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Abstract: Near-infrared spectroscopy (NIRS) was implemented to monitor the moisture content of 13 
broadleaf litters. Partial least-squares regression (PLSR) models, incorporating optimal wavelength 14 
selection techniques, have been proposed to better predict the litter moisture of forest floor. Three 15 
broadleaf litters were used to sample the reflection spectra corresponding the different degrees of 16 
litter moisture. Maximum normalization preprocessing technique was successfully applied to 17 
remove unwanted noise from the reflectance spectra of litters. Four variable selection methods were 18 
also employed to extract the optimal subset of measured spectra for establishing the best prediction 19 
model. The results showed that the PLSR model with the peak of beta coefficients method was the 20 
best predictor among all candidate models. The proposed NIRS procedure is thought to be a suitable 21 
technique for on-the-spot evaluation of litter moisture. 22 

Keywords: near-infrared spectroscopy; multivariate analysis; partial least-squares regression; floor 23 
litter; optimal wavelength selection 24 

 25 

1. Introduction 26 
Floor litter refers to the relatively fresh organic residue on the uppermost layer of soil; it plays 27 

an important role in the water dynamics of the forest floor [1]. It can retain water within the layer 28 
during storm periods and deplete stored moisture through evaporation [2]. The moisture variation 29 
of litter can influence the hydrologic, carbon, and nutrient cycles of forests by altering the wetting 30 
and drying phases [3,4]. Moreover, litter moisture content is one of the critical determinants for fire 31 
ignition and spread in forests [5]. 32 

Several attempts have been made to quantitatively measure the moisture variation of floor litter 33 
over the past couple of decades [6]. Among them, gravimetric method is the most common technique 34 
that determines the moisture amount from the difference in the litter weight of wet and dry 35 
conditions [7]. Yet it is a highly cumbersome and labor-intensive measurement. 36 

Some researchers have attested the continuous non-destructive techniques for litter moisture 37 
measurement. Gillespie and Kidd proposed the electrical impedance grids with mock leaf sensors to 38 
monitor leaf wetness of crops [8]. This technique was further improved by Hanson et al. [9]. On the 39 
other hand, time-domain reflectometry (TDR) probes have been employed in litter moisture 40 
measurement [10,11]. Ataka et al. developed a rather simple technique to continuously detect 41 
moisture content in litters using the modified capacitance sensors [1]. Robichaud and Bilskie 42 
developed a commercial device for measuring dead fuel moisture with a frequency domain (FD) 43 
sensor [12]. However, these methods exhibit inherently electrical bias and limitations for in situ 44 
measurement of litter moisture, because floor litter is highly heterogeneous and porous material with 45 
lower density and compactness. 46 
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Spectrometry has been adopted to analyze the quality of crops, chemicals and biomaterials. 47 
Near-infrared spectroscopy (NIRS) is a promising spectroscopic method that treats the near-infrared 48 
(NIR) region of an electromagnetic spectrum, which corresponds to the wavelength range of 750 to 49 
2,500 nm [13]. As a molecule has a different absorption frequency in the NIR region due to the 50 
vibrational patterns of chemical bonds (O-H, C-H, and N-H), NIRS can detect the special spectrum 51 
emitted from the intrinsic components of a test object. The frequency at which a certain vibration 52 
occurs is determined by the magnitude of bonds and mass of component atoms. A NIR device 53 
structurally consists of a light splitter, such as fiber optic cable, a monochromator, and a detector. 54 
Since this simple assembly is relatively easy to implement, NIRS is being widely used in 55 
nondestructive quality analysis for food, feed, pharmaceutical, and agricultural industries [14–16]. 56 

Sometimes NIRS technique is facing a serious difficulty in use. Spectral reflectance could be 57 
adulterated with the undesired environment and instrument causes. This undesired influence can 58 
reduce the detection accuracy of a prediction model. However, by applying suitable preprocessing 59 
techniques, the inappropriate information can largely be eliminated [17]. Preprocessing is a particular 60 
data analysis technique that eliminates unwanted noise for enhancing spectral features to clearly 61 
represent object characteristics. Rinnan et al. provided an overview of preprocessing techniques 62 
widely used in NIRS applications [18]. 63 

