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13 Abstract: Near-infrared spectroscopy (NIRS) was implemented to monitor the moisture content of
14 broadleaf litters. Partial least-squares regression (PLSR) models, incorporating optimal wavelength
15 selection techniques, have been proposed to better predict the litter moisture of forest floor. Three
16 broadleaf litters were used to sample the reflection spectra corresponding the different degrees of
17 litter moisture. Maximum normalization preprocessing technique was successfully applied to
18 remove unwanted noise from the reflectance spectra of litters. Four variable selection methods were
19 also employed to extract the optimal subset of measured spectra for establishing the best prediction

20 model. The results showed that the PLSR model with the peak of beta coefficients method was the
21 best predictor among all candidate models. The proposed NIRS procedure is thought to be a suitable

22 technique for on-the-spot evaluation of litter moisture.

23 Keywords: near-infrared spectroscopy; multivariate analysis; partial least-squares regression; floor
24 litter; optimal wavelength selection

25

26 1. Introduction

27 Floor litter refers to the relatively fresh organic residue on the uppermost layer of soil; it plays
28  an important role in the water dynamics of the forest floor [1]. It can retain water within the layer
29  during storm periods and deplete stored moisture through evaporation [2]. The moisture variation
30  of litter can influence the hydrologic, carbon, and nutrient cycles of forests by altering the wetting
31  and drying phases [3,4]. Moreover, litter moisture content is one of the critical determinants for fire
32 ignition and spread in forests [5].

33 Several attempts have been made to quantitatively measure the moisture variation of floor litter
34 over the past couple of decades [6]. Among them, gravimetric method is the most common technique
35  that determines the moisture amount from the difference in the litter weight of wet and dry
36  conditions [7]. Yet it is a highly cumbersome and labor-intensive measurement.

37 Some researchers have attested the continuous non-destructive techniques for litter moisture
38  measurement. Gillespie and Kidd proposed the electrical impedance grids with mock leaf sensors to
39  monitor leaf wetness of crops [8]. This technique was further improved by Hanson et al. [9]. On the
40  other hand, time-domain reflectometry (TDR) probes have been employed in litter moisture
4]  measurement [10,11]. Ataka et al. developed a rather simple technique to continuously detect
42 moisture content in litters using the modified capacitance sensors [1]. Robichaud and Bilskie
43 developed a commercial device for measuring dead fuel moisture with a frequency domain (FD)
44 sensor [12]. However, these methods exhibit inherently electrical bias and limitations for in situ
45  measurement of litter moisture, because floor litter is highly heterogeneous and porous material with
46  lower density and compactness.
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47 Spectrometry has been adopted to analyze the quality of crops, chemicals and biomaterials.
48  Near-infrared spectroscopy (NIRS) is a promising spectroscopic method that treats the near-infrared
49  (NIR) region of an electromagnetic spectrum, which corresponds to the wavelength range of 750 to
50 2,500 nm [13]. As a molecule has a different absorption frequency in the NIR region due to the
51 vibrational patterns of chemical bonds (O-H, C-H, and N-H), NIRS can detect the special spectrum
52 emitted from the intrinsic components of a test object. The frequency at which a certain vibration
53 occurs is determined by the magnitude of bonds and mass of component atoms. A NIR device
54 structurally consists of a light splitter, such as fiber optic cable, a monochromator, and a detector.
55  Since this simple assembly is relatively easy to implement, NIRS is being widely used in
56 nondestructive quality analysis for food, feed, pharmaceutical, and agricultural industries [14-16].
57 Sometimes NIRS technique is facing a serious difficulty in use. Spectral reflectance could be
58  adulterated with the undesired environment and instrument causes. This undesired influence can
59 reduce the detection accuracy of a prediction model. However, by applying suitable preprocessing
60  techniques, the inappropriate information can largely be eliminated [17]. Preprocessing is a particular
61  data analysis technique that eliminates unwanted noise for enhancing spectral features to clearly
62  represent object characteristics. Rinnan et al. provided an overview of preprocessing techniques
63  widely used in NIRS applications [18].

