

1 *Type of the Paper (Article)*

2 **Rosetta Mission: Electron Scattering Cross Sections—** 3 **Data Needs and Coverage in BEAMDB Database**

4 **Bratislav P. Marinković ^{1,*}, Jan Hendrik Bredehöft ², Veljko Vujčić ³, Darko Jevremović ³ and**
5 **Nigel J. Mason ⁴**

6 ¹ Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia;
7 braislav.marinkovic@ipb.ac.rs

8 ² Universität Bremen, Fachbereich 2 (Biologie/Chemie), Institute for Applied and Physical Chemistry,
9 Leobener Straße 5, 28359 Bremen, Germany; jhbredhoefft@uni-bremen.de

10 ³ Astronomical Observatory Belgrade, Volgina 7, 11000 Belgrade, Serbia; veljko@aob.rs ; darko@aob.rs

11 ⁴ Department of Physical Sciences, The Open University, MK7 6AA, Milton Keynes, UK;
12 N.J.Mason@open.ac.uk

13 * Correspondence: braislav.marinkovic@ipb.ac.rs; Tel.: +381-11-316-0882

14 **Abstract:** The emission of [O I] lines in the coma of Comet 67P/Churyumov-Gerasimenko during
15 the Rosetta mission have been explained by electron impact dissociation of water rather than the
16 process of photodissociation. This is the direct evidence for the role of electron induced processing
17 has been seen on such a body. Analysis of other emission features is handicapped by a lack of
18 detailed knowledge of electron impact cross sections which highlights the need for a broad range of
19 electron scattering data from the molecular systems detected on the comet. In this paper we present
20 an overview of the needs for electron scattering data relevant for the understanding of observations
21 in coma, the tenuous atmosphere and on the surface of 67P/Churyumov-Gerasimenko during the
22 Rosetta mission. The relevant observations for elucidating the role of electrons come from optical
23 spectra, particle analysis using the ion and electron sensors and mass spectrometry measurements.
24 To model these processes electron impact data should be collated and reviewed in an electron
25 scattering database and an example is given in the BEAMD, which is a part of a larger consortium
26 of Virtual Atomic and Molecular Data Centre – VAMDC.

27 **Keywords:** electron scattering; cross sections; Rosetta mission; atomic and molecular databases

29 **1. Introduction**

30 The Rosetta spacecraft was launched in 2004 as a part of the European Space Agency (ESA) space
31 program, with the mission to rendez-vous with, orbit and place a lander upon periodic comet
32 67P/Churyumov-Gerasimenko. Rosetta was in orbit with the cometary nucleus from 2014 to
33 September 2016 during which time it was able to closely examine how the coma of the comet and the
34 frozen comet's surface changed relative to distance from the Sun. On November 2014 Rosetta
35 dispatched a lander, Philae, which touched down on the comet's surface and recorded, for the first
36 time, in situ data from the surface. This pioneering mission has provided us with new and unexpected
37 data that are changing our understanding of the structure and chemistry of cometary systems and
38 their role in the evolution of our solar system and possible origins of life on Earth. For example, the
39 D to H ratio in cometary water ice is very different from that on Earth and, among the other similar
40 findings, challenges the hypothesis that water on Earth was brought by cometary impact [1].

41 In this paper we will review another intriguing and unexpected result from the Rosetta mission
42 namely the role of electron induced dissociation in the comet's coma. The data needed to model
43 electron processes in cometary coma and its possible relevance to the formation, but also the
44 dissociation and fragmentation of molecules observed by Rosetta instruments will be discussed
45 together with the current data available and the databases in which such data may be found.

46 **2. Rosetta instruments and their observation of electron scattering processes in the cometary
47 coma**

48 Rosetta orbiter carried eleven different complex scientific instruments, while the Philae lander
49 had ten instruments. Only those that are immediately relevant for the case study of the role of
50 electrons in comas and the detection of more complex species that may be formed by electron induced
51 chemistry will be reviewed here.

52 *2.1. FUV emissions measured by the ALICE instrument*

53 ALICE was a far-ultraviolet (FUV) imaging spectrograph that could specially resolve spectra in
54 the range from 70 to 205 nm. Coma emission and the reflected solar spectrum from the nucleus were
55 recorded using ALICE throughout the Rosetta encounter. The coma was identified by a spectrum
56 that contains several features that are weak in the solar spectrum and do not appear in the reflected
57 light from the nucleus [2]. Beside strong hydrogen Lyman lines, lines from oxygen multiplets at 98.9,
58 115.2, 130.4 and 135.6 nm were observed, as were weak multiplets from carbon C I lines at 156.1 and
59 165.7 nm and emission bands coming from CO. The surprise was the O I line at 135.6 nm, originated
60 from the forbidden transition $^5S - ^3P$ since this is usually not seen in comas. The presence of this line
61 and the intensity ratio of H I and O I multiplets is characteristic of the process of electron dissociative
62 excitation of water molecules [3] and led Feldman et al. [2] to establish that electron collisions with
63 H₂O is the dominant source of these emissions. Similarly they attributed C I emissions to electron
64 dissociative excitation of CO₂. The relative contribution of the UV and electron impact to the
65 dissociation processes are dependent on the location with respect to the nucleus and the heliocentric
66 distance as discussed in [4,5].

67 *2.2. Observations from the OSIRIS instrument*

68 OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) was one of Rosetta's
69 major imaging systems equipped with a wide-angle camera (WAC) and a series of narrow band filters
70 covering range from 245 to 640 nm and two broad band filters, green and red, covering the spectra
71 up to 720 nm. This instrument recorded coma emission lines and specifically targeted to the
72 transitions of O, OH, CN, CS, NH, and NH₂. The mapping of water distribution was possible
73 indirectly through observations of O I and OH bandpass filters. The O I filter covers the forbidden
74 transitions from the O I (2p⁴) ¹D state which is populated directly by photodissociation of H₂O
75 molecules, while the OH filter covers the (0–0) band of the A ²S⁺ - X ²P transition of OH, centered at
76 about 308.5 nm, which is excited almost entirely by fluorescence of sunlight as pointed out in [6]. The
77 O I ¹D state can be also populated from the transition from the O I (2p⁴) ¹S state. Within the CN filter
78 lies an emission line B²S⁺ – X²S⁺ (0, 0) at 388 nm, within the NH₂ filter there is a wide emission band
79 $\tilde{\Lambda}$ ²A₁ – X ²B₁ (0, 10, 0), and the NH filter covers the NH A³P₁ – X³S⁻ (0–0) transition [6].

