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1 Abstract: We investigate the stationary and dynamic properties of the celebrated Nosé-Hoover
2 dynamics of many-body interacting Hamiltonian systems, with an emphasis on the effect of
s inter-particle interactions. To this end, we consider a model system with both short- and long-range
s interactions. The Nosé-Hoover dynamics aims to generate the canonical equilibrium distribution
s of a system at a desired temperature by employing a set of time-reversible, deterministic equations
s of motion. A signature of canonical equilibrium is a single-particle momentum distribution that is
7 Gaussian. We find that the equilibrium properties of the system within the Nosé-Hoover dynamics
s coincides with that within the canonical ensemble. Moreover, starting from out-of-equilibrium initial
s  conditions, the average kinetic energy of the system relaxes to its target value over a size-independent
1o timescale. However, quite surprisingly, our results indicate that under the same conditions and with
1 only long-range interactions present in the system, the momentum distribution relaxes to its Gaussian
1z form in equilibrium over a scale that diverges with the system size. On adding short-range interactions,
1z the relaxation is found to occur over a timescale that has a much weaker dependence on system
1« size. This system-size dependence of the timescale vanishes when only short-range interactions
15 are present in the system. An implication of such an ultra-slow relaxation when only long-range
16 interactions are present in the system is that macroscopic observables other than the average kinetic
1z energy when estimated in the Nosé-Hoover dynamics may take an unusually long time to relax to its
1 canonical equilibrium value. Our work underlines the crucial role that interactions play in deciding
1o the equivalence between Nosé-Hoover and canonical equilibrium.

20 Keywords: Hamiltonian systems; classical statistical mechanics; ensemble equivalence; long-range
21 interacting systems

> 1. Introduction

)

23 Often one needs in studies in nonlinear dynamics and statistical physics to investigate the
22 dynamical properties of a many-body interacting Hamiltonian system evolving under the condition of
25 a constant temperature. For example, one might be interested in studying the dynamical properties of
26 the system in canonical equilibrium at a certain temperature T, with the temperature being proportional
27 to the average kinetic energy of the system by virtue of the Theorem of Equipartition !. To this end, one
s may devise a dynamics having a temperature Ttarget as a dynamical parameter that is designed to relax

1 In this work, we measure temperatures in units of the Boltzmann constant.
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20 an initial configuration of the system to canonical equilibrium at temperature Ttarget, and then make
so  the choice Tiarget = T. A common practice is to employ a Langevin dynamics, i.e., a noisy, dissipative
s1  dynamics that mimics the interaction of the system with an external heat bath at temperature Tiarget in
;2 terms of a deterministic frictional force and an uncorrelated, Gaussian-distributed random force added
33 to the equation of motion [1]. In this approach, one then tunes suitably the strength of the random
s« force such that the Langevin dynamics relaxes at long times to canonical equilibrium at temperature
55 Trarget- The presence of dissipation renders the dynamics to be irreversible in time. A complementary
36 approach to such a noisy, dissipative dynamics was pioneered by Nosé and Hoover, in which the
sz dynamics is fully deterministic and time-reversible, while achieving the same objective of relaxing the
s system to canonical equilibrium at the desired temperature Tiarget [2,3]; for a review, see Ref. [4]. The
3 time evolution under the condition of relaxation at long times to canonical equilibrium at a given
20 temperature is said to represent isokinetic ensemble dynamics when taking place according to the
a1 Nosé-Hoover equation of motion and to represent Langevin/canonical ensemble dynamics when
.2 taking place following the Langevin equation of motion.

To illustrate in detail the distinguishing feature of the Nosé-Hoover vis-i-vis Langevin dynamics,
consider an interacting N-particle system characterized by the set {g;, 77; } of canonical coordinates and
conjugated momenta. The particles, which we take for simplicity to have the same mass m, interact
with one another via the two-body interaction potential ®({g;}). In the following, we consider g;’s
and 7;’s to be one-dimensional variables for reasons of simplicity; Our analysis however extends
straightforwardly to higher dimensions. The Hamiltonian of the system is given by

£
Hystem = Y = + P ({g;}), M
syste: ]:1 2m ]

a3 where the first term on the right hand side stands for the kinetic energy of the system.

2 In the approach due to Langevin, the dynamical equations of the system are given by
dgj _ 7 dm i 92({g;})
G m E__WE_T+ﬂj(t)' )

where t denotes time, v > 0 is the dissipation constant, while 1 (t) is a Gaussian, white noise satisfying

7j(t) = 0, n;(t)i(¥') = 2D&d(t — t'). ®)

Here, the overbars denote averaging over noise realizations, while D > 0 characterizes the strength of
the noise. The dynamics (2) is evidently not time-reversal invariant. Choosing D = 7 Ttarget €nsures
that the dynamics (2) relaxes at long times to the canonical distribution at Tiarget given by [1]

P({qj/ 7'[]'}) & exp(_Hsystem/Ttarget)/ 4)

a5 in which the kinetic energy density of the system fluctuates around the average value Tiarget /2.
In the approach due to Nosé and Hoover, a degree of freedom s augmenting the set {g;, 77; } is
introduced, which is taken to characterize an external heat reservoir that interacts with the system
through the momenta 71;’s. The Hamiltonian of the combined system is given by

N 7-[2 2
_ ] P
H= ]; sz T + ﬁ + (N + 1) Trarget In's, (5)
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s where Q is the mass and p; is the conjugated momentum of the additional degree of freedom. The
a7 dynamics of the system is given by the following Hamilton equations of motion:

d; 7 dm  9®({g;})

dt  ms?2’ dt oq; '
©
2
ds __Ps dps o N 71’]- Ttarget
dt_Qr dt _];ms3 (N+1) S .