64 NIR spectra possess complex and overlapping absorption bands, so that mathematical
65  procedures are needed for turning the spectra into meaningful information. Multivariate analysis
66  refers to statistical procedure for analysis of data sets with more than one variable. It is capable of
67  describing how the measured spectral features are related to the property of interest [19,20]. Until
68  now, a number of multivariate techniques, such as partial least-squares regression (PLSR), principal
69  component regression (PCR), and multiple linear regression (MLR), are commonly used to extract
70 quantitative and qualitative information from NIR spectra [21,22].

71 Recently, considerable effort has been made in variable selection on multivariate data analysis.
72 A highly correlated large spectrum can rather reduce the predictive ability of a model. Variable
73 selection is a critical step to establish a reliable and robust model so it extracts a subset of spectral
74 frequencies to produce better prediction results [23,24]. Many mathematical approaches for optimal
75  wavelength selection have been derived from the scientific knowledge on the spectroscopic
76  properties of samples [25].

77 In this study, we developed a non-contact technique to quantitatively monitor the moisture
78  content of broadleaf litters using the NIRS. Floor litter samples were taken from deciduous forests,
79  and gravimetric method was introduced to obtain the reference moisture content of litter samples.
80  PLSR multivariate analysis has been employed to quantitatively predict the moisture content of floor
81  litter. Four different methods were used to extract the optimal wavelength range through model
82  development, and the model performance was also evaluated in conformity with variable selection
83 methods.

84 2. Materials and Methods

85 2.1. Litter Moisture Measurement

86 The NIR spectra were acquired from the current year’s litters, collected in the Seoul National
87  University Arboretum in Seoul, Korea. The broadleaf litters were manually gathered under
88  deciduous trees such as Chinese cork oak (Quercus variabilis), Sawtooth oak (Quercus acutissima), and
89  Mongolian oak (Quercus mongolica). Sampled litters were first sorted to three types according to tree
90  species, and each type of litter was separated into its 11 subsamples to represent different moisture
91  conditions. All samples were immersed in water for 12 h in order to fully saturate, and then placed
92 in a screened plate for a certain times to naturally drip water from samples. The reflectance spectra
93 and litter moisture have been measured from three leaves of each sample at every one hour. The
94  weight of each litter was immediately measured to obtain the wet weight of litter when NIR
95  measurement was done. This process was repeated for all subsamples. After the experiment was
96  completed, all litter samples were placed in an oven at a temperature of 70 °C for 48 h, and measured
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97  the weight of oven-dried litter to obtain the dry weight. The moisture content of litter was calculated
98  based on the gravimetric method as follow:

Moisture content(%) = W Wa s 100 )
Wa

7

99  where ww and wa are the litter weight of wet and oven-dried conditions, respectively.

100 2.2. NIR Spectra Measurement

101 NIR reflectance spectra of litter samples were sampled in spectral range from 904 to 1,707 nm
102 with the NIR spectrometer (CDI-NIR128, Control Development Inc., USA). The tungsten-halogen
103 lamp (LS-1, Ocean Optics, USA) was installed as a light source as shown in Figure 1. The reflectance
104  spectrum was taken at three different positions on the litter surface, and then the averaged values
105  were recorded according to the moisture content of litter samples. The integration time was set to
106 0.25s, and the distance between the sample and a probe was maintained at 1 cm. The reflectance of
107 the measured spectra was adjusted with white-referenced and dark-referenced spectra (Equation (2)).
108  The white-referenced spectrum was acquired from a white Teflon board, while the dark-referenced
109  was measured with a completely blocked fiber optic cable in a dark room.

S —-D
Reflectance(%) = — %100
(%) 2D , @)

110 where Si is the raw reflectance of the i-sample, and D and R represent the raw reflectance of dark-
111 and white- referenced spectra, respectively.

