

the model, which will be invoked to decide the equivalence between the equilibrium properties of141

the Nosé-Hoover dynamics and canonical equilibrium, it will suffice to restrict our analysis to the142

canonical ensemble description of the model.143

The Langevin/canonical ensemble dynamics (2) for the model (18) comprises the set of144

time-evolution equations145

dθj

dt
= pj,

(20)
dpj

dt
= −γpj +

J
N

N

∑
k=1

sin(θk − θj) + K
[
sin(θj+1 − θj) + sin(θj−1 − θj)

]
+ ηj(t),

with the properties of the noise ηj(t) given by Eq. (3) with D = γT. Within the microcanonical146

ensemble description of the system, the time evolution of the variables {θj, pj} is given by Hamilton147

equations obtained from Eq. (20) by setting γ to zero. The Nosé-Hoover dynamics of the variables148

{θj, pj} is obtained from Eqs. (9) and (10) as149

dθj

dt
= pj,

(21)
dpj

dt
=

J
N

N

∑
k=1

sin(θk − θj) + K
[
sin(θj+1 − θj) + sin(θj−1 − θj)

]
− ζ pj,

where the time evolution of the variable ζ is given by Eq. (12).150

In order to derive the desired caloric curve of the model (18) within the canonical ensemble,
we start with the canonical partition function of the system at temperature T given by ZN ≡∫ (

∏N
j=1 dθjdpj

)
exp[−βH({θj, pj})], with β ≡ 1/T. Using Eq. (18), we get

ZN =

(
2π

β

)N/2
e−βJN/2−βKN

∫ ( N

∏
j=1

dθj

)
exp

[ βJ
2N

{( N

∑
j=1

cos θj

)2
+
( N

∑
j=1

sin θj

)2
}
+ βK

N

∑
j=1

cos(θj+1− θj)
]
.

(22)
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Using the Hubbard-Stratonovich transformation exp(ax2) = 1/(
√

4πa)
∫ ∞
−∞ dz exp

(
− z2

4a + zx
)

; a >151

0 in Eq. (22), we obtain152

ZN =

(
2π

β

)N/2
e−βJN/2−βKN NβJ

2π

∫ ∞

−∞
dz1

∫ ∞

−∞
dz2

∫ ( N

∏
j=1

dθj

)
exp

[
− NβJ

2
(z2

1 + z2
2)

+βJz1

N

∑
j=1

cos θj + βJz2

N

∑
j=1

sin θj + βK
N

∑
j=1

cos(θj+1 − θj)
]
. (23)

Using the invariance of the Hamiltonian (18) under rotation by an equal amount of all the θj’s, it may
be shown that [15]

ZN =

(
2π

β

)N/2
e−βJN/2−βKN NβJ

∫ ∞

0
dz z

∫ ( N

∏
j=1

dθj

)
exp

[
− NβJ

2
z2 + βJz

N

∑
j=1

cos θj + βK
N

∑
j=1

cos(θj+1− θj)
]
.

(24)
In order to proceed further, we consider separately the cases K = 0 and K 6= 0 in the following.153

3.1. K = 0154

For K = 0, Eq. (24) yields

ZN =

(
2π

β

)N/2
NβJ

∫ ∞

0
dz z exp

[
−N

{
βJ
2
(1 + z2)− ln

(∫ 2π

0
dθ exp(βJz cos θ)

)}]
. (25)

In the thermodynamic limit, ZN may be approximated by invoking the saddle-point method to perform
the integration in z on the right hand side; one gets

ZN =

(
2π

β

)N/2
NβJzs exp

[
−N

{
βJ
2
(1 + z2

s )− ln
(∫ 2π

0
dθ exp(βJzs cos θ)

)}]
, (26)

where the saddle-point value zs solves the equation

zs =
I1(βJzs)

I0(βJzs)
, (27)

with In(x) = (1/(2π))
∫ 2π

0 dθ exp(x cos θ) cos(nθ) being the modified Bessel function of first kind155

and of order n. It may be shown by following the arguments given in Ref. [15] that zs is nothing but156

the stationary magnetization meq. Equation (27) has a trivial solution meq = 0 valid at all temperatures,157

while a non-zero solution exists for β ≥ βc = 2/J [7]. In fact, the system shows a continuous transition,158

from a magnetized phase (meq 6= 0) at low temperatures to an unmagnetized phase (meq = 0) at high159

temperatures at the critical temperature Tc = J/2 [7].160

In the thermodynamic limit, the internal energy density of the system u =

− limN→∞(1/N)d ln ZN/dβ is obtained by using Eqs. (26) and (27) as

u =
1

2β
+

J
2

(
1− (meq)2

)
; meq =

I1(βJmeq)