80 From this data Bodewits et al. [6] derived column densities and calculated global production
81 rates using the standard Haser model. They found that the water production rates derived from OH
82 are larger than those derived from [O I], OH and [O I] photolysis. Indeed they analysed all production
83 rates and found a much larger drop in water production rates than diurnal variation can explain.
84 Therefore they concluded that the photo-dissociation and fluorescence could solely explain the
85 processes resulting in the OH, [O I], CN, and NH emission observed in the inner coma and that the
86 fragments might emanate from different parent species and/or be formed by other processes [6]. One
87 additional process is electron induced dissociation of water, when including this in their model a
88 much better fit was obtained, indeed electron driven dissociation of water was found to be dominant
89 in agreement with Feldman et al. [2].

90 *2.3. Detection of Organic molecules on the comet surface – COSAC mass spectrometry*

91 The COSAC (COmetary SAMpling and Composition) experiment and Ptolemy were two gas
92 analysers on the Philae lander built to monitor the chemical composition of the surface of comet 67P.
93 Due to difficulties in landing Philae was not able to deploy all of its instruments as planned and the

94 drill could not be deployed to collect samples for in-situ analysis. However, seven measurements
 95 were made by both COSAC and Ptolemy during Philae's hopping and at its final landing site in a so-
 96 called 'sniff mode' that had no active sampling, but rather just ionized whatever molecules were
 97 present in the ionization chamber of the mass spectrometer. The sample with the richest data was
 98 acquired a few minutes after the first touchdown with subsequent decay of signal strength in the
 99 other six measurements. Both instruments measured a nearly identical decay of both the water (m/z
 100 18) and CO (m/z 28) peaks. However, in the COSAC measurements the peak at m/z 44 decays much
 101 slower than all the other ion species, including the water peak and, the m/z 44 peak also decays much
 102 slower in the COSAC measurements than in the Ptolemy data. From these results it has been
 103 concluded that COSAC analyzed a regolith sample from the cometary nucleus in situ while Ptolemy
 104 measured cometary gas from the ambient coma [7].

105 The compounds detected by COSAC are listed in Table 1. All of the larger molecules can be
 106 formed from the smaller compounds carbon monoxide (CO), methane (CH₄), water (H₂O) and
 107 ammonia (NH₃) by simple addition reactions [8]. The m/z 44 peak measured by COSAC was likely
 108 dominated by organic species, e.g from acetaldehyde (C₂H₄O), formamide (HCONH₂) and acetamide
 109 (CH₃CONH₂), whereas the peak measured by Ptolemy was interpreted to be mostly due to CO₂.
 110 Recently, a comparison and comparative analysis of the Rosetta mass spectrometers
 111 (COSAC/Ptolemy/ROSINA) that puts some question mark on the presence of some of the nitrogen-
 112 bearing species was presented [9]. Ptolemy measurements confirmed many of the species observed
 113 by COSAC and through observation of regular peaks in the observed mass distributions indicated
 114 the presence of a sequence of compounds with additional -CH₂- and -O- groups (mass/charge ratios
 115 14 and 16, respectively) which confirms COSAC's observations of acetaldehyde and may be
 116 explained by the presence of a radiation-induced polymer at the surface. Ptolemy measurements also
 117 indicated an apparent absence of aromatic compounds such as benzene and neither H₂S nor SO₂ were
 118 observed [10]. Ammonia believed to be the precursor of N containing compounds was not
 119 unambiguously detected by either Ptolemy or COSAC, probably due to its tendency to adsorb on
 120 stainless steel surface.

121 **Table 1:** List of molecules identified on the comet nucleus of comet 67P by the COSAC instrument
 122 [8]. Abundances are given normalized to water, which is the most abundant compound.

Name of compound	Sum formula	Abundance wrt water
Methane	CH ₄	0.5%
Water	H ₂ O	100%
Hydrogen cyanide	HCN	0.9%
Carbon monoxide	CO	1.2%
Methylamine	CH ₃ NH ₂	0.6%
Acetonitrile	CH ₃ CN	0.3%
Isocyanic acid	HNCO	0.3%
Acetaldehyde	CH ₃ CHO	0.5%
Formamide	HCONH ₂	1.8%
Ethylamine	C ₂ H ₅ NH ₂	0.3%
Methyl isocyanate	CH ₃ NCO	1.3%
Acetone	CH ₃ COCH ₃	0.3%
Propionaldehyde	C ₂ H ₅ CHO	0.1%
Acetamide	CH ₃ CONH ₂	0.7%
Glycolaldehyde	CH ₂ OHCHO	0.4%
Ethylene glycol	HOC ₂ H ₄ OH	0.2%