NIR
spectrometer

Optical fiber

112

113 Figure 1. Schematic diagram of NIR spectra measurement.

114 2.3. Multivariate Model Development

115 The pretreatment of raw NIR spectra is the first step for model development and optimization to
116  achieve the better NIR veracity. The instrument and environment causes may lead to sample-to-
117  sample variations such as noise, light scattering, and optical path changes. Generally, spectral
118  preprocessing is strongly demanded to exclude noise components in reflectance spectra. In this study,
119  two scatter correction techniques (multiplicative scatter correction(MSC), standard normal
120 variate(SNV)), three normalization techniques (maximum normalization, mean normalization, range
121 normalization), and three Savitzky-Golay(SG) filters (smoothing, the first- and second-derivative
122 techniques) were used for spectra pretreatment.

123 The PLSR model was also employed to establish the relationship between litter moisture content
124 and reflectance characteristics. PLSR is a classical and widely used statistical method that bears a
125  relation between independent and dependent variables in large data sets. The general structure of
126 ~ PLSR model is written as follow:
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X=TP" +E

Y=TO" +F ©)
127  where X is the n by m matrix of predictors, Y is the n by p matrix of responses, T is the n by 1 matrix
128  of the score matrix, E and F are error terms, and P and Q are the m by 1 and p by 1 loading matrices.
129 The performance of PLSR model is quantitatively assessed with the root mean square error
130 (RMSE) and the coefficient of determination (R?). For calibration purpose, the regression model with
131  asmall RMSE value and a large value of R? could be selected as an appropriate model. In this study,
132 latent variables (LVs) set with the smallest RMSE value was determined through the calibration and
133 validation procedures, and then the prediction model performance was evaluated through the
134 further test process.

135 A calibration model has to be evaluated with a validation set of samples to get an impression of
136  its predictive ability. Model test has sometimes conducted in the NIRS research to further ensure
137  model performance when the calibration and validation have completed. Among 99 spectra dataset,
138 model calibration, validation, and test have conducted from 60, 15, and 24 dataset, respectively. Both
139 preprocessing and regression analysis were done by using MATLAB commercial software (ver.
140  R2016, MathWorks, Natick, MA, USA).

141 2.5. Optimal Wavelength Selection

142 The reflectance spectra, ranging 904 to 1,707 nm, were used in this study for establishing a
143 regression model to predict the moisture content of litter. PLSR technique generally uses the entire
144 range of wavelength’s spectra, but recent studies have employed the most appropriate wavelength.
145 It proved that data analysis involving only a representative part of the spectra can lead to a better
146  prediction performance. Selection of optimal wavelength is to pick carefully the subset of spectral
147  data, which closely relate to the property of the interest. If the number of wavelength bands are
148  greater than that of spectral samples, the predictive model is likely to enhance its capability with the
149  optimal wavelength. In this study, various techniques such as the peak of beta coefficients, variable
150  importance in projection (VIP), bootstrap of beta coefficients, and interval PLS (iPLS) were applied to
151  determine the optimal wavelength from preprocessed spectra information.

152  2.5.1. Peak of Beta Coefficient

153 The peak of beta coefficients (beta-peak method) extracts the optimal wavelength corresponding
154 to the peak of beta coefficients. The beta coefficient, the regression coefficient of PLSR model, is a
155  linear vector between the measured spectra and the predicted values. It measures the contribution of
156  each wavelength set on the model’s predictive ability so as to select the optimum wavelength.

157  2.5.2 Variable Importance in Projection

158 VIP is a method that evaluates the contribution of a variable on the weight matrix of a
159  multivariate analysis such as a PLSR model. It has been widely applied to determine major
160  wavelength bands when the variable matrix X defined in Equation (3) was considered [26]. Lohumi
161  etal. estimated how much the VIP value (Equation 4) could be influenced by the relationship between
162 the dependent variable matrix Y and the independent variable matrix X [27]:

A
PSS, (wy Jw, [ )]
v, = == )

> (85,)
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where vj represents the VIP value, p is the number of variables, SS. is the sum of squares explained
by the a™ component, wx is the weight of at component, and wu is the weight of the at component at
the kt variable.

The variable selection process by a VIP technique is terminated when the calculated VIP value
approaches to the threshold. In general, a threshold value of 1 is set in many studies[28]. In this study,
we compared the accuracies of developed models for selected wavelength sets by adjusting a
threshold value.