NIR spectra possess complex and overlapping absorption bands, so that mathematical 64 
procedures are needed for turning the spectra into meaningful information. Multivariate analysis 65 
refers to statistical procedure for analysis of data sets with more than one variable. It is capable of 66 
describing how the measured spectral features are related to the property of interest [19,20]. Until 67 
now, a number of multivariate techniques, such as partial least-squares regression (PLSR), principal 68 
component regression (PCR), and multiple linear regression (MLR), are commonly used to extract 69 
quantitative and qualitative information from NIR spectra [21,22]. 70 

Recently, considerable effort has been made in variable selection on multivariate data analysis. 71 
A highly correlated large spectrum can rather reduce the predictive ability of a model. Variable 72 
selection is a critical step to establish a reliable and robust model so it extracts a subset of spectral 73 
frequencies to produce better prediction results [23,24]. Many mathematical approaches for optimal 74 
wavelength selection have been derived from the scientific knowledge on the spectroscopic 75 
properties of samples [25]. 76 

In this study, we developed a non-contact technique to quantitatively monitor the moisture 77 
content of broadleaf litters using the NIRS. Floor litter samples were taken from deciduous forests, 78 
and gravimetric method was introduced to obtain the reference moisture content of litter samples. 79 
PLSR multivariate analysis has been employed to quantitatively predict the moisture content of floor 80 
litter. Four different methods were used to extract the optimal wavelength range through model 81 
development, and the model performance was also evaluated in conformity with variable selection 82 
methods. 83 

2. Materials and Methods 84 

2.1. Litter Moisture Measurement 85 
The NIR spectra were acquired from the current year’s litters, collected in the Seoul National 86 

University Arboretum in Seoul, Korea. The broadleaf litters were manually gathered under 87 
deciduous trees such as Chinese cork oak (Quercus variabilis), Sawtooth oak (Quercus acutissima), and 88 
Mongolian oak (Quercus mongolica). Sampled litters were first sorted to three types according to tree 89 
species, and each type of litter was separated into its 11 subsamples to represent different moisture 90 
conditions. All samples were immersed in water for 12 h in order to fully saturate, and then placed 91 
in a screened plate for a certain times to naturally drip water from samples. The reflectance spectra 92 
and litter moisture have been measured from three leaves of each sample at every one hour. The 93 
weight of each litter was immediately measured to obtain the wet weight of litter when NIR 94 
measurement was done. This process was repeated for all subsamples. After the experiment was 95 
completed, all litter samples were placed in an oven at a temperature of 70 °C for 48 h, and measured 96 
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the weight of oven-dried litter to obtain the dry weight. The moisture content of litter was calculated 97 
based on the gravimetric method as follow: 98 

100(%)content Moisture ×−=
d

dw

w

ww

, 
(1)

where ww and wd are the litter weight of wet and oven-dried conditions, respectively. 99 

2.2. NIR Spectra Measurement 100 
NIR reflectance spectra of litter samples were sampled in spectral range from 904 to 1,707 nm 101 

with the NIR spectrometer (CDI-NIR128, Control Development Inc., USA). The tungsten-halogen 102 
lamp (LS-1, Ocean Optics, USA) was installed as a light source as shown in Figure 1. The reflectance 103 
spectrum was taken at three different positions on the litter surface, and then the averaged values 104 
were recorded according to the moisture content of litter samples. The integration time was set to 105 
0.25 s, and the distance between the sample and a probe was maintained at 1 cm. The reflectance of 106 
the measured spectra was adjusted with white-referenced and dark-referenced spectra (Equation (2)). 107 
The white-referenced spectrum was acquired from a white Teflon board, while the dark-referenced 108 
was measured with a completely blocked fiber optic cable in a dark room. 109 

100(%)eReflectanc ×
−
−=
DR

DSi

, 
(2)

where Si is the raw reflectance of the i-sample, and D and R represent the raw reflectance of dark- 110 
and white- referenced spectra, respectively. 111 

 112 
Figure 1. Schematic diagram of NIR spectra measurement. 113 

2.3. Multivariate Model Development 114 
The pretreatment of raw NIR spectra is the first step for model development and optimization to 115 

achieve the better NIR veracity. The instrument and environment causes may lead to sample-to-116 
sample variations such as noise, light scattering, and optical path changes. Generally, spectral 117 
preprocessing is strongly demanded to exclude noise components in reflectance spectra. In this study, 118 
two scatter correction techniques (multiplicative scatter correction(MSC), standard normal 119 
variate(SNV)), three normalization techniques (maximum normalization, mean normalization, range 120 
normalization), and three Savitzky-Golay(SG) filters (smoothing, the first- and second-derivative 121 
techniques) were used for spectra pretreatment. 122 