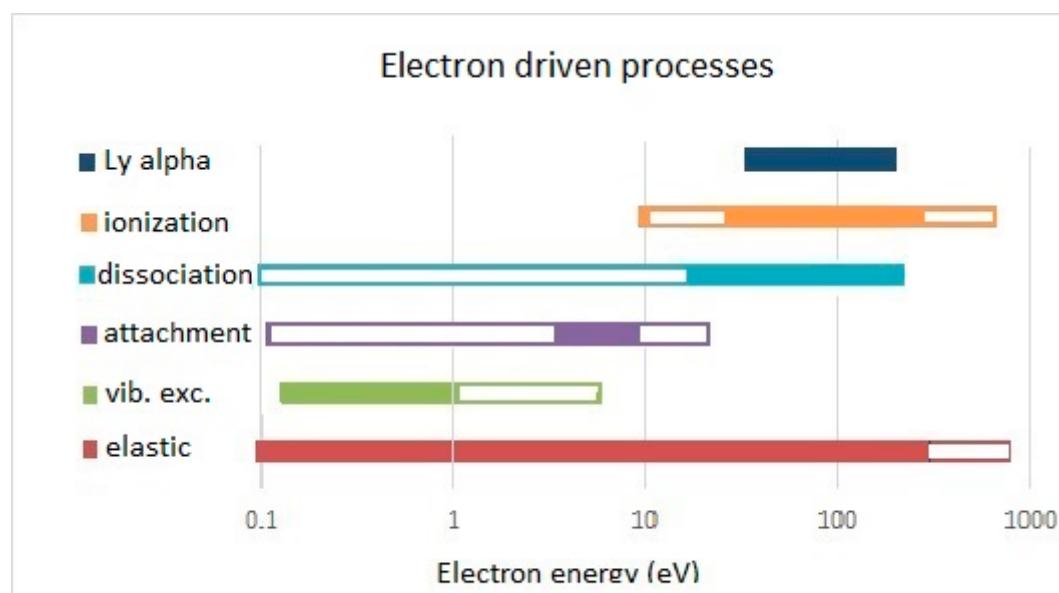
123 Recent experiments on the irradiation of ice mixtures reveal that many of the larger molecules
 124 can be formed by electron bombardment, often at low energies and this will be discussed further in

125 Section 5. Indeed bombardment and dissociation of ice species has been proposed as a route by which
126 molecular oxygen can form. One of the most unexpected observations of Rosetta through the Rosina
127 instrument was the detection of molecular oxygen as the fourth most abundant gas in the atmosphere
128 of comet 67P. Oxygen is reactive so it was felt that it is unlikely to survive long periods in space. The
129 amount of molecular oxygen detected showed a strong relationship to the amount of water measured
130 at any given time, suggesting that their origin on the nucleus and release mechanism are linked and
131 that irradiation of water ice leading to oxygen production and storage in the ice is a plausible
132 mechanism for oxygen formation on a comet [11].

133 *2.4. Electrons in the Cometary coma*

134 That there are copious amounts of electrons to induce such dissociative excitation was confirmed
135 by ion and electron sensors (RPC-IES) on the Rosetta craft. Concentrations of particles and their time
136 evolution in inner coma plasma was measured by Rosetta Plasma Consortium (RPC) [12] using a set
137 of sensors developed for this purpose. The Ion and Electron Sensor (IES) was an electrostatic plasma
138 analyzer that covered an energy/charge range from 1 eV/e to 22 keV/e with a resolution of 4% [13].
139 The sensor provided 3D ion and electron distributions over the whole measured energy range. It was
140 capable of simultaneously measuring electrons and positive ions with the single entrance aperture
141 owing to two back-to-back top-hat geometry analyzers. The LAP instrument (Langmuir probes)
142 measured the plasma density in the range of ($10^0 - 10^6 \text{ cm}^{-3}$), electron temperature ($10^2 - 10^5 \text{ K}$) and
143 plasma flow velocity (up to 10^4 ms^{-1}). The LAP also measured the AC electric field up to 8 kHz [14].
144 The LAP was complemented by the Mutual Impedance Probe, MIP which probes the plasma and
145 measured the natural plasma frequency which yields the electron density in the range from 2 cm^{-3} to
146 $1.5 \times 10^5 \text{ cm}^{-3}$ and temperature from 30 K to 10^6 K [15].

147 Depending on the comet distance from the Sun, both the solar wind and solar radiation interact
148 with its nucleus and inner coma shielded by comet's own atmosphere and ionosphere. Cometary ions
149 are created by photoionization of neutral species, mainly like H_2O and CO_2 and their products from
150 photodissociation, and by charge transfer with solar wind protons [16]. Solar wind electrons in
151 interplanetary space typically have Maxwellian distribution functions with thermal energies of
152 several eV to tens of eV [13]. This energy distribution of electrons differs from one created by
153 photoionization of cometary neutrals by solar radiation in the cometary comas at certain distances
154 from the Sun. Electrons of cometary origin are mainly the product of photochemistry, originating
155 from direct photoionization and from Auger processes. They are thermalized by collisions, elastic
156 and inelastic.


157 The electron density in the coma was measured complementary by the RPC Langmuir Probe
158 (LAP) and Mutual Impedance Probe (MIP). The first findings of the spatial distribution of the plasma
159 near comet 67P/CG showed a highly structured pattern that indicated an origin from local ionization
160 of neutral gas. The electron density fell off with distance as $1/r$ in the range from 8 km from the nucleus
161 up to 260 km [17]. Edberg et al. [17] concluded that this is in accord with a model in which the
162 ionization of a neutral gas is expanding radially from the comet nucleus and when there is no
163 significant recombination or other loss source for the plasma. However, they warned that the
164 observed data have a large scatter around fitted $1/r$ curve and that results could be an average effect
165 of combination of transport electric fields and solar wind.

166 From such data the suprathermal energy distribution of electrons could be derived. The electron
167 energy distribution near the comet depends on the comet distance from perihelion and mass loading
168 process when the atoms and molecules in the cometary coma are photoionized and then interact with
169 the solar wind flow. It spans from the energy distribution of the solar wind itself to the modified
170 distribution where electrons are significantly decelerated as a consequence of magnetic field causing
171 regions to pile -up. The mass loading process is connected to the outgassing rate of the comet. The
172 formation of suprathermal electrons which are accelerated from a few eV upward to hundreds of eV,
173 thus can play an important role in the electron driven chemistry of the comet. The Rosetta IES sensor
174 recorded the presence of suprathermal electrons at larger distances than expected from the previous

175 models of such weakly outgassing comets [18]. The observed electron energy distributions change by
 176 reducing a heliocentric distance from pure solar wind distribution to non-Maxwellian one that
 177 include suprathermal electrons showing maxima at energies from 10 eV to 300 eV [18]. Clark et al.
 178 [18] hypothesize that the most likely mechanisms of creating accelerated electron distributions are
 179 heating by waves generated by the pick-up ion instability, and the mixing of cometary
 180 photoelectrons, secondaries and solar wind electrons.