2.5.3 Bootstrap of Beta coefficients

The bootstrap of beta coefficients (bootstrap method) is a useful technique to set the confidence
interval, and estimate the significance level. It is mainly used when it is difficult to estimate the
distribution of samples. In the bootstrap method, a new dataset is first obtained by randomly re-
sampling the sample population. Thereafter, statistical values are obtained from the selected data
sets, and then the confidence interval is set [29]. The PLSR-bootstrap method can re-sample the
sample data n times and perform a PLSR for each re-sampled data set to obtain the beta coefficient.
From the distribution of beta coefficients, the confidence interval is obtained according to the
significance level of the beta coefficient of the specific variable. Finally, optimal wavelength is
determined by removing the variables with zero value in its confidence interval. The confidence
interval is computed by

I, =b, *cs, ©)

7

where Ix represents the confidence interval, [77 is the mean of beta coefficients at the kth variable, ¢

is a constant that determines the confidence interval, and Sx is the standard deviation of beta
coefficients at the kth variable.

In equation (5), the constant ¢ is explicitly determined regarding the level of significance. A
higher significance level could select fewer wavelength bands. In this study, the number of re-
sampling is set to 1,000, and the model accuracy with the selected wavelength is evaluated by
changing the c values [30].

2.5.4 Interval PLS

iPLS executes a PLSR model with the wavelength of a specific interval rather than the entire
wavelength band. It removes unnecessary wavelength bands and uses only the certain bands of a
given interval. The interval is repeatedly sampled to achieve the lowest RMSE value. In this study,
the entire wavelength band divided into 20 intervals and PLSR analysis was conducted to acquire the
optimal wavelength by shifting the wavelength range to the right or the left until the smallest RMSE
value was pursued [31].

3. Results

3.1. Reflectance Spectra of Litters

Figure 2 depicts the raw and average NIR reflectance spectra of litter samples in the wavelength
range of 900-1,700 nm prior to the pretreatment. There seems to be a slight variation in all reflectance
spectra through the liter moisture (Figure 2a). Figure 2b illustrates the averaged spectra with different
degrees of litter moisture (0-50%, 50-100%, 100-150%, and 150-200%). The spectral difference
appeared more clearly in Figure 2b. The absorption rate of NIR spectrum increased in the wavelength
range of 1,400-1,500 nm regardless of litter moisture. It is commonly known that NIR spectrum is
mostly absorbed at 980, 1,222, and 1,450 nm wavelength by the overtone and combination of the
vibrational transitions of water molecules [32]. On the NIR reflectance of litters, the absorption
coefficients at 980 and 1,222 nm wavelength were estimated to be less than 1.3 cm™, while the value
was estimated to be 29.8 cm™ at a wavelength of 1,450 nm [32]. Figure 2b exhibits that the reflectivity

d0i:10.20944/preprints201709.0099.v1
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207  of NIR spectrum decreased sharply beyond the wavelength of 1,400 nm and had the lowest value at
208  the wavelength of 1,450 nm for all litter samples.
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211 Figure 2. Near-infrared reflectance spectrum of litter samples prior to preprocessing: (a) raw
212 spectra; (b) averaged spectra.
213 3.2. PLSR model for different preprocessing methods
214 A number of pretreatment techniques for NIR spectra have been tested to achieve better

215  performance in litter moisture determination. Table 1 compares the results of PLSR model with
216  different spectral preprocessing techniques. The entire range of NIR dataset was treated and used to
217  develop PLSR models with the different preprocessing techniques. The performance of the model
218 was evaluated with two statistical criteria, coefficient of determination (R?) and root mean square
219 error (RMSE), between the reference and prediction of litter moisture content. The PLSR models
220  treated by the preprocessing methods of MSC, SNV, maximum normalization, and range
221  normalization have good prediction performance for validation. The test results of the models
222 showed that maximum normalization achieved the highest performance (R 0.922, RMSE:: 15.711),
223 and followed by the model with range normalization preprocessing (Ri2: 0.920, RMSE:: 15.970). Figure
224 3 shows the prediction result of two most highly correlated PLSR models for litter moisture
225  estimation.