It may be easily checked that unlike (2), the dynamics (6) is invariant under time reversal. In terms of
new variables

pi=+ i=5 )
and rescaled time ;
t= - (8)
se one obtains from the Hamilton equations (6) the following dynamics:
dg; _ pj
i~ m’ ©)
dp;  9®({q;})
o —Ip; 1
ds
Tt )
¢ _ 1 %p?—(N—l—l)T = 1(K(P)—1) (12)
E - é = E target | — p TO s
where K(P) = ]I\i 1 77]2 /(2m) is the kinetic energy, while we have defined
T
Ko=(N+1) target, 2= Q (13)

2 2Ky"

From Egs. (9)-(12), we observe that a complete description of the time evolution of the system is given
in terms of Egs. (9), (10), and (12), without any reference to Eq. (11) for s, so that as far as the description
of the system is concerned, the variable s is an irrelevant one that may be ignored. We will from now
on drop the tilde over time in order not to overload the notation. Let us note that in terms of the
variables p;’s, the Hamiltonian (5) takes the form

H*Np]z D(1g; Qe N+1)T1 14
—];%+ ({gi) + =~ + (N+1)Tlns. (14)

From Eq. (12), we find that in the stationary state (d{/dt = 0), the kinetic energy of the system
equals (N +1) Ttarget /2 (the extra factor of unity takes care of the presence of the additional degree of
freedom s). For large N > 1, we then have the desired result: An ensemble of initial conditions under
the evolution given by Egs. (9), (10), and (12) evolves at long times to a stationary state in which the
average kinetic energy density has the value Tiarget /2. The quantity T in Eq. (12) denotes a relaxation
timescale over which the kinetic energy relaxes to its target value. Beyond the average kinetic energy,
it has been demonstrated by invoking the phase space continuity equation that the distribution

N p?
f X exp [— (Z ZPT/]I”I + CD({q]}) + Q€2/2> /Ttarget] (15)
j=1
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is a stationary state of the Nosé-Hoover dynamics [3]. It then follows that the corresponding stationary
distribution for the system variables {q;, p; } is the canonical equilibrium distribution:

N

2
P({qj,pj}) <exp [— (Zp]+<1><{qj})> /Ttargetl, (16)

= 2m

normalized as [ (H]Ii 1 dqjdpj) P({gj,pj}) = 1. Equation (16) implies that the single-particle
momentum distribution P(p), defined such that P(p)dp gives the probability that a randomly chosen
particle has its momentum between p and p + dp, is a Gaussian distribution with mean zero and width
equal to Ttarget:

P(p) = (17)

__ exp (—pz >

/27t Tiarget 2mTiarget '

« Consequently, the moments (p") = [* dp p"P(p), withn = 1,2,3,. .., satisfy (p*)/(p?)? = 3.
50 In the above backdrop, the principal objective of this work is to answer the question: what is
s the effect of inter-particle interactions on the relaxation properties of the Nosé-Hoover dynamics?
s2 More specifically, considering a system embedded in a d-dimensional space, we ask: do systems with
ss long-range interactions, in which the inter-particle interaction decays slower than 1/7%, behave in a
s« similar way to short-range systems that have the inter-particle interaction decaying faster than 1/r?
ss  How does the timescale over which the phase space distribution relaxes to its canonical equilibrium
s« form behave in the two cases, and in particular, is there a system-size dependence in the timescale for
s long-range systems with respect to short-range ones? Studying these issues is particularly relevant and
se timely in the wake of recent surge in interest across physics in long-range interacting (LRI) systems.
59 LRI systems may display a notably distinct thermodynamic behavior with respect to short-range
s ones [5-9]. These systems are characterized by a two-body interaction potential V(r) that decays
e1 asymptotically with inter-particle separation r as V(r) ~ r~%, with 0 < w < d in d spatial dimensions.
s2 The limit « — 0 corresponds to the case of mean-field interaction. Examples of LRI systems are
es self-gravitating systems, plasmas, fluid dynamical systems, and some spin systems. One of the
e« striking dynamical features resulting from long-range interactions is the occurrence of non-equilibrium
es quasi-stationary states (QSSs) during relaxation of LRI systems towards equilibrium. These states
es have lifetimes that diverge with the number of particles constituting the system, so that in the
ez thermodynamic limit, the system remains trapped in QSSs and does not attain equilibrium. Only for a
e finite number of particles do the QSSs eventually evolve towards equilibrium. Even in equilibrium,
oo LRI systems may exhibit features such as ensemble inequivalence and a negative heat capacity in the
70 microcanonical ensemble that are unusual for short-range systems.