I0(βJmeq)
, (28)

yielding the critical energy density

uc =
3J
4

. (29)

Equation (28) gives the caloric curve of the model (18) at canonical equilibrium for J 6= 0, K = 0.161
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3.2. K 6= 0162

For K 6= 0, Eq. (24) gives163

ZN =

(
2π

β

)N/2
NβJ

∫ ∞

0
dz z exp

[
−NβJ

2
(1 + z2)− βKN

]
ZN ; (30)

ZN ≡
∫ ( N

∏
j=1

dθj

)
exp

[
βJz

N

∑
j=1

cos θj + βK
N

∑
j=1

cos(θj+1 − θj)

]
, (31)

where we may identify the factor ZN with the canonical partition function of a 1d periodic chain of N164

interacting angle-only rotors, where a rotor on each site interacts with strength K with the rotor on the165

left nearest-neighbor and the right nearest-neighbor site, and also with an external field of strength Jz166

along the x direction.167

One may evaluate ZN by rewriting it in terms of a transfer operator T(θ, θ′) as168

ZN =
∫ ( N

∏
j=1

dθj

)
T (θ1, θ2)T (θ2, θ3) . . . T (θN , θ1), (32)

T (θj, θj+1) ≡ exp
[

βJz
{

cos θj + cos θj+1

2

}
+ βK cos(θj+1 − θj)

]
. (33)

Let {λm} denote the set of eigenvalues of the transfer operator T (θ, θ′). In other words, denoting the
eigenfunctions of T (θ, θ′) as fm(θ), we have

∫
dθ′ T (θ, θ′) fm(θ′) = λm fm(θ). In terms of {λm}, we

obtain
ZN = ∑

m
[λm (βJz, βK)]N . (34)

For large N, the sum in Eq. (34) is dominated by the largest eigenvalue λmax = λmax (βJz, βK), yielding

ZN = λN
max. (35)

Substituting Eq. (35) in Eq. (30), and approximating the integral on the right hand side of the latter
by the saddle-point method, one gets

ZN =

(
2π

β

)N/2
NβJzs exp

[
−N

{
βJ
2
(1 + z2

s ) + βK− ln λmax (βJzs, βK)
}]

, (36)

where zs solves the saddle-point equation zs ≡ supz φ̃(β, z), with φ̃(β, z) being the free-energy function:

− φ̃(β, z) ≡ −1
2

ln β− βJ
2
(1 + z2)− βK + ln λmax (βJz, βK) . (37)

The saddle-point equation may thus be written as

zs =
∂ ln λmax (βJz, βK)

∂(βJz)

∣∣∣
z=zs

. (38)

Equation (36) gives the dimensionless free energy per rotor, φ(β) ≡ − limN→∞(ln ZN)/N, as −φ(β) =

supz
[
−φ̃(β, z)

]
, where we have suppressed the dependence of φ(β) on K. We thus have

− φ(β) ≡ −1
2

ln β− βJ
2
(1 + z2

s )− βK + ln λmax (βJzs, βK) . (39)

Note that the free energy at a given temperature has a definite value given by Eq. (39), and is obtained169

by substituting the saddle-point solution zs into the expression for the free-energy function φ̃(β, z).170
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In the thermodynamic limit, the internal energy density of the system u =

− limN→∞(1/N)d ln ZN/dβ is obtained as

u =
1

2β
+

J
2
(1 + z2

s ) + βJzs
dzs

dβ
+ K− d ln λmax(βJz, βK)

dβ

∣∣∣
z=zs

. (40)

Using Eq. (38), and the fact that as for K = 0, the quantity zs is nothing but the stationary magnetization
meq, we get

u =
1

2β
+

J
2

(
1− (meq)2

)
+ βJmeq dmeq

dβ
+ K− K

∂ ln λmax(βJmeq, βK)
∂(βK)

, (41)

with meq satisfying

meq =
∂ ln λmax (βJz, βK)

∂(βJz)

∣∣∣
z=meq

. (42)

To proceed, we need to find λmax(βJz, βK). We consider separately the cases J = 0 and J 6= 0.171