181 Further statistical analysis of Rosetta IES sensor recordings by performing fitting procedures
 182 that involve two separate sub-populations of electrons below and above 8.6 eV mean energy [19]
 183 revealed different relationships between their density and temperature and possible mechanisms of
 184 creating suprathermal electrons. Broiles et al. [19] suggested that electrons above 8.6 eV are being
 185 heated by waves driven by counter streaming solar wind protons. This conclusion arises from the
 186 observations that the population of electrons above 8.6 eV correlates well with the density of local
 187 neutrals, while the sub-population below 8.6 eV is dominated by the local magnetic field strength.
 188 Recently, Deca et al. [20] have used a fully 3D kinetic model to simulate the ion and electron dynamics
 189 of the solar wind interaction with a weakly outgassing comet 67P. They used a detailed kinetic
 190 treatment of the electron dynamics in order to cover energy distribution of electrons and to identify
 191 the origin of the warm and suprathermal electrons.

192 Electron energy ranges that correspond to the relevant processes in electron collisions with
 193 atoms and molecules are shown in Figure 1. The elastic cross section is dominating over low electron
 194 energies and usually is prominent even at higher energies where the ionization cross section becomes
 195 comparable in magnitude. Vibrational excitations are important at low energies but they also extend
 196 to higher energies due to resonance decay. Attachment and dissociation processes are relevant in
 197 certain domains, in water between 6 to 9 eV and 20 to 200 eV, respectively (see the summery figure
 198 of cross sections in [3]), but due to dissociative electron attachment (DEA) these processes may extend
 199 to very low energies. The production of radiation due to de-excitation depends on excitation energy
 200 levels. For water molecule production of Lyman alpha radiation has a high cross section in the
 201 electron energy range from 50 to 200 eV.

202

203 **Figure 1.** Electron energy ranges that correspond to the relevant processes in collisions with atoms
 204 and molecules. Full color correspond to the specific case of water (data taken from Itikawa and Mason
 205 [3]) while the open bars are extended ranges that correspond to the majority of atomic species: red,
 206 elastic scattering; green, vibrational excitations; violet, attachment; blue, dissociation; orange,
 207 ionization; darkblue, Lyman alpha.

208 **3. Atomic and molecular data needed for analysing electron scattering processes relevant to**
209 **Comet 67P**

210 Despite the evidence for electron induced processes in comets many of the discrete collision
211 processes necessary to quantify such electron driven chemistry remain uncertain. In order to develop
212 a predictive model of cometary coma and the comet's 'atmosphere' it is necessary to assemble a
213 'database' of relevant electron collision processes with the different atomic and molecular species
214 observed (or indeed inferred) from Rosetta. As discussed above Rosetta's ROSINA, as well as
215 Ptolemy and COSAC on the Philae lander, have revealed a rich chemical inventory that would
216 require a large atomic and molecular physics database to model all possible processes. However if a
217 sensitivity analysis is performed the number of important species contributing to the model may be
218 reduced to a minimum (more manageable) number of reactions. The dominant molecules are water,
219 CO and CO₂. The presence of HCN as the source of CN radicals and ammonia as source of NH and
220 NH₂ is widely accepted while the simple hydrocarbons C₂H₂ and C₂H₆ are assumed to be the source
221 of C₂, indeed C₂H₆ concentrations were unusually high in comet 67P [21]. Methane has been identified
222 in many comets and is found in comet 67P. As discussed above several oxygen containing species
223 were detected and apart from the ubiquitous water methanol CH₃OH may be an important primary
224 compound. The primary source of sulphur compounds may be H₂S but 67P is depleted in all other
225 sulphur bearing species (CS₂, OCS and SO₂) compared to other comets [22]. Thus in developing an
226 electron chemistry model of comet 67P it is necessary to have a good data base for electron
227 interactions with H₂O, CO, CO₂, CH₄, C₂H₆, CH₃OH, NH₃, HCN and H₂S. The status of such a
228 database will be discussed below but first it is necessary to understand the corollary for a 'good'
229 database.

230 *3.1 Databases*

231 Many databases exist in order to assemble datasets and communicate them to different
232 audiences. The NIST database collection (<https://srdata.nist.gov/gateway/gateway?dblist=0>) is one of
233 the best known providing details of the structure, spectroscopy and fundamental parameters
234 (ionization and dissociation energies) of many atoms and molecules. The need for large datasets has
235 led to several communities investing in establishing data centres which assemble and maintain
236 databases. For example, the fusion community has, for several decades, compiled databases in order
237 to model plasmas in tokamak reactors and to provide data for diagnostic tools used in such plasmas.
238 Another example of large collection of collisional data is the LXCaT database [23] that provides
239 electron and ion scattering cross sections, swarm parameters (mobility, diffusion coefficient, etc.),
240 reaction rates, energy distribution functions, etc. and other data required for modeling low
241 temperature plasmas. Similarly the astronomical community has needed large databases to interpret
242 its observations, these include not only spectroscopic databases but also databases of chemical
243 reaction rates (e.g. KIDA [24]) are necessary to understand the rich inventory of molecules that have
244 been observed in the interstellar medium.

245 Many databases are simple collections of data but more recently the design and operation of
246 databases has been refined. The development of IT tools has allowed data to be provided on-line,
247 downloadable in a range of formats and allows new data to be added quickly, ensuring that the data
248 is up to date. Previously data was reviewed and published in journal reviews which once published
249 became gradually out of date until the next review, often a decade later (e.g. [25]). The opportunity
250 to add new data quickly not only ensures that the latest data is adopted by the community but also
251 reduces the likelihood of fragmentation amongst the community with different groups using
252 different data sets in accord with their knowledge (or more commonly lack of knowledge) of the data
253 available.