The PLSR model was also employed to establish the relationship between litter moisture content 123 
and reflectance characteristics. PLSR is a classical and widely used statistical method that bears a 124 
relation between independent and dependent variables in large data sets. The general structure of 125 
PLSR model is written as follow: 126 
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where X is the n by m matrix of predictors, Y is the n by p matrix of responses, T is the n by 1 matrix 127 
of the score matrix, E and F are error terms, and P and Q are the m by 1 and p by 1 loading matrices. 128 

The performance of PLSR model is quantitatively assessed with the root mean square error 129 
(RMSE) and the coefficient of determination (R2). For calibration purpose, the regression model with 130 
a small RMSE value and a large value of R2 could be selected as an appropriate model. In this study, 131 
latent variables (LVs) set with the smallest RMSE value was determined through the calibration and 132 
validation procedures, and then the prediction model performance was evaluated through the 133 
further test process. 134 

A calibration model has to be evaluated with a validation set of samples to get an impression of 135 
its predictive ability. Model test has sometimes conducted in the NIRS research to further ensure 136 
model performance when the calibration and validation have completed. Among 99 spectra dataset, 137 
model calibration, validation, and test have conducted from 60, 15, and 24 dataset, respectively. Both 138 
preprocessing and regression analysis were done by using MATLAB commercial software (ver. 139 
R2016, MathWorks, Natick, MA, USA). 140 

2.5. Optimal Wavelength Selection 141 
The reflectance spectra, ranging 904 to 1,707 nm, were used in this study for establishing a 142 

regression model to predict the moisture content of litter. PLSR technique generally uses the entire 143 
range of wavelength’s spectra, but recent studies have employed the most appropriate wavelength. 144 
It proved that data analysis involving only a representative part of the spectra can lead to a better 145 
prediction performance. Selection of optimal wavelength is to pick carefully the subset of spectral 146 
data, which closely relate to the property of the interest. If the number of wavelength bands are 147 
greater than that of spectral samples, the predictive model is likely to enhance its capability with the 148 
optimal wavelength. In this study, various techniques such as the peak of beta coefficients, variable 149 
importance in projection (VIP), bootstrap of beta coefficients, and interval PLS (iPLS) were applied to 150 
determine the optimal wavelength from preprocessed spectra information. 151 

2.5.1. Peak of Beta Coefficient 152 
The peak of beta coefficients (beta-peak method) extracts the optimal wavelength corresponding 153 

to the peak of beta coefficients. The beta coefficient, the regression coefficient of PLSR model, is a 154 
linear vector between the measured spectra and the predicted values. It measures the contribution of 155 
each wavelength set on the model’s predictive ability so as to select the optimum wavelength. 156 

2.5.2 Variable Importance in Projection 157 
VIP is a method that evaluates the contribution of a variable on the weight matrix of a 158 

multivariate analysis such as a PLSR model. It has been widely applied to determine major 159 
wavelength bands when the variable matrix X defined in Equation (3) was considered [26]. Lohumi 160 
et al. estimated how much the VIP value (Equation 4) could be influenced by the relationship between 161 
the dependent variable matrix Y and the independent variable matrix X [27]: 162 
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where vj represents the VIP value, p is the number of variables, SSa is the sum of squares explained 163 
by the ath component, wa is the weight of ath component, and wak is the weight of the ath component at 164 
the kth variable. 165 

The variable selection process by a VIP technique is terminated when the calculated VIP value 166 
approaches to the threshold. In general, a threshold value of 1 is set in many studies[28]. In this study, 167 
we compared the accuracies of developed models for selected wavelength sets by adjusting a 168 
threshold value. 169 

2.5.3 Bootstrap of Beta coefficients 170 
The bootstrap of beta coefficients (bootstrap method) is a useful technique to set the confidence 171 

interval, and estimate the significance level. It is mainly used when it is difficult to estimate the 172 
distribution of samples. In the bootstrap method, a new dataset is first obtained by randomly re-173 
sampling the sample population. Thereafter, statistical values are obtained from the selected data 174 
sets, and then the confidence interval is set [29]. The PLSR-bootstrap method can re-sample the 175 
sample data n times and perform a PLSR for each re-sampled data set to obtain the beta coefficient. 176 
From the distribution of beta coefficients, the confidence interval is obtained according to the 177 
significance level of the beta coefficient of the specific variable. Finally, optimal wavelength is 178 
determined by removing the variables with zero value in its confidence interval. The confidence 179 
interval is computed by 180 

kkk csbI ±= , (5)

where Ik represents the confidence interval, 
kb  is the mean of beta coefficients at the kth variable, c 181 

is a constant that determines the confidence interval, and Sk is the standard deviation of beta 182 
coefficients at the kth variable. 183 