3.2.1. J = 0172

In this case, it may be easily checked that the eigenvalues of T are given by 2π Im(βK) with the
corresponding eigenvector given by plane waves exp(iqθ)/

√
2π [11]. Using I0(x) > I1(x) > I2(x) . . .,

we conclude that λmax(0, βK) = I0(βK). Equation (42) then yields meq = 0, while Eq. (41) gives

u =
1

2β
+ K

(
1− I1(βK)

I0(βK)

)
, (43)

where we have used the result dI0(x)/dx = I1(x). Equation (43) is the desired caloric curve of the173

model (18) within the canonical ensemble for J = 0, K 6= 0.174

3.2.2. J 6= 0175

In this case, not knowing the analytic forms of the eigenvalues of T , we resort to a numerical176

scheme to estimate the largest eigenvalue λmax(βJz, βK). To this end, we discretize the angles over the177

interval [0, 2π) as θ
(aj)

j = aj∆θ, with aj = 1, 2, . . . , P and ∆θ = 2π/P for any large positive integer P178

(we choose P = 30). The operator T (θ, θ′) then takes the form of a matrix of size P× P, whose largest179

eigenvalue may be estimated numerically by employing the so-called power method [16] 2. Noting180

that T (θ, θ′) is a finite-dimensional real square matrix with positive entries, the application of the181

Perron-Frobenius theorem implies the existence of its largest eigenvalue that is real and non-degenerate.182

At given values of T, K, J, z, once λmax(βJz, βK) has been estimated numerically, we compute the183

free-energy function φ̃(β, z) as a function of z by using Eq. (37). We then find numerically the value of184

z at which the computed free-energy function attains its minimum value. As discussed above, this185

minimizer is the equilibrium magnetization of the system at the given values of T, K, J. In order to186

obtain the caloric curve, one has to estimate numerically the derivative ∂ ln λmax(βJmeq, βK)/∂(βK),187

and then use Eq. (41).188

4. Results and discussions189

In this section, we discuss the results on equilibrium as well as relaxation properties of the model190

(18) obtained by performing numerical integration of the Nosé-Hoover equations of motion (21). The191

numerical integration involved using a fourth-order Runge-Kutta method with timestep dt = 0.01.192

2 A FORTRAN90 library that implements the power method and is distributed under the GNU LGPL license is available at
http://people.sc.fsu.edu/~jburkardt/f_src/power_method/power_method.html
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4.1. Results in equilibrium193

Here, we discuss the Nosé-Hoover equilibrium properties for the model (18). The initial condition194

corresponds to the θj’s independently and uniformly distributed in [0, 2π) and the pj’s independently195

sampled from a Gaussian distribution with zero mean and width equal to 0.5. The initial value of the196

parameter ζ is 2.0, while we have taken τ = 0.01. In Fig. 2, we consider the case when only long-range197

interactions are present in the system (J = 1.0, K = 0.0). Panel (a) shows for Ttarget = 2.5 that the198

average kinetic energy relaxes at long times to the value Ttarget/2, as desired. Panel (b) shows for199

the same value of Ttarget that the average internal energy has the same value in the stationary state200

as the one in canonical equilibrium given by Eq. (28); Panel (c) shows the single-particle momentum201

distribution P(p) in the stationary state. We observe that P(p) has the correct canonical-equilibrium202

form of a Gaussian distribution, which further corroborates the property of the Nosé-Hoover dynamics203

that the canonical distribution (16) is a stationary state of the dynamics. Panel (d) shows for a range of204

values of the temperature T = Ttarget that the caloric curve obtained within the Nosé-Hoover dynamics205

in equilibrium coincides with that within the canonical ensemble given by Eq. (28). Panels (a),(b),(c)206

refer to the system size N = 128, while panel (d) refers to two system sizes, namely, N = 128 and207