n In this work, we address our aforementioned queries within the ambit of a model system
72 comprising classical XY-spins occupying the sites of a one-dimensional periodic lattice and interacting
= via a long-range (specifically, a mean-field interaction in which every spin interacts with every other
= and a short-range (specifically, a nearest-neighbor interaction in which every spin interacts with its
7 left and right neighbors) interaction. With an aim to study the equilibrium properties as well as
7 relaxation towards equilibrium, we simulate the Nosé-Hoover dynamics of the model by integrating
7z the corresponding equations of motion in time. A signature of canonical equilibrium is a single-particle
7 momentum distribution that is Gaussian, see Eq. (17). We find that the equilibrium properties
7 of our model system evolving under the Nosé-Hoover dynamics coincide with those within the
so canonical ensemble. As regards relaxation towards canonical equilibrium, we observe that starting
a1 from out-of-equilibrium initial conditions, the average kinetic energy of the system relaxes to its target
s2 canonical-equilibrium value over a size-independent timescale. However, quite surprisingly, our results
es indicate that under the same conditions and with only long-range interactions present in the system,
sa the momentum distribution relaxes to its Gaussian form in equilibrium over a scale that diverges with
es the system size. On adding short-range interactions, the relaxation is found to occur over a timescale
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ss that has a much weaker dependence on system size. This system-size dependence vanishes when only
&z short-range interactions are present in the system. An implication of such an ultra-slow relaxation
ss When only long-range interactions are present in the system is that macroscopic observables other than
s the average kinetic energy when estimated in the Nosé-Hoover dynamics may take an unusually long
%0 time to relax to its canonical equilibrium value. Our work underlines the crucial role that interactions
o1 play in deciding the equivalence between Nosé-Hoover and canonical equilibrium.

02 The paper is organized as follows. In Section 2, we describe the model of study. In Section 3, we
s obtain the so-called caloric curve of the model within the canonical ensemble, which we eventually
9« invoke in later parts of the paper to decide on the equivalence of the equilibrium properties of the
9s  Nosé-Hoover dynamics and canonical equilibrium. In Section 4, we present results from simulations
96 of the Nosé-Hoover dynamics of the model, and discuss the implications and relevance of the results.
oz The paper ends with conclusions in Section 5.

9e 2. Model of study

99 Our system of study comprises a one-dimensional periodic lattice of N sites. Each site of the
wo lattice is occupied by a unit-inertia rotor characterized by its angular coordinate 6; € [0,27) and the
11 corresponding conjugated momentum p;, with j = 1,2,..., N. One may also think of the rotors as
w02 representing classical XY-spins. Note that both the 6;’s and the p;’s are one-dimensional variables.
1z There exist both a long-range (specifically, a global or a mean-field) coupling and a short-range
s (specifically, nearest-neighbor) coupling between the rotors. Thus, a rotor on site j interacts with
s strength J/(2N) with rotors on all the other sites and with strength K with the rotor occupying the
16 (j —1)-th and the (j + 1)-th site. The Hamiltonian of the system is given by [10,11]

[1—cos(0j11—0j)]; Ons1 =61, pni1 =p1. (18)

'MZ

e A k3 ]+
=+ = 1 —cos(8; — k)
= 21\1]’,(:1 :

1

1z Note that for K = 0, the Hamiltonian (18) reduces to that of the widely-studied Hamiltonian mean-field
ws (HMF) model [12], which is regarded as a paradigmatic model to study statics and dynamics of LRI
100 systems [7]. On the other hand, for | = 0, the model (18) reduces to a short-ranged XY model in one
1o dimension.

e In the following, we take both the mean-field coupling | and the short-range coupling K to be
u2 positive, thereby modeling ferromagnetic global and nearest-neighbor couplings. Consequently, both
us the long-range and the short-range coupling between the rotors favor an ordered state in which all the
us rotor angles are equal, thereby minimizing the potential energy contribution to the total energy. Such a
us tendency is however opposed by the kinetic energy contribution whose average in equilibrium may
us be characterized by a temperature by invoking the Theorem of Equipartition. Noting that for a given
uz N, the total potential energy is bounded from above while the total kinetic energy is not, one expects
us the system to show in equilibrium an ordered /magnetized phase at low energies/temperatures and a
1o disordered /unmagnetized phase at high energies/temperatures. This scenario holds even with K = 0.

