Objective: CAD/CAM generated ceramic implant abutments have recently attracted interest due to their superior customization possibilities and aesthetic advantages. Despite their widespread clinical use, little information is currently available on their surface topography, however. The transmucosal portion of the abutment shoulder is of particular interest, as it ideally supports soft tissue but minimizes mechanical plaque retention. The aim of this in vitro study was to topographically characterize the trans- and subgingival roughness of CAD/CAM zirconia abutments from different manufacturers and compare them with zirconia stock abutments. Material and Method: The surface topography of eight CAD/CAM zirconia implant abutments (tests) and two prefabricated zirconia stock abutments (controls) was determined using focus variation microscopy. Two points on the abutment shoulder were subjected to profilometric examination. 2D and 3D parameters of roughness were obtained and compared. Results: The surface roughness of all the test abutments exceeded the recommended threshold of Ra = 0.2 µm and therefore exhibited an increased risk of mechanical plaque retention. Obvious differences in surface structure were apparent, allowing conclusions to be drawn about the manufacturing method and subsequent reworking processes. Conclusion: Manually reworking the trans- and submucosal area of the investigated CAD/CAM zirconia abutments appears necessary to fulfil the conditions for optimal surface topography. The Sa value as arithmetic mean, taking the maximum height (Sz value) and surface excess (Sdr) into account, is an essential parameter for assessing the surface topography of implant abutments.
Keywords:
Subject: Chemistry and Materials Science - Surfaces, Coatings and Films
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.