254 Simple assembly of data alone is not, however, the most effective form of databases. The 'user'
255 community requires guidance as to what data to adopt. Users rarely have the necessary experience
256 to select one dataset over another and therefore each may choose different sets, leading to systematic
257 problems. For example if different datasets are used in different models, cross comparison of such

258 models is difficult and it may be hard to distinguish between the different physical and chemical
259 hypotheses in different models from the data used in the model to explore such effects. Therefore
260 databases should provide 'recommended data' which is the data that the expert community
261 providing such data believes is the optimal data reflecting state of the art measurements or
262 calculations. These values can be updated as new data becomes available. However, when changing
263 recommended data, it is essential to ensure that it is still 'consistent' For example in presenting a
264 comprehensive set of electron impact cross sections the individual cross sections (elastic and inelastic
265 (including ionization excitation etc.) should, when summed, be consistent with the recommended
266 data for total cross sections. Databases should also present data with stated estimates of uncertainties,
267 particularly when presenting its own composite data from several different datasets.

268 *3.2 VAMDC and BEAMDB databases*

269 The Virtual Atomic and Molecular Data Centre - (VAMDC) and Belgrade Electron Atom and
270 Molecule Database – (BEAMDB) are two examples of new generation of databases. The VAMDC
271 Consortium is a worldwide consortium which federates atomic and molecular databases through an
272 e-science infrastructure to provide easy access to data from different databases via a single portal
273 <http://portal.vamdc.eu>. About 90% of the inter-connected databases are focused on data that are used
274 for the interpretation of astronomical spectra and for modelling in many fields of astrophysics and
275 astrochemistry, although recently the VAMDC Consortium has connected databases from the
276 radiation damage and the plasma communities which makes it suitable for medical and industrial
277 applications [26]. While VAMDC does not itself select and analyse data it ensures data from its
278 component databases are accessible in a single format and ascribe to general good practices as
279 discussed above. The VAMDC Consortium includes new databases and services on a case by case
280 basis during annual general scientific and technical meetings.

281 VAMDC provides its data in a XSAMS output. XSAMS is an XML representation of an atomic
282 and molecular data model. The system allows for distributed querying of data via the VAMDC-TAP
283 protocol, an implementation-agnostic standard, where data providers can build their models in their
284 own fashion and map them to the VAMDC model via a dedicated dictionary [27].

285 The Belgrade Electron Atom and Molecule Database – (BEAMDB) [28] is an application,
286 database and a VAMDC node which contains data for elementary processes of electron scattering by
287 atoms and molecules. The database covers collisional data of electron interactions with atoms and
288 molecules in the form of differential and integrated cross sections as well as energy loss spectra. The
289 data is stored in a relational (MySQL) database, upon a static model specifically suited to this dataset
290 but easily extendable. There have already been several migrations of the model, the latest of which is
291 an extension to enable storing non-neutral molecules. Currently, there are 22 species stored in the
292 database (11 atoms and 11 molecules), presented in 71 states, involved in 59 collision processes. The
293 web interface (<http://servo.aob.rs/emol>) enables on-site querying of data via an AJAX-enabled web
294 form. The application is implemented in Django, a Python web framework and hosted on an Apache
295 web server at the Astronomical Observatory in Belgrade.

296 The BEAMDB is a collisional database where several types of collisions are included: Elastic,
297 Electronic Excitation, (Total) Inelastic, Ionization, and Total Scattering as well as electron
298 spectroscopic data such as Energy-loss Spectra and Threshold Photoelectron Spectra. Cross sections
299 are of several different kinds: Differential, Integral, Total, Momentum Transfer, Viscosity. Specific
300 data that are maintained in the BEAMDB are differential cross sections (DCS) for elastic scattering
301 and excitation of atoms and molecules. These are 3D entries since DCS depend on both electron
302 impact energy and scattering angle. This requires two X columns while the Y column is also
303 associated with the column representing uncertainty of data points. An example of the XSAMS
304 output of such kind of data for He excitation is shown in Figure 2.

305

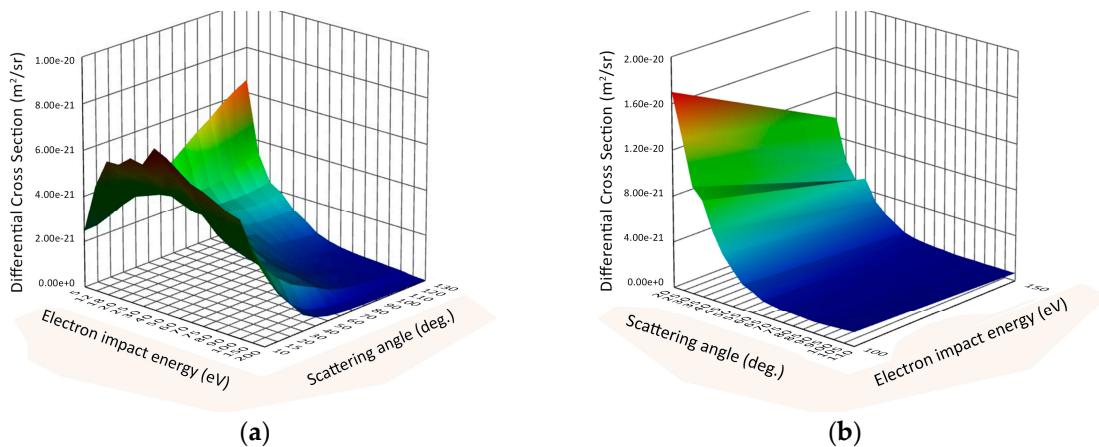

306

Figure 2. XSAMS output table for differential cross section data for He electron excitation.