The amount of order in the system is characterized by the XY magnetization

(2 cos 0, 2 sin 6; ) (19)

120 which is a vector whose length m has the thermodynamic value in equilibrium denoted by m*®1 that is
121 nonzero in the ordered phase and zero in the disordered phase. For K = 0, the corresponding HMF
122 model is known to display a second-order phase transition between a high-temperature unmagnetized
s phase and a low-temperature magnetized phase at the critical temperature T, = ]/2, with the
s corresponding critical energy density being u, = 3J/4 [7]. On the other hand, invoking the Landau’s
s argument for the absence of any phase transition at a finite temperature in a one-dimensional model
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126 with only short-range interactions, one may conclude for | = 0 that the corresponding short-ranged
12z XY model does not display any phase transitions, though it has been shown to have interesting
12s  dynamical effects [13]. For general | # 0, K # 0, when both long-range and short-range interactions
120 are present, the model displays a second-order phase transition between an ordered and a disordered
1o phase [10,11]. Note that all the mentioned phase transitions are continuous. Although ensemble
11 equivalence is not guaranteed for LRI systems, it has been argued that inequivalence arises when one
12 has a first-order phase transition in the canonical ensemble, and not when one has a second-order
133 transition [14]. Consequently, we may regard the phase diagram of the model (18) to be equivalent
e within microcanonical and canonical ensembles. For an explicit demonstration of ensemble equivalence
s for the model (18), one may refer to Ref. [11].

136 In the following section, we will obtain the caloric curve of the model (18) that relates the
13z equilibrium internal energy with the equilibrium temperature of the system.

138 3. The caloric curve within the canonical ensemble

139 As mentioned in the preceding section, the model (18) is known to have equivalent microcanonical
wo and canonical ensemble descriptions in equilibrium. Consequently, in obtaining the caloric curve of
11 the model, which will be invoked to decide the equivalence between the equilibrium properties of
w2 the Nosé-Hoover dynamics and canonical equilibrium, it will suffice to restrict our analysis to the
13 canonical ensemble description of the model.

148 The Langevin/canonical ensemble dynamics (2) for the model (18) comprises the set of
s time-evolution equations

de;
at P

(20)
dp; J & : .
G =ity kzl sin(6) — 0;) + K [sin(0;1 — 6;) 4 sin(6;_1 — ;)] + 7;(t),

us with the properties of the noise 17]-(1?) given by Eq. (3) with D = «T. Within the microcanonical
w7 ensemble description of the system, the time evolution of the variables {6;, p;} is given by Hamilton
us equations obtained from Eq. (20) by setting < to zero. The Nosé-Hoover dynamics of the variables
s {0;,p;} is obtained from Egs. (9) and (10) as

de;
a P
(21)

d
P] 2 sin(6 ) + K [sin(0j41 — 6;) +sin(0;_1 — 6;)] — Cpj,
10 where the time evolution of the variable ( is given by Eq. (12).

In order to derive the desired caloric curve of the model (18) within the canonical ensemble,
we start with the canonical partition function of the system at temperature T given by Zy =

I (H]-Zil d9jdpj) exp[—BH ({6}, p;})], with B = 1/T. Using Eq. (18), we get

/
7N = (%;)N 2e—ﬁ]N/Z—ﬁKN/ <]1ﬁd9j> exp [ { ( 2 cosf; ) (Ji{ sin9j>2} +‘BK]§{ cos(0j41— 9]-)}.

(22)
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Using the Hubbard-Stratonovich transformation exp(ax?) = 1/(v/4ma) [, dz exp (—% + zx) ;oa>
01in Eq. (22), we obtain

Zn = (?) e PIN/2- ﬁKNNﬁ] ochzlf d22/< >e><p[ Nf](Z%JrZ%)
N N
+BJz1 Y cosbj + BJza Y sin6; + BK 2 cos(6; 11 — 9]-)]. (23)
j=1 j=1

j=1

Using the invariance of the Hamiltonian (18) under rotation by an equal amount of all the 6;’s, it may
be shown that [15]

- (Z;)N o—BIN/2— /SKNN,BI/ dzz/(HdG)exp[ NBJ 2+ﬁ]chos€ +ﬁKZcos ]H—e])}

(24)
In order to proceed further, we consider separately the cases K = 0 and K # 0 in the following.

31.K=0
For K = 0, Eq. (24) yields

ZN = (?)N/z N,B]/Ooo dz zexp {—N{’B](l +2%) —In (/027T dé exp(ﬁ]zcos@)) H . (25)

In the thermodynamic limit, Zy may be approximated by invoking the saddle-point method to perform
the integration in z on the right hand side; one gets

Zn = (27T>N/2 NBJzs exp {—N{’BI(l +22) — ln( OZn df exp(BJzs c056)> H , (26)

p
where the saddle-point value z; solves the equation
L(BJzs)
Zs = — %, 27
> o(pFs) @

with I,(x) = (1/(2n)) 027r df exp(x cos @) cos(n0) being the modified Bessel function of first kind
and of order n. It may be shown by following the arguments given in Ref. [15] that z; is nothing but
the stationary magnetization m°1. Equation (27) has a trivial solution m®1 = 0 valid at all temperatures,
while a non-zero solution exists for § > B. = 2/] [7]. In fact, the system shows a continuous transition,
from a magnetized phase (m°1 # 0) at low temperatures to an unmagnetized phase (1“1 = 0) at high
temperatures at the critical temperature T, = /2 [7].