226 Table 1. PLSR results with different preprocessing techniques.
Preprocessing Calibration Validation Test

Method LV R& RMSE. R+« RMSE. Re RMSE:

Raw data 9 0.930 12.757 0.920 19.041 0.884 19.170
SG smoothing 8 0.918 13.848 0.915 19.571 0.897 18.103
SG-1st derivative 6 0.918 13.882 0.925 18.376 0.883 19.259
SG-2nd derivative 6 0.937 12.114 0.913 19.792 0.840 22.506
MSC 8 0.926 13.132 0.933 17.432 0914 16.482
SNV 8 0.927 13.069 0.943 16.106 0.915 16.426
Max. normalization 7 0.920 13.699 0.938 16.797 0.922 15.711
Mean normalization 9 0.926 13.149 0.926 18.308 0.892 18.479
Range normalization 7 0.922 13.535 0.931 17.722 0.920 15.970

227
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Figure 3. Comparison of predicted and measured moisture content. The prediction values were taken
from the PLSR model with (a) maximum normalization, and (b) range normalization preprocessing.
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3.3. PLSR models for optimal wavelength selection methods

Four variable selection methods were used to set the optimal wavelength bands from around
800 data set of wavelength (900-1,700 nm). Maximum normalization was used as a pretreatment
technique through this step because the PLSR model incorporating maximum normalization
produced the highest performance in litter moisture estimation. The selected wavelength set was then
input the PLSR model for predicting the moisture content of floor litter. Figure 4 illustrates the beta
coefficients and VIP values of PLSR model derived from the entire wavelength’s spectra. As shown
in Figure 4a, the peak points of beta coefficients were evenly distributed over the entire wavelength
band, and the largest peak point was discovered around 1,450 nm. But, large VIP values are observed
only in the range of 1,400-1,500 nm.

Figure 5 shows the first four weight vectors with respect to equivalent latent variables of the
PLSR model obtained from the entire wavelength’s spectra. The weight vector can imply the
correlation between the measured spectrum and calculated latent variables through PLSR analysis.
It revealed how much the measured spectrum contributed to the formation of corresponding latent
variables. As shown in Figure 5a-d, the highest peak is observed around the wavelength of 1,400
1,500 nm, which is highly correlated with the largest absorption coefficient of a water molecule.
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Figure 4. Beta coefficients (a) and VIP values (b) of the PLSR model with the entire wavelength’s
spectra.
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Figure 5. First four weight vectors with respect to equivalent latent variables of the PLSR model with
the entire wavelength’s spectra: (a) First weight vector; (b) Second weight vector; (c¢) Third weight
vector; (d) Fourth weight vector.

Figure 6 shows the optimal wavelength bands determined by four variable selection methods.
By applying the beta-peak method, 63 optimal wavelength bands corresponding to all peak points of
the beta coefficient were selected, and they were uniformly distributed over the entire wavelength,
as shown in Figure 6a. VIP method was implemented with different threshold values (v=0.7, 1.0, 1.5,
2.0), and the wavelength ranged from 1,375 to 1,577 nm was finally selected for v = 1.0 (Figure 6b). In
the case of the bootstrap method, the significant level constant c was set to four cases (c=1.0, 1.3, 1.6,
1.9). For ¢ = 1.3, the extracted wavelength bands were relatively evenly distributed over the entire
range, as shown in Figure 6c. After applying the iPLS technique with several intervals, 150 variables
were selected in the wavelength range of 1,394-1,543 nm (Figure 6d).
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Figure 6. Optimal wavelength derived by variable selection methods: (a) beta-peak (N = 63); (b) VIP
(v=1.0, N =203); (c) bootstrap (c = 1.3, N =192); (d) iPLS (N = 150).

Table 2 presents the calibration, validation, and test performance of the PLSR models developed
from the optimally selected wavelength’s spectra. Predictive abilities of different models have been
compared against the PLSR model with the entire wavelength’s spectra (hereafter the full PLSR
model). As 63 wavelength bands, selected by the beta-peak method, were input in the PLSR model,
the model could better predict the litter moisture than the full PLSR model. The VIP method also
confirmed that the performance of the PLSR model taken from the 316 spectra showed better
prediction performance (Re: 0.923, RMSE: 15.597) than that of the full PLSR_model. VIP value of 1.5
marked 150 wavelength set among the entire wavelength range, and had a similar ability for litter
moisture estimation (R: 0.920, RMSE:: 15.916) with the entire wavelength PLSR_model.