Producing a plot of DCS data is not available at the current stage of database development, but such data can be visualized by using either VAMDC portal or alternatively the RADAM (RADiation DAMage) database portal (<http://radamdb.mbnresearch.com/>). The general structure of RADAM databases covers electron/positron interactions, ionic and photonic interactions, multiscale radiation

311 damage phenomena and radiobiological phenomena occurring at different time, spatial and energy
 312 scales in irradiated targets [29]. Examples of DCS surfaces for elastic electron scattering by helium
 313 atom and formamide (CH_3NO) molecule are shown in Figure 3 (a) and (b), respectively.

314

315 **Figure 3.** DCS surfaces as retrieved from RADAM database [29] for elastic electron scattering by: (a)
 316 He atom – data points are taken from ref. [30]; (b) Formamide molecule – data points are taken from
 317 ref. [31].

318 Initially BEAMDB was designed to maintain data of electron collisions with neutral species,
 319 atoms and molecules mainly in their ground state and exceptionally in excited state. However, by
 320 broadening the scope toward astrophysical applications, more specifically to the processes of comas
 321 that involve electrons, the database has been upgraded to include electron collisions with ions. The
 322 most recent data set included in BEAMDB is the one of electron ionisation cross sections of CN^+
 323 cations [32]. In the next few months BEAMDB will expand to include many more molecular systems
 324 including those needed to study the electron chemistry of comet 67P.

325 **4. Electron scattering processes and cross sections – Data needs**

326 To understand, and treat by models, processes in cometary plasmas is a very challenging task
 327 since many parameters need to be taken into account in order to cover the variety of comet types and
 328 their heterogeneity. One has to consider the changing of comet distances from the Sun and hence the
 329 level of irradiation and solar wind interactions both with the comet surface and cometary plasma
 330 environment. Nevertheless, models have been developed and set of processes reviewed, including
 331 data analysis used in such models. Particles from the solar wind, secondary electrons created in
 332 plasmas and photoelectrons, produce further events of excitation, ionization and dissociation with
 333 the consequence of enhanced chemical reactions and light emission. However comets are composed
 334 of water, silicates and carbonaceous molecules (CO , CO_2 and hydrocarbons) [33]. Recently, modelling
 335 of plasma processes in cometary and planetary atmospheres have been performed by Campbell and
 336 Brunger [34] with the emphasis on the role of electron-impact excitation processes. They concluded
 337 in the case of comet Hale-Bopp that electron-impact could account for 40% of the fluorescence
 338 emissions of the fourth positive bands ($\text{A}^1\Pi - \text{X}^1\Sigma^+$) of CO [35] and thus reducing calculated
 339 outgassing rates. Even more, their later paper [36] was focussed on electron initiated chemistry in
 340 atmospheres.

341 Reviews of cross section data and processes that cover electron scattering and excitations are
 342 numerous and they cover interactions with atoms [37,38], diatomic molecules [37,39], species in
 343 interstellar clouds [40] or concentrate on specific targets of triatomic molecules like water [3] or CO_2
 344 and N_2O [40]. Anzai et al. [41] stressed that any recommended values of cross section data currently
 345 maintained in different databases, might need to be updated due to the development of new

346 experimental techniques and theoretical methods. The number of established benchmark cross
347 sections is rather small.

348 The energy of the electrons available for electron interactions with atoms and molecules in the
349 cometary coma 'atmosphere' is such that all electron scattering processes are relevant, thus a large
350 amount of data is required if a model of electron induced processing is to be included in a simulation
351 model of comet 67P. In this section the status of our knowledge of such relevant cross sections will
352 be reviewed for the primary molecules defined in Section 3.

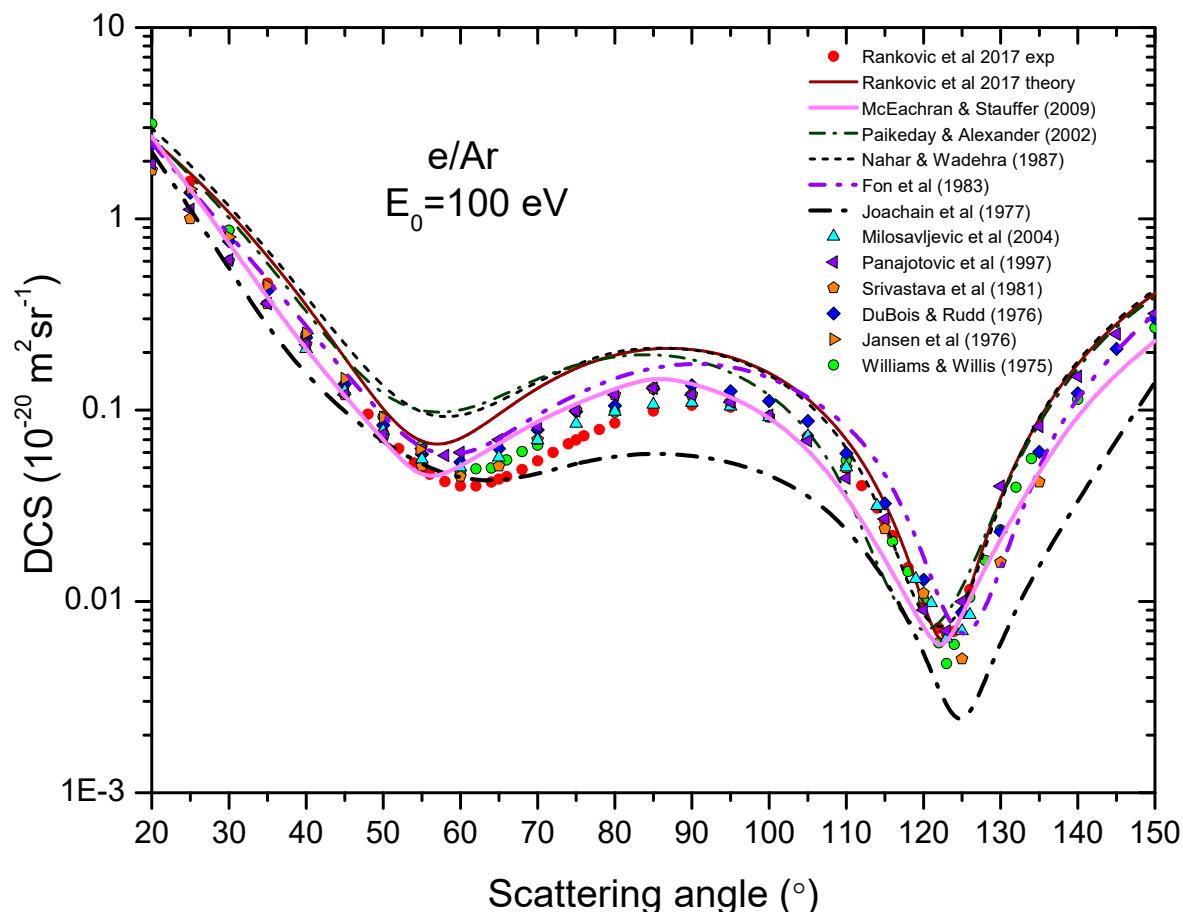
353 *4.1. Elastic electron scattering and cross sections*