In the thermodynamic limit, the internal energy density of the system u =
—limy_0(1/N)dInZy/dp is obtained by using Egs. (26) and (27) as

_ T a2 eq_M
u_2ﬁ+2(1 (me)?); m = BT’ (28)
yielding the critical energy density
Ue = % (29)

Equation (28) gives the caloric curve of the model (18) at canonical equilibrium for J # 0,K = 0.

d0i:10.20944/preprints201709.0091.v1


http://dx.doi.org/10.20944/preprints201709.0091.v1
http://dx.doi.org/10.3390/e19100544

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 September 2017 d0i:10.20944/preprints201709.0091.v1

8 of 18

w2 3.2.K#0
163 For K # 0, Eq. (24) gives

ZN = (2/;)1\’/2 Nﬁ]/ dz zexp [ ‘BI( + 22) —,BKN} ZN; (30)

N N
Zy = / <1_{ d6j> exp lﬁ]z Z;cos 0; + BK Z%COS(G]‘+] - 9]-)] , (31)
= = =

s Where we may identify the factor Zx with the canonical partition function of a 1d periodic chain of N
15 interacting angle-only rotors, where a rotor on each site interacts with strength K with the rotor on the
s left nearest-neighbor and the right nearest-neighbor site, and also with an external field of strength ]z
16z along the x direction.

168 One may evaluate Zy by rewriting it in terms of a transfer operator T(6,6’) as
Zy = / (Hd@) (61,62)T (02,05) ... T (On,01), (32)
cosf; + cos 0,1
T(0;,6;11) =exp {/3]2 {]2]} + BKcos(041 — ;) | - (33)

Let {A;} denote the set of eigenvalues of the transfer operator 7 (6,6’). In other words, denoting the
eigenfunctions of 7(6,0') as f,,(0), we have [d6’ T(0,0)fu(0') = Awfin(6). In terms of {A,,}, we
obtain

Zn =Y [Am (BJz BRIV . (34)

m
For large N, the sum in Eq. (34) is dominated by the largest eigenvalue Amax = Amax (B]z, BK), yielding
= Amax (35)

Substituting Eq. (35) in Eq. (30), and approximating the integral on the right hand side of the latter
by the saddle-point method, one gets

Zn = (Z;T)N/Z NBJzs exp [—N { BT (1 4 22) 4 BK — In A (B, ﬁK)H , (36)

where z; solves the saddle-point equation z; = sup, ¢(8,z), with (B, z) being the free-energy function:

—¢(B,2) E—flnﬁ ‘B](l—i—z ) — BK +1In Amax (BJz, BK) . (37)
The saddle-point equation may thus be written as

. 91n Amax (BJz, BK)
T 9(BJz) =3

Equation (36) gives the dimensionless free energy per rotor, ¢(B) = — limy_,e(InZy) /N, as —¢p(B) =
sup, [—¢(B,z)], where we have suppressed the dependence of ¢(8) on K. We thus have

(38)

—cp([&)z—%lnﬁ ﬁ](l—i—z) BK + In Amax (BJzs, BK) . (39)

1o Note that the free energy at a given temperature has a definite value given by Eq. (39), and is obtained
170 by substituting the saddle-point solution z; into the expression for the free-energy function ¢(B, z).
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In the thermodynamic limit, the internal energy density of the system u =
—limy_0(1/N)dInZy /dp is obtained as

S dzg | g dInAmax(BJz,BK)
u=gp+ (=) +pla gy +K a5 L (40)
Using Eq. (38), and the fact that as for K = 0, the quantity z is nothing but the stationary magnetization
m®l, we get
_ i l _ (€92 eq dm®1 . 0 In Amax (ﬁ]meq, ,BK)

u_2ﬁ+2<1 (m ))‘Fﬁ]ﬂ”l d,B +K—-K 8(/3K) ’ (41)

with m®1 satisfying
91n Amax (BJz, BK)
eq — max ) 42
o(plz)  lz—mes (42)
i To proceed, we need to find Amax(BJz, BK). We consider separately the cases ] = 0 and ] # 0.

172 321 ] - 0

In this case, it may be easily checked that the eigenvalues of 7 are given by 2771, (K) with the
corresponding eigenvector given by plane waves exp(igf)/+/27 [11]. Using Ip(x) > L (x) > L(x)...,
we conclude that Amax (0, BK) = Ip(BK). Equation (42) then yields m°d = 0, while Eq. (41) gives

1 L (BK)
”‘aﬁ+K@£wm)' )

i3 where we have used the result dy(x)/dx = I;(x). Equation (43) is the desired caloric curve of the
1z« model (18) within the canonical ensemble for ] = 0,K # 0.

ws 322.]#0

176 In this case, not knowing the analytic forms of the eigenvalues of 7, we resort to a numerical
17z scheme to estimate the largest eigenvalue Amax(BJz, BK). To this end, we discretize the angles over the
s interval [0,277) as 9]@] ) = ajAG, with aj = 1,2,...,Pand A8 = 27/ P for any large positive integer P
7o (we choose P = 30). The operator 7 (6,60’) then takes the form of a matrix of size P x P, whose largest
o eigenvalue may be estimated numerically by employing the so-called power method [16] 2. Noting
w1 that 7(6,6') is a finite-dimensional real square matrix with positive entries, the application of the
1.2 Perron-Frobenius theorem implies the existence of its largest eigenvalue that is real and non-degenerate.
13 At given values of T,K, ], z, once Amax(BJz, BK) has been estimated numerically, we compute the
s free-energy function ¢(B,z) as a function of z by using Eq. (37). We then find numerically the value of
15z at which the computed free-energy function attains its minimum value. As discussed above, this
1e Mminimizer is the equilibrium magnetization of the system at the given values of T, K, J. In order to
17 obtain the caloric curve, one has to estimate numerically the derivative 0 In Amax(BJm®%, BK)/9(BK),

s and then use Eq. (41).