In equation (5), the constant c is explicitly determined regarding the level of significance. A 184 
higher significance level could select fewer wavelength bands. In this study, the number of re-185 
sampling is set to 1,000, and the model accuracy with the selected wavelength is evaluated by 186 
changing the c values [30]. 187 

2.5.4 Interval PLS 188 
iPLS executes a PLSR model with the wavelength of a specific interval rather than the entire 189 

wavelength band. It removes unnecessary wavelength bands and uses only the certain bands of a 190 
given interval. The interval is repeatedly sampled to achieve the lowest RMSE value. In this study, 191 
the entire wavelength band divided into 20 intervals and PLSR analysis was conducted to acquire the 192 
optimal wavelength by shifting the wavelength range to the right or the left until the smallest RMSE 193 
value was pursued [31]. 194 

3. Results 195 

3.1. Reflectance Spectra of Litters 196 
Figure 2 depicts the raw and average NIR reflectance spectra of litter samples in the wavelength 197 

range of 900-1,700 nm prior to the pretreatment. There seems to be a slight variation in all reflectance 198 
spectra through the liter moisture (Figure 2a). Figure 2b illustrates the averaged spectra with different 199 
degrees of litter moisture (0–50%, 50–100%, 100–150%, and 150–200%). The spectral difference 200 
appeared more clearly in Figure 2b. The absorption rate of NIR spectrum increased in the wavelength 201 
range of 1,400–1,500 nm regardless of litter moisture. It is commonly known that NIR spectrum is 202 
mostly absorbed at 980, 1,222, and 1,450 nm wavelength by the overtone and combination of the 203 
vibrational transitions of water molecules [32]. On the NIR reflectance of litters, the absorption 204 
coefficients at 980 and 1,222 nm wavelength were estimated to be less than 1.3 cm−1, while the value 205 
was estimated to be 29.8 cm−1 at a wavelength of 1,450 nm [32]. Figure 2b exhibits that the reflectivity 206 
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of NIR spectrum decreased sharply beyond the wavelength of 1,400 nm and had the lowest value at 207 
the wavelength of 1,450 nm for all litter samples. 208 

        209 

(a)                                    (b)                                     210 
Figure 2. Near-infrared reflectance spectrum of litter samples prior to preprocessing: (a) raw 211 

spectra; (b) averaged spectra. 212 

3.2. PLSR model for different preprocessing methods 213 

A number of pretreatment techniques for NIR spectra have been tested to achieve better 214 
performance in litter moisture determination. Table 1 compares the results of PLSR model with 215 
different spectral preprocessing techniques. The entire range of NIR dataset was treated and used to 216 
develop PLSR models with the different preprocessing techniques. The performance of the model 217 
was evaluated with two statistical criteria, coefficient of determination (R2) and root mean square 218 
error (RMSE), between the reference and prediction of litter moisture content. The PLSR models 219 
treated by the preprocessing methods of MSC, SNV, maximum normalization, and range 220 
normalization have good prediction performance for validation. The test results of the models 221 
showed that maximum normalization achieved the highest performance (Rt2: 0.922, RMSEt: 15.711), 222 
and followed by the model with range normalization preprocessing (Rt2: 0.920, RMSEt: 15.970). Figure 223 
3 shows the prediction result of two most highly correlated PLSR models for litter moisture 224 
estimation. 225 

Table 1. PLSR results with different preprocessing techniques. 226 

Preprocessing 
Method LVs 

Calibration Validation Test 

Rc2 RMSEc Rv2 RMSEv Rt2 RMSEt 

Raw data 9 0.930 12.757 0.920 19.041 0.884 19.170 
SG smoothing 8 0.918 13.848 0.915 19.571 0.897 18.103 
SG-1st derivative 6 0.918 13.882 0.925 18.376 0.883 19.259 
SG-2nd derivative 6 0.937 12.114 0.913 19.792 0.840 22.506 
MSC 8 0.926 13.132 0.933 17.432 0.914 16.482 
SNV 8 0.927 13.069 0.943 16.106 0.915 16.426 