N = 512. The aforementioned observed properties of the Nosé-Hoover dynamics have been checked208

to hold for (i) the case when only short-range interactions are present in the system (see Fig. 1 that209

corresponds to J = 0.0, K = 1.0), in which case the caloric curve within the canonical ensemble is given210

by Eq. (43), and (ii) when both long- and short-range interactions are present in the system (data not211

shown; see however Fig. 4, panel (c)).212
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Figure 1. Comparison of Nosé-Hoover and canonical equilibrium results for the model (18) with
J = 1.0, K = 0.0 (that is, with only long-range interactions). (a): Variation of the average kinetic energy
density with time. The black line denotes the value Ttarget/2. (b): Variation of the internal energy
density with time. The black line denotes the average internal energy density within the canonical
ensemble given by Eq. (28). (c): Stationary single-particle momentum distribution obtained from
momentum values measured at time t = 5000. The black line denotes a Gaussian distribution with
zero mean and width equal to Ttarget. (d): Caloric curve for two system sizes, N = 128 and N = 512.
The black line shows the caloric curve within the canonical ensemble given by Eq. (28). The data
for the Nosé-Hoover dynamics are generated by integrating the equations of motion (21) using a
fourth-order Runge-Kutta method with timestep equal to 0.01. The initial condition corresponds to the
θj’s independently and uniformly distributed in [0, 2π) and the pj’s independently sampled from a
Gaussian distribution with zero mean and width equal to 0.5. The initial value of the parameter ζ is 2,
while we have taken τ = 0.01.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 September 2017                   doi:10.20944/preprints201709.0091.v1

Peer-reviewed version available at Entropy 2017, 19, 544; doi:10.3390/e19100544

http://dx.doi.org/10.20944/preprints201709.0091.v1
http://dx.doi.org/10.3390/e19100544


12 of 18

0

0.5

1

1.5

2

2.5

3

0.01 0.1 1 10 100 1000

A
ve

ra
ge

 k
in

et
ic

 e
ne

rg
y 

de
ns

ity

Time

J=0.0,K=1.0,N=128,Ttarget=2.5

1

1.5

 2

2.5

3

3.5

4

0.01 0.1 1 10 100 1000

In
te

rn
al

 e
ne

rg
y 

de
ns

ity

Time

J=0.0,K=1.0,N=128,Ttarget=2.5

0

0.05

0.1

0.15

0.2

0.25

-6 -4 -2 0 2 4 6

P
(p

)

Momentum p

J=0.0,K=1.0,Ttarget=2.5

N=128
N=512

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3

In
te

rn
al

 e
ne

rg
y 

de
ns

ity
 u

Temperature T

J=0.0,K=1.0

Isokinetic ensemble,N=128
Isokinetic ensemble,N=512

(c) (d)

(b)(a)

Figure 2. Comparison of Nosé-Hoover and canonical equilibrium results for the model (18) with
J = 0.0, K = 1.0 (that is, with only short-range interactions). (a): Variation of the average kinetic energy
density with time. The black line denotes the value Ttarget/2. (b): Variation of the internal energy
density with time. The black line denotes the average internal energy density within the canonical
ensemble given by Eq. (43). (c): Stationary single-particle momentum distribution obtained from
momentum values measured at time t = 5000. The black line denotes a Gaussian distribution with
zero mean and width equal to Ttarget. (d): Caloric curve for two system sizes, N = 128 and N = 512.
The black line shows the caloric curve within the canonical ensemble given by Eq. (43). The data
for the Nosé-Hoover dynamics are generated by integrating the equations of motion (21) using a
fourth-order Runge-Kutta method with timestep equal to 0.01. The initial condition corresponds to the
θj’s independently and uniformly distributed in [0, 2π) and the pj’s independently sampled from a
Gaussian distribution with zero mean and width equal to 0.5. The initial value of the parameter ζ is 2,
while we have taken τ = 0.01.

4.2. Results out of equilibrium213

Here, we discuss the relaxation properties of the Nosé-Hoover dynamics for the model (18). The214

initial condition corresponds to the so-called water-bag distribution that has both θ and p uniformly215

distributed over given intervals [7]. We consider θj’s to be independently and uniformly distributed in216

[0, 2π) and the pj’s to be independently and uniformly distributed in [−
√

1.5,
√

1.5]. The initial value217

of the parameter ζ is 2.0, while we have taken τ = 1.0.218

Let us start with a discussion of the results in Fig. 3 that corresponds to the case when only219

long-range interactions are present in the system (18). In panel (a), we see that for four different220
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system sizes, the average kinetic energy density relaxes at long times to the target value Ttarget/2221

over a timescale that does not depend on the system size. A Gaussian distribution for the momentum,222

expected in canonical equilibrium, is characterized by a value 3 of the ratio 〈p4〉/〈p2〉2, see Eq. (17).223