18 4. Results and discussions

100 In this section, we discuss the results on equilibrium as well as relaxation properties of the model
11 (18) obtained by performing numerical integration of the Nosé-Hoover equations of motion (21). The
12 numerical integration involved using a fourth-order Runge-Kutta method with timestep dt = 0.01.

2 A FORTRANOO library that implements the power method and is distributed under the GNU LGPL license is available at
http:/ /people.sc.fsu.edu/~jburkardt/f_src/power_method /power_method.html
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13 4.1. Results in equilibrium

104 Here, we discuss the Nosé-Hoover equilibrium properties for the model (18). The initial condition
s corresponds to the 6;’s independently and uniformly distributed in [0,277) and the p;’s independently
16 sampled from a Gaussian distribution with zero mean and width equal to 0.5. The initial value of the
1z parameter ( is 2.0, while we have taken T = 0.01. In Fig. 2, we consider the case when only long-range
ws interactions are present in the system (] = 1.0,K = 0.0). Panel (a) shows for Tiarget = 2.5 that the
e average kinetic energy relaxes at long times to the value Tiarget/2, as desired. Panel (b) shows for
200 the same value of Ttarget that the average internal energy has the same value in the stationary state
201 as the one in canonical equilibrium given by Eq. (28); Panel (c) shows the single-particle momentum
202 distribution P(p) in the stationary state. We observe that P(p) has the correct canonical-equilibrium
203 form of a Gaussian distribution, which further corroborates the property of the Nosé-Hoover dynamics
20s  that the canonical distribution (16) is a stationary state of the dynamics. Panel (d) shows for a range of
205 values of the temperature T = Tiarget that the caloric curve obtained within the Nosé-Hoover dynamics
206 in equilibrium coincides with that within the canonical ensemble given by Eq. (28). Panels (a),(b),(c)
20z refer to the system size N = 128, while panel (d) refers to two system sizes, namely, N = 128 and
200 N = 512. The aforementioned observed properties of the Nosé-Hoover dynamics have been checked
200 to hold for (i) the case when only short-range interactions are present in the system (see Fig. 1 that
210 corresponds to | = 0.0, K = 1.0), in which case the caloric curve within the canonical ensemble is given
an by Eq. (43), and (ii) when both long- and short-range interactions are present in the system (data not
212 shown; see however Fig. 4, panel (c)).
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Figure 1. Comparison of Nosé-Hoover and canonical equilibrium results for the model (18) with
J = 1.0,K = 0.0 (that is, with only long-range interactions). (a): Variation of the average kinetic energy
density with time. The black line denotes the value Tiarget/2. (b): Variation of the internal energy
density with time. The black line denotes the average internal energy density within the canonical
ensemble given by Eq. (28). (c): Stationary single-particle momentum distribution obtained from
momentum values measured at time ¢t = 5000. The black line denotes a Gaussian distribution with
zero mean and width equal to Ttarget. (d): Caloric curve for two system sizes, N = 128 and N = 512.
The black line shows the caloric curve within the canonical ensemble given by Eq. (28). The data
for the Nosé-Hoover dynamics are generated by integrating the equations of motion (21) using a
fourth-order Runge-Kutta method with timestep equal to 0.01. The initial condition corresponds to the
0’s independently and uniformly distributed in [0,277) and the p;’s independently sampled from a
Gaussian distribution with zero mean and width equal to 0.5. The initial value of the parameter { is 2,
while we have taken 7 = 0.01.
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Figure 2. Comparison of Nosé-Hoover and canonical equilibrium results for the model (18) with
J = 0.0, K = 1.0 (that is, with only short-range interactions). (a): Variation of the average kinetic energy
density with time. The black line denotes the value Tiarget/2. (b): Variation of the internal energy
density with time. The black line denotes the average internal energy density within the canonical
ensemble given by Eq. (43). (c): Stationary single-particle momentum distribution obtained from
momentum values measured at time ¢t = 5000. The black line denotes a Gaussian distribution with
zero mean and width equal to Ttarget. (d): Caloric curve for two system sizes, N = 128 and N = 512.
The black line shows the caloric curve within the canonical ensemble given by Eq. (43). The data
for the Nosé-Hoover dynamics are generated by integrating the equations of motion (21) using a
fourth-order Runge-Kutta method with timestep equal to 0.01. The initial condition corresponds to the
0’s independently and uniformly distributed in [0,277) and the p;’s independently sampled from a
Gaussian distribution with zero mean and width equal to 0.5. The initial value of the parameter { is 2,
while we have taken 7 = 0.01.