Max. normalization 7 0.920 13.699 0.938 16.797 0.922 15.711 
Mean normalization  9 0.926 13.149 0.926 18.308 0.892 18.479 
Range normalization 7 0.922 13.535 0.931 17.722 0.920 15.970 

 227 
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`  
(a) 

 
(b) 

Figure 3. Comparison of predicted and measured moisture content. The prediction values were taken 228 
from the PLSR model with (a) maximum normalization, and (b) range normalization preprocessing. 229 

3.3. PLSR models for optimal wavelength selection methods 230 
Four variable selection methods were used to set the optimal wavelength bands from around 231 

800 data set of wavelength (900–1,700 nm). Maximum normalization was used as a pretreatment 232 
technique through this step because the PLSR model incorporating maximum normalization 233 
produced the highest performance in litter moisture estimation. The selected wavelength set was then 234 
input the PLSR model for predicting the moisture content of floor litter. Figure 4 illustrates the beta 235 
coefficients and VIP values of PLSR model derived from the entire wavelength’s spectra. As shown 236 
in Figure 4a, the peak points of beta coefficients were evenly distributed over the entire wavelength 237 
band, and the largest peak point was discovered around 1,450 nm. But, large VIP values are observed 238 
only in the range of 1,400–1,500 nm. 239 

Figure 5 shows the first four weight vectors with respect to equivalent latent variables of the 240 
PLSR model obtained from the entire wavelength’s spectra. The weight vector can imply the 241 
correlation between the measured spectrum and calculated latent variables through PLSR analysis. 242 
It revealed how much the measured spectrum contributed to the formation of corresponding latent 243 
variables. As shown in Figure 5a–d, the highest peak is observed around the wavelength of 1,400–244 
1,500 nm, which is highly correlated with the largest absorption coefficient of a water molecule.  245 

 246 

 
(a) 

 
(b) 

Figure 4. Beta coefficients (a) and VIP values (b) of the PLSR model with the entire wavelength’s 247 
spectra. 248 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. First four weight vectors with respect to equivalent latent variables of the PLSR model with 249 
the entire wavelength’s spectra: (a) First weight vector; (b) Second weight vector; (c) Third weight 250 
vector; (d) Fourth weight vector. 251 

Figure 6 shows the optimal wavelength bands determined by four variable selection methods. 252 
By applying the beta-peak method, 63 optimal wavelength bands corresponding to all peak points of 253 
the beta coefficient were selected, and they were uniformly distributed over the entire wavelength, 254 
as shown in Figure 6a. VIP method was implemented with different threshold values (v = 0.7, 1.0, 1.5, 255 
2.0), and the wavelength ranged from 1,375 to 1,577 nm was finally selected for v = 1.0 (Figure 6b). In 256 
the case of the bootstrap method, the significant level constant c was set to four cases (c = 1.0, 1.3, 1.6, 257 
1.9). For c = 1.3, the extracted wavelength bands were relatively evenly distributed over the entire 258 
range, as shown in Figure 6c. After applying the iPLS technique with several intervals, 150 variables 259 
were selected in the wavelength range of 1,394–1,543 nm (Figure 6d). 260 

 261 

 262 

 263 

 264 

 265 

 266 

 267 

 268 
 269 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Optimal wavelength derived by variable selection methods: (a) beta-peak (N = 63); (b) VIP 270 
(v = 1.0, N = 203); (c) bootstrap (c = 1.3, N = 192); (d) iPLS (N = 150). 271 

Table 2 presents the calibration, validation, and test performance of the PLSR models developed 272 
from the optimally selected wavelength’s spectra. Predictive abilities of different models have been 273 
compared against the PLSR model with the entire wavelength’s spectra (hereafter the full PLSR 274 
model). As 63 wavelength bands, selected by the beta-peak method, were input in the PLSR model, 275 
the model could better predict the litter moisture than the full PLSR model. The VIP method also 276 
confirmed that the performance of the PLSR model taken from the 316 spectra showed better 277 
prediction performance (Rt2: 0.923, RMSEt: 15.597) than that of the full PLSR_model. VIP value of 1.5 278 
marked 150 wavelength set among the entire wavelength range, and had a similar ability for litter 279 
moisture estimation (Rt2: 0.920, RMSEt: 15.916) with the entire wavelength PLSR_model. 280 