354 Elastic scattering conserves the kinetic energy of the colliding particles. This means that
355 quantum numbers that determine the energy are unchanged but other quantum numbers
356 corresponding to degenerate states (e.g. helicity or spin flip) may change. In the case of many
357 measurements not all states in the system are resolved due to the finite resolution of the electron
358 beams used. In this case 'effective elastic cross sections' are determined which may be referred to as
359 'rotationally unresolved, vibrationally unresolved, electronically unresolved etc. Elastic scattering is
360 important since, although there are no immediate changes in the target the range and hence spatial
361 extent of the electrons is determined by such scattering.

362 Elastic cross sections are usually measured at specific energies and angles. These data are used
363 to determine the 'total elastic cross section' by integrating over the entire angular range (4π). The
364 total elastic cross section at given electron impact energy E_i is given by:

$$Q_{el}(E_i) = \int_0^{4\pi} \frac{d\sigma(k;\theta,\varphi)}{d\Omega} d\Omega, \quad (1)$$

365 where $\frac{d\sigma(k;\theta,\varphi)}{d\Omega}$ is the elastic differential cross section, (θ, φ) are the scattering angles and k is the
366 wave-vector magnitude.


367 Elastic scattering is one of the best-studied electron collision processes and provides one of the
368 best tests of developing theoretical calculations of electron-molecule scattering. The development of
369 the magnetic angle changing method [42] to extend differential cross section measurements to the
370 full range of scattering angles from 0° to 180° has significantly improved the accuracy of total elastic
371 cross sections, particularly for molecules with dipole moments, where elastic scattering is strongly
372 forward peaked.

373 Elastic scattering cross sections have been reported for all the primary molecules H_2O , CO , CO_2 ,
374 O_2 , CH_4 , C_2H_2 , CH_3OH , NH_3 , HCN and H_2S . Elastic scattering cross sections for water have been
375 discussed in detail as part of a wider review of electron scattering from water by Itikawa and Mason
376 [3]. An updated review has recommended the corrected data of Khakoo et al. [43 and erratum] for
377 low energy scattering and Munoz et al. [44] for higher energies (where experiment and theoretical
378 evaluations merge). The benchmarking swarm paper by de Urquijo et al [45] on cross sections for
379 water that reproduced measured transport data in water/helium mixtures presented the integral
380 cross sections that are entirely self-consistent with the available total cross sections as well as the
381 swarm data over a large range of reduced electric field, E/N .

382 Cross sections for elastic scattering from methane and acetylene have recently been compiled
383 and evaluated by Song et al. [46,47]. Compilations of data for other molecules are less recent and
384 more fragmented and should be updated. Due to its toxicity there are few measurements of the elastic
385 scattering cross section from HCN and therefore there is more reliance on theoretical calculations
386 (e.g. Sanz et al. [48]).

387 In elastic collisions electrons do not lose energy, but change the direction of motion. This is
388 important for models where the kinetics of all particles is taken into account. In more dense plasmas
389 the elastic momentum transfer cross section, defined as integrated DCS with the weight of $(1 - \cos\theta)$
390 over all scattering angles, is a more relevant quantity. Differential cross sections, although being one

391 of the basic properties that defines electron – atom/molecule interactions, are known with relatively
 392 low accuracy. In order to illustrate the current status of the agreement of DCS amongst different
 393 experiments and theories, the case of absolute cross sections for elastic electron scattering by argon
 394 atom is presented in Figure 4. It can be seen that although at first sight all values group around the
 395 averaged values, it should be noted that the data are plotted on a logarithmic scale and that there is
 396 almost an order of magnitude disagreement for particular data points.