4.2. Results out of equilibrium

Here, we discuss the relaxation properties of the Nosé-Hoover dynamics for the model (18). The
initial condition corresponds to the so-called water-bag distribution that has both 6 and p uniformly
distributed over given intervals [7]. We consider 6;’s to be independently and uniformly distributed in
[0,277) and the p;’s to be independently and uniformly distributed in [—1/1.5,v/1.5]. The initial value
of the parameter ¢ is 2.0, while we have taken T = 1.0.

Let us start with a discussion of the results in Fig. 3 that corresponds to the case when only
long-range interactions are present in the system (18). In panel (a), we see that for four different
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221 system sizes, the average kinetic energy density relaxes at long times to the target value Tiarget/2
222 over a timescale that does not depend on the system size. A Gaussian distribution for the momentum,
223 expected in canonical equilibrium, is characterized by a value 3 of the ratio (p*)/(p?)?, see Eq. (17).
22« We see in panel (b) that in contrast to (a), this ratio however relaxes to the canonical equilibrium
225 value over a time that depends on the system size, and which grows with increase of N. Panel (c) shows
226 that the long-time magnetization value reached by the Nosé-Hoover dynamics coincides with the
227 canonical equilibrium value for all system sizes. On the basis of these results, we conclude that with
228 only long-range interactions in the system (18), only the second moment of the momentum distribution
220 relaxes to its canonical equilibrium value over a size-independent timescale, while higher moments
230 (and consequently, the whole of the momentum distribution) relaxes to their canonical equilibrium
231 values over a time that grows with the system size. The latter fact is demonstrated in panel (d) that
232 shows for N = 512 the time evolution of the single-particle momentum distribution.

233 The feature of a size-independent timescale for the relaxation of the average kinetic energy density
3¢ to its canonical equilibrium value, observed in the case of purely long-range interactions in model
235 (18), also holds on adding short-range interactions to the model and when the latter are the only
236 interactions present in the system, see Figs. 4(a) and 5(a). Moreover, in all cases, the long-time value
237 of the magnetization matches with its canonical equilibrium value, see Figs. 4(c) and 5(c). The most
238 significant difference in the relaxation properties that is observed on adding short-range interactions
230 may be inferred by comparing panel (b) of Figs. 3 and 4: The very strong size-dependence observed in
200 the relaxation of the ratio (p*)/(p?)? to its canonical equilibrium value gets substantially weakened
21 on adding short-range interactions with coupling strength as low as K = 0.1 compared to the value
22 of the long-range coupling constant | = 1.0. Similar inference may be drawn from a comparison
2a3  of panel (d) of Figs. 3 and 4. This observation has an immediate and an important implication:
e« additional short-range interactions speed up the relaxation of the momentum distribution towards
25 canonical equilibrium. The aforementioned system-size dependence vanishes on turning off long-range
26 interactions, so that the only remnant interactions in the system are the short-range ones, see panels (b)
2a7 - and (d) of Fig. 5.
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Figure 3. Relaxation properties of the Nosé-Hoover dynamics for the model (18) with ] = 1.0, K = 0.0
(that is, with only long-range interactions). (a): Variation of the average kinetic energy density with
time, for four different system sizes. The black line denotes the value Ttarget/2. (b): Variation of
the ratio (p*)/(p?)? with time, for four different system sizes. The black line denotes the value 3
corresponding to a Gaussian distribution. (c): Variation of the magnetization with time, again for
four different system sizes. The black line denotes the canonical equilibrium value given by Eq. (27).
(d): Single-particle momentum distribution as a function of time, for system size N = 512. The black
line denotes a Gaussian distribution with zero mean and width equal to Ttarget, Eq. (17). The data
for the Nosé-Hoover dynamics are generated by integrating the equations of motion (21) using a
fourth-order Runge-Kutta method with timestep equal to 0.01. The initial condition corresponds to
the 6;’s independently and uniformly distributed in [0,277) and the p;’s independently and uniformly
distributed in [—+/1.5,/1.5]. The initial value of the parameter { is 2, while we have taken T = 1.0.
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Figure 4. Relaxation properties of the Nosé-Hoover dynamics for the model (18) with | = 1.0,K = 0.1.