The bootstrap method was applied to select the optimal wavelength. The PLSR model with 305 281 
spectra data (c = 1.0) showed better capability in data analysis (Rt2: 0.927, RMSEt: 15.164), while the 282 
PLSR model with 106 spectra (c = 1.6) also showed similar prediction performance (Rt2: 0.918, RMSEt: 283 
16.128) when compared to the full PLSR model. A total of 150 wavelength bands was optimally 284 
selected in the iPLS technique application, and the prediction performance of PLSR model achieved 285 
the Rt2 value of 0.918, RMSEt value of 16.115. 286 

As presented in Table 2, the predictive abilities of the PLSR models with reduced wavelength 287 
bands by employing the variable selection methods showed similar or better performance with the 288 
full PLSR_model, excepting only two cases of VIP (v = 2.0) and bootstrap method (c = 1.9). But, optimal 289 
wavelength selection can improve the prediction accuracy by effectively identifying the best subset 290 
of candidate spectra. It also eliminates unnecessary information so as to enhance the efficiency and 291 
effectiveness of model run. Figure 7 shows the prediction results of the best PLSR models, which 292 
were derived from the optimally selected wavelength’s spectra. 293 

 294 
 295 
 296 
 297 
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Table 2. PLSR performance comparison with variable selection methods. 298 

Method LVs No. of 
Variables 

Calibration Validation Test 

Rc2 RMSEc Rv2 RMSEv Rt2 RMSEt

Full PLSR 7 804 0.920 13.699 0.938 16.797 0.922 15.711 
iPLS 7 150 0.900 17.825 0.930 17.825 0.918 16.115 
VIP    v = 0.7 7 316 0.924 13.391 0.934 17.276 0.923 15.597 

 v = 1.0 7 203 0.905 20.131 0.910 20.131 0.918 16.130 
 v = 1.5 7 150 0.909 14.620 0.926 18.314 0.920 15.916 
    v = 2.0 7 40 0.884 16.522 0.853 25.818 0.859 21.167 

Boots
-trap  
 
 

c = 1.0 7 305 0.919 13.795 0.941 16.392 0.927 15.164 
c = 1.3 7 192 0.916 14.012 0.940 16.472 0.924 15.526 
c = 1.6 7 106 0.909 14.586 0.929 17.954 0.918 16.128 
c = 1.9 7 35 0.875 17.1670 0.884 22.913 0.878 19.655 

Beta-peak 6 63 0.918 13.834 0.932 17.494 0.930 14.905 

 299 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Comparison of the PLSR results with variable selection methods: (a) beta-peak; (b) VIP; (c) 300 
bootstrap; (d) iPLS. 301 

4. Conclusions 302 
Litter refers to the organic residue on the forest floor, and plays an important role in forest water 303 

cycle. Litter moisture is one of the critical determinants for evaporation, infiltration, and fire ignition 304 
in a forest environment. In this study, the commonly used technique, NIRS, has been implemented 305 
to fast, non-destructively monitor the moisture content of broadleaf litters. Several techniques for 306 
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data pretreatment and optimal wavelength selection have been tested to establish a reliable and 307 
robust multivariate model. 308 

Prior to establishing a PLSR model, the pretreatment was conducted to eliminate the unwanted 309 
noise in raw NIR spectra. Maximum normalization preprocessing, one of well-known normalization 310 
techniques, achieved the best prediction ability in litter moisture estimation among 8 pretreatment 311 
methods. The entire wavelength may uphold the whole information of target samples, but the 312 
redundant data causes the decline in model accuracy. The peak of beta coefficients seems to be the 313 
best variable selector to extract the optimal wavelength bands as to yield the better predictive ability 314 
in litter moisture estimation. 315 

The NIRS has been commonly used in both qualitative and quantitative analysis of target 316 
samples with respect to the vibrational energy of molecules. The low optical absorbance 317 
characteristics of NIR rays facilitates deeper penetration than mid-infrared rays. This optical method 318 
has some merits in reducing time-consuming work and supporting reliable results by minimizing the 319 
errors that may originate from the quick changes of litter moisture on the spot. 320 

The NIRS has also limited ability to resolve noise that is caused by the instrument and 321 
environment causes. NIR spectra tends to be highly complex and over-parameterized, which 322 
sometime yields a poor prediction. In the face of its drawback, multivariate analysis through variable 323 
reduction and proper pretreatment have been successfully introduced in practical uses. It is believed 324 
that this research provides with great opportunities for multicomponent analysis of agricultural 325 
products and foods, as well as many other scientific sectors, such as life sciences and biomaterial 326 
research. 327 
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