We see in panel (b) that in contrast to (a), this ratio however relaxes to the canonical equilibrium224

value over a time that depends on the system size, and which grows with increase of N. Panel (c) shows225

that the long-time magnetization value reached by the Nosé-Hoover dynamics coincides with the226

canonical equilibrium value for all system sizes. On the basis of these results, we conclude that with227

only long-range interactions in the system (18), only the second moment of the momentum distribution228

relaxes to its canonical equilibrium value over a size-independent timescale, while higher moments229

(and consequently, the whole of the momentum distribution) relaxes to their canonical equilibrium230

values over a time that grows with the system size. The latter fact is demonstrated in panel (d) that231

shows for N = 512 the time evolution of the single-particle momentum distribution.232

The feature of a size-independent timescale for the relaxation of the average kinetic energy density233

to its canonical equilibrium value, observed in the case of purely long-range interactions in model234

(18), also holds on adding short-range interactions to the model and when the latter are the only235

interactions present in the system, see Figs. 4(a) and 5(a). Moreover, in all cases, the long-time value236

of the magnetization matches with its canonical equilibrium value, see Figs. 4(c) and 5(c). The most237

significant difference in the relaxation properties that is observed on adding short-range interactions238

may be inferred by comparing panel (b) of Figs. 3 and 4: The very strong size-dependence observed in239

the relaxation of the ratio 〈p4〉/〈p2〉2 to its canonical equilibrium value gets substantially weakened240

on adding short-range interactions with coupling strength as low as K = 0.1 compared to the value241

of the long-range coupling constant J = 1.0. Similar inference may be drawn from a comparison242

of panel (d) of Figs. 3 and 4. This observation has an immediate and an important implication:243

additional short-range interactions speed up the relaxation of the momentum distribution towards244

canonical equilibrium. The aforementioned system-size dependence vanishes on turning off long-range245

interactions, so that the only remnant interactions in the system are the short-range ones, see panels (b)246

and (d) of Fig. 5.247
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Figure 3. Relaxation properties of the Nosé-Hoover dynamics for the model (18) with J = 1.0, K = 0.0
(that is, with only long-range interactions). (a): Variation of the average kinetic energy density with
time, for four different system sizes. The black line denotes the value Ttarget/2. (b): Variation of
the ratio 〈p4〉/〈p2〉2 with time, for four different system sizes. The black line denotes the value 3
corresponding to a Gaussian distribution. (c): Variation of the magnetization with time, again for
four different system sizes. The black line denotes the canonical equilibrium value given by Eq. (27).
(d): Single-particle momentum distribution as a function of time, for system size N = 512. The black
line denotes a Gaussian distribution with zero mean and width equal to Ttarget, Eq. (17). The data
for the Nosé-Hoover dynamics are generated by integrating the equations of motion (21) using a
fourth-order Runge-Kutta method with timestep equal to 0.01. The initial condition corresponds to
the θj’s independently and uniformly distributed in [0, 2π) and the pj’s independently and uniformly
distributed in [−

√
1.5,
√

1.5]. The initial value of the parameter ζ is 2, while we have taken τ = 1.0.
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Figure 4. Relaxation properties of the Nosé-Hoover dynamics for the model (18) with J = 1.0, K = 0.1.
(a): Variation of the average kinetic energy density with time, for four different system sizes. The
black line denotes the value Ttarget/2. (b): Variation of the ratio 〈p4〉/〈p2〉2 with time, for four different
system sizes. The black line denotes the value 3 corresponding to a Gaussian distribution. (c): Variation
of the magnetization with time, again for four different system sizes. The black line denotes the
canonical equilibrium value obtained by the method described in Section 3.2.2. (d): Single-particle
momentum distribution as a function of time, for system size N = 512. The black line denotes a
Gaussian distribution with zero mean and width equal to Ttarget, Eq. (17). The data for the Nosé-Hoover
dynamics are generated by integrating the equations of motion (21) using a fourth-order Runge-Kutta
method with timestep equal to 0.01. The initial condition corresponds to the θj’s independently and
uniformly distributed in [0, 2π) and the pj’s independently and uniformly distributed in [−

√
1.5,
√

1.5].
The initial value of the parameter ζ is 2, while we have taken τ = 1.0.
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Figure 5. Relaxation properties of the Nosé-Hoover dynamics for the model (18) with J = 0.0, K = 1.0
(that is, with only short-range interactions). (a): Variation of the average kinetic energy density with
time, for four different system sizes. The black line denotes the value Ttarget/2. (b): Variation of
the ratio 〈p4〉/〈p2〉2 with time, for four different system sizes. The black line denotes the value 3
corresponding to a Gaussian distribution. (c): Variation of the magnetization with time, again for four
different system sizes. The equilibrium magnetization goes to zero with increase of N as meq ∼ 1/

√
N.