(a): Variation of the average kinetic energy density with time, for four different system sizes. The
black line denotes the value Tiarget /2. (b): Variation of the ratio (p*) / (p?)? with time, for four different
system sizes. The black line denotes the value 3 corresponding to a Gaussian distribution. (c): Variation

of the magnetization with time, again for four different system sizes. The black line denotes the

canonical equilibrium value obtained by the method described in Section 3.2.2. (d): Single-particle

momentum distribution as a function of time, for system size N = 512. The black line denotes a

Gaussian distribution with zero mean and width equal to Tiarget, Eq. (17). The data for the Nosé-Hoover

dynamics are generated by integrating the equations of motion (21) using a fourth-order Runge-Kutta

method with timestep equal to 0.01. The initial condition corresponds to the 6;’s independently and
uniformly distributed in [0, 277) and the p;’s independently and uniformly distributed in [-+/1.5, v/1.5].
The initial value of the parameter ( is 2, while we have taken T = 1.0.
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Figure 5. Relaxation properties of the Nosé-Hoover dynamics for the model (18) with ] = 0.0,K = 1.0
(that is, with only short-range interactions). (a): Variation of the average kinetic energy density with
time, for four different system sizes. The black line denotes the value Tiarget/2. (b): Variation of
the ratio (p*)/(p?)? with time, for four different system sizes. The black line denotes the value 3
corresponding to a Gaussian distribution. (c): Variation of the magnetization with time, again for four
different system sizes. The equilibrium magnetization goes to zero with increase of N as m®d ~ 1/+/N.
(d): Single-particle momentum distribution as a function of time, for system size N = 512. The black
line denotes a Gaussian distribution with zero mean and width equal to Ttarget, Eq. (17). The data
for the Nosé-Hoover dynamics are generated by integrating the equations of motion (21) using a
fourth-order Runge-Kutta method with timestep equal to 0.01. The initial condition corresponds to
the 6;’s independently and uniformly distributed in [0,277) and the p;’s independently and uniformly
distributed in [—+/1.5,/1.5]. The initial value of the parameter { is 2, while we have taken T = 1.0.

248 5. Conclusions

249 In this paper, we investigated the relaxation properties of the Nosé-Hoover dynamics of
20 @ many-body interacting Hamiltonian systems, with an emphasis on the effect of inter-particle
21 interactions. The dynamics aims to generate the canonical equilibrium distribution of a system
22 at the desired temperature by employing a time-reversible, deterministic dynamics. To pursue our
23 study, we considered a representative model comprising N classical XY-spins occupying the sites
2« Of a one-dimensional periodic lattice. The spins interact with one another via both a long-range
255 interaction, modelled as a mean-field interaction in which every spin interacts with every other, and a
256 short-range one, modelled as a nearest-neighbor interaction in which every spin interacts with its left
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27 and right neighboring spins. We studied the Nosé-Hoover dynamics of the model through N-body
=ss  integration of the corresponding equations of motion. Canonical equilibrium is characterized by a
20 momentum distribution that is Gaussian. We found that the equilibrium properties of our model
260 system evolving according to Nosé-Hoover dynamics are in excellent agreement with exact analytic
201 results for the equilibrium properties derived within the canonical ensemble. Moreover, while starting
262 from out-of-equilibrium initial conditions, the average kinetic energy of the system relaxes to its target
263 value over a size-independent timescale. However, quite unexpectedly, we found that under the same
26 conditions and with only long-range interactions present in the system, the momentum distribution
265 relaxes to its Gaussian form in equilibrium over a scale that grows with N. The N-dependence gets
266 weaker on adding short-range interactions, and vanishes when the latter are the only inter-particle
267 interactions present in the system.

268 Viewed from the perspective of LRI systems, the slow relaxation observed within the Nosé-Hoover
260 dynamics allows to draw analogy with a similar slow relaxation observed within the microcanonical
20 dynamics of isolated LRI systems, a phenomenon that leads to the occurrence of nonequilibrium
a1 quasistationary states (QSSs) that have lifetimes diverging with the system size [7,17]. Within a kinetic
22 theory approach, the QSSs are understood as stable, stationary solutions of the so-called Vlasov
273 equation that governs the time evolution of the single-particle phase space distribution. The Vlasov
27¢  equation is obtained as the first equation of the Bogoliubov-Born-Green-Yvon-Kirkwood (BBGKY)
275 hierarchy by neglecting the correlation between particle trajectories, with corrections that decrease
276 with increase of N. For large but finite N, the eventual relaxation of QSSs towards equilibrium is
277 understood as arising due to these finite-N corrections, the so-called collisional terms, to the Vlasov
2zs  equation. In the light of the foregoing discussions, it is evidently pertinent and of immediate interest
270 to invoke a kinetic theory approach and investigate in the context of the Nosé-Hoover dynamics of
200 long-range systems whether additional short-range interactions play the role of a collisional dynamics
2a1  that speeds up the relaxation of the system towards canonical equilibrium. Work in this direction is in
22 progress and will be reported elsewhere.

203 The agreement reported in this paper in the value of the average kinetic energy computed in
28 canonical equilibrium and within the Nosé-Hoover dynamics is reminiscent of a similar agreement in
2es  the large-system limit between ensemble and time averages predicted by Khinchin for the so-called
2e6  sum-functions, that is, functions such as the kinetic energy that are sums of single-particle contributions
2e7 [18]. The result was obtained for rarefied gases, which was later observed to also hold for systems with
2es  short-range interactions [19,20]. Our work hints at the validity of such a result even for long-range
200 systems, as is evident from the agreement in the value of the average kinetic energy computed within
200 the Nosé-Hoover dynamics and in canonical equilibrium, see Fig. 3(a). This point warrants a more
201 detailed investigation left for future studies.
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