The bootstrap method was applied to select the optimal wavelength. The PLSR model with 305
spectra data (c = 1.0) showed better capability in data analysis (R 0.927, RMSE:: 15.164), while the
PLSR model with 106 spectra (c = 1.6) also showed similar prediction performance (R 0.918, RMSE«:
16.128) when compared to the full PLSR model. A total of 150 wavelength bands was optimally
selected in the iPLS technique application, and the prediction performance of PLSR model achieved
the R value of 0.918, RMSE: value of 16.115.

As presented in Table 2, the predictive abilities of the PLSR models with reduced wavelength
bands by employing the variable selection methods showed similar or better performance with the
full PLSR_model, excepting only two cases of VIP (v=2.0) and bootstrap method (c=1.9). But, optimal
wavelength selection can improve the prediction accuracy by effectively identifying the best subset
of candidate spectra. It also eliminates unnecessary information so as to enhance the efficiency and
effectiveness of model run. Figure 7 shows the prediction results of the best PLSR models, which
were derived from the optimally selected wavelength’s spectra.
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298 Table 2. PLSR performance comparison with variable selection methods.

No. of Calibration Validation Test
Variables  Rao RMSE- R\ RMSE. Re RMSE:
804 0920  13.699 0938 16797 0922 15711
150 0900 17.825 0930  17.825 0918  16.115
316 0924 13391 0934 17276 0923 15597
203 0905  20.131 0910 20131 0918  16.130
150 0909 14620 0926 18314 0920 15916
40 0.884 16522  0.853 25818  0.859  21.167
305 0919 13795 0941 16392 0927  15.164
192 0916  14.012 0940 16472 0924 15526
106 0.909 14586 0929 17954 0918  16.128
35 0.875 17.1670  0.884 22913  0.878  19.655
63 0918  13.834 0932 17494 0930  14.905

Method LVs

Full PLSR
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302 4. Conclusions

303 Litter refers to the organic residue on the forest floor, and plays an important role in forest water
304  cycle. Litter moisture is one of the critical determinants for evaporation, infiltration, and fire ignition
305  in a forest environment. In this study, the commonly used technique, NIRS, has been implemented
306  to fast, non-destructively monitor the moisture content of broadleaf litters. Several techniques for
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307  data pretreatment and optimal wavelength selection have been tested to establish a reliable and
308  robust multivariate model.

309 Prior to establishing a PLSR model, the pretreatment was conducted to eliminate the unwanted
310  noise in raw NIR spectra. Maximum normalization preprocessing, one of well-known normalization
311  techniques, achieved the best prediction ability in litter moisture estimation among 8 pretreatment
312  methods. The entire wavelength may uphold the whole information of target samples, but the
313 redundant data causes the decline in model accuracy. The peak of beta coefficients seems to be the
314  best variable selector to extract the optimal wavelength bands as to yield the better predictive ability
315  inlitter moisture estimation.

316 The NIRS has been commonly used in both qualitative and quantitative analysis of target
317  samples with respect to the vibrational energy of molecules. The low optical absorbance
318  characteristics of NIR rays facilitates deeper penetration than mid-infrared rays. This optical method
319  has some merits in reducing time-consuming work and supporting reliable results by minimizing the
320  errors that may originate from the quick changes of litter moisture on the spot.

321 The NIRS has also limited ability to resolve noise that is caused by the instrument and
322  environment causes. NIR spectra tends to be highly complex and over-parameterized, which
323 sometime yields a poor prediction. In the face of its drawback, multivariate analysis through variable
324 reduction and proper pretreatment have been successfully introduced in practical uses. It is believed
325  that this research provides with great opportunities for multicomponent analysis of agricultural
326  products and foods, as well as many other scientific sectors, such as life sciences and biomaterial
327  research.
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