(d): Single-particle momentum distribution as a function of time, for system size N = 512. The black
line denotes a Gaussian distribution with zero mean and width equal to Ttarget, Eq. (17). The data
for the Nosé-Hoover dynamics are generated by integrating the equations of motion (21) using a
fourth-order Runge-Kutta method with timestep equal to 0.01. The initial condition corresponds to
the θj’s independently and uniformly distributed in [0, 2π) and the pj’s independently and uniformly
distributed in [−

√
1.5,
√

1.5]. The initial value of the parameter ζ is 2, while we have taken τ = 1.0.

5. Conclusions248

In this paper, we investigated the relaxation properties of the Nosé-Hoover dynamics of249

a many-body interacting Hamiltonian systems, with an emphasis on the effect of inter-particle250

interactions. The dynamics aims to generate the canonical equilibrium distribution of a system251

at the desired temperature by employing a time-reversible, deterministic dynamics. To pursue our252

study, we considered a representative model comprising N classical XY-spins occupying the sites253

of a one-dimensional periodic lattice. The spins interact with one another via both a long-range254

interaction, modelled as a mean-field interaction in which every spin interacts with every other, and a255

short-range one, modelled as a nearest-neighbor interaction in which every spin interacts with its left256
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and right neighboring spins. We studied the Nosé-Hoover dynamics of the model through N-body257

integration of the corresponding equations of motion. Canonical equilibrium is characterized by a258

momentum distribution that is Gaussian. We found that the equilibrium properties of our model259

system evolving according to Nosé-Hoover dynamics are in excellent agreement with exact analytic260

results for the equilibrium properties derived within the canonical ensemble. Moreover, while starting261

from out-of-equilibrium initial conditions, the average kinetic energy of the system relaxes to its target262

value over a size-independent timescale. However, quite unexpectedly, we found that under the same263

conditions and with only long-range interactions present in the system, the momentum distribution264

relaxes to its Gaussian form in equilibrium over a scale that grows with N. The N-dependence gets265

weaker on adding short-range interactions, and vanishes when the latter are the only inter-particle266

interactions present in the system.267

Viewed from the perspective of LRI systems, the slow relaxation observed within the Nosé-Hoover268

dynamics allows to draw analogy with a similar slow relaxation observed within the microcanonical269

dynamics of isolated LRI systems, a phenomenon that leads to the occurrence of nonequilibrium270

quasistationary states (QSSs) that have lifetimes diverging with the system size [7,17]. Within a kinetic271

theory approach, the QSSs are understood as stable, stationary solutions of the so-called Vlasov272

equation that governs the time evolution of the single-particle phase space distribution. The Vlasov273

equation is obtained as the first equation of the Bogoliubov-Born-Green-Yvon-Kirkwood (BBGKY)274

hierarchy by neglecting the correlation between particle trajectories, with corrections that decrease275

with increase of N. For large but finite N, the eventual relaxation of QSSs towards equilibrium is276

understood as arising due to these finite-N corrections, the so-called collisional terms, to the Vlasov277

equation. In the light of the foregoing discussions, it is evidently pertinent and of immediate interest278

to invoke a kinetic theory approach and investigate in the context of the Nosé-Hoover dynamics of279

long-range systems whether additional short-range interactions play the role of a collisional dynamics280

that speeds up the relaxation of the system towards canonical equilibrium. Work in this direction is in281

progress and will be reported elsewhere.282

The agreement reported in this paper in the value of the average kinetic energy computed in283

canonical equilibrium and within the Nosé-Hoover dynamics is reminiscent of a similar agreement in284

the large-system limit between ensemble and time averages predicted by Khinchin for the so-called285

sum-functions, that is, functions such as the kinetic energy that are sums of single-particle contributions286

[18]. The result was obtained for rarefied gases, which was later observed to also hold for systems with287

short-range interactions [19,20]. Our work hints at the validity of such a result even for long-range288

systems, as is evident from the agreement in the value of the average kinetic energy computed within289

the Nosé-Hoover dynamics and in canonical equilibrium, see Fig. 3(a). This point warrants a more290

detailed investigation left for future studies.291
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