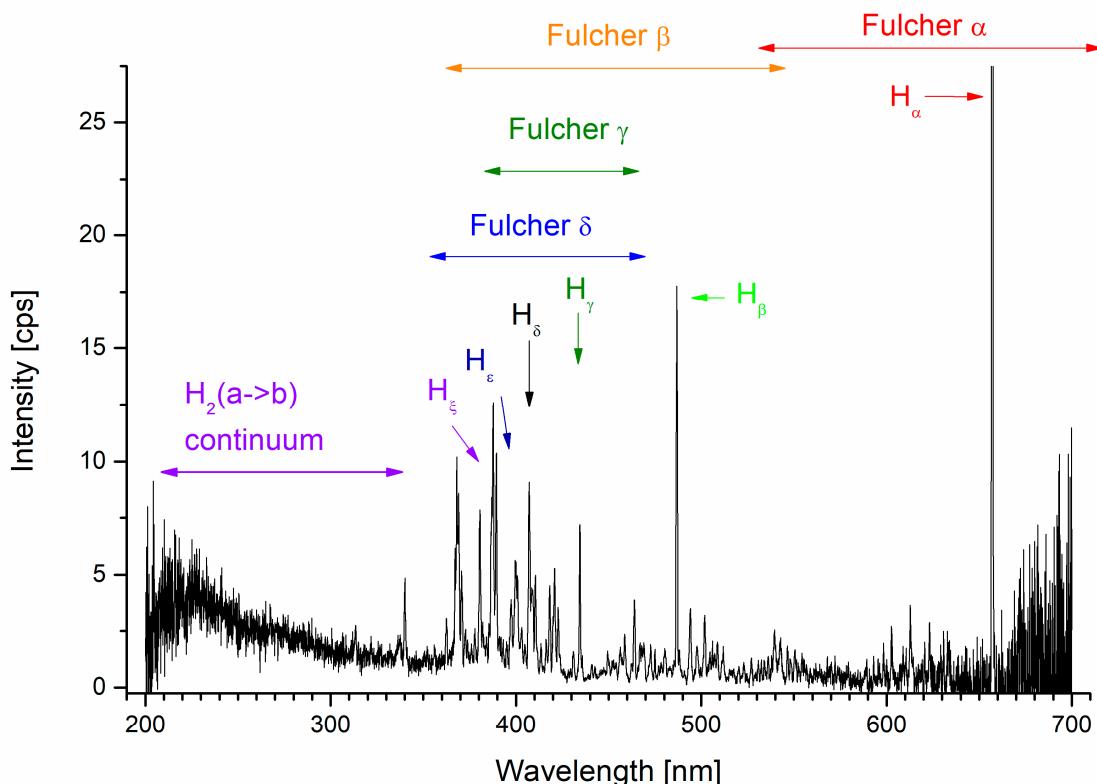
397

398 **Figure 4.** DCS for elastic electron scattering by argon atom at 100 eV impact energy. The data symbols
 399 used correspond to: (red circles), Rankovic et al. [49] experiment; (dark red full line), Rankovic et al.
 400 [49] theory; (magenta solid line), McEachran and Stauffer [50]; (olive dash dot line), Paikeday and
 401 Alexander [51]; (dotted line), Nahar and Wadehra [52]; (violet dash dot dot line), Fon et al. [45]; (cyan
 402 dash dot line), McCarthy et al. [54]; (dashed line), Joachain et al. [55]; (cyan up triangles), Milosavljević
 403 et al. [56]; (violet left triangle), Panajotović et al. [57]; (orange pentagons), Srivastava et al. [58]; (blue
 404 diamond), DuBois and Rudd [59]; (orange right triangles), Jansen et al. [60]; (green circles), Williams
 405 and Willis [61].

406 4.2 Electron impact ionisation cross sections

407 Most of the ions observed in the comet ion tail are the result of photoionisation of the primary
 408 ice species and since there are fewer high energy electrons, electron induced ionisation in comets is
 409 likely to be a minor process in total ion yields. However the mass spectrometric analysis of
 410 compounds observed on Rosetta (e.g. using the Rosina instrument) rely upon knowing the
 411 fragmentation patterns of candidate molecules which, when compared with the instrument
 412 sensitivity, can be used to calculate the relative abundances of the detected molecules. Traditionally
 413 mass spectrometers operate with electron energies of 70 eV, close to but not at, the maximum of total
 414 ionisation cross sections. Branching ratios for fragments of electron impact ionisation are available in
 415 many databases (e.g. NIST Chemistry WebBook [62]) however, whilst these ratios are often known
 416 the cross sections are not presented. These cross sections may be derived if the total ionisation cross

417 section is known. Total ionisation cross sections may be measured to an accuracy of <10% while semi-
418 empirical calculations provide reliable cross sections (at least above 100 eV). Data on all of the
419 primary molecules H₂O, CO, CO₂, CH₄, C₂H₂, CH₃OH, NH₃, HCN and H₂S exist with an accuracy
420 sufficient for providing reliable data for determining their concentrations in the cometary coma and
421 atmosphere. The recent review by Tanaka et al. [63] covered this topic in detail employing scaled
422 plane-wave Born models in order to provide comprehensive and absolute integral cross sections, first
423 for ionization and then to optically allowed electronic-state excitation.


424 *4.3 Anion production*

425 Anions have been observed in comets and may be formed by a variety of processes including
426 radiative electron attachment, polar photodissociation, proton transfer and Dissociative Electron
427 Attachment (DEA) where an incident electron is captured by the molecular target (AB) to form an
428 excited state of the molecular negative ion AB⁻. This state, a Temporary Negative Ion (TNI), generally
429 decays by ejecting the excess electron within a finite time (a process called autodetachment) but the
430 molecular negative ion may also decay through dissociation leading to the formation of a stable
431 negative ion B⁻ and a neutral (often radical) fragment (A). DEA to the list molecules have been
432 studied, identifying the fragment channels, but there are few absolute cross sections. Node of
433 VAMDC, the IDEADB maintained by University of Innsbruck, that serves data about dissociative
434 electron attachment to molecules, lists more than 120 different fragments resulting from this process
435 [64]. Anion data from comet 67P is still under evaluation but earlier studies from the Giotto spacecraft
436 of comet 1P/Halley led to a combined chemical/hydrodynamic model for the coma of comet Halley
437 to explore various anion production mechanisms and compute the abundances of atomic and
438 molecular anions as a function of radius in the coma [65]. The dominant anion production
439 mechanisms are found to be polar photodissociation of water and radiative electron attachment to
440 carbon chains in the inner coma, followed by proton transfer from C₂H₂ and HCN to produce C₂H⁻
441 and CN⁻, respectively. However, in the outer regions of the coma where electron temperatures reach
442 10³–10⁵ K, dissociative electron attachment may become a dominant process. Similar effects may be
443 understood for comet 67P. DEA to water yields H⁻ and OH⁻ and O⁻ from CO and O₂ so there are many
444 candidates for production of anions in comet 67P. DEA to all of the primary comet species (and most
445 of the larger more complex species in Table 1) has been reported with DEA fragments recorded from
446 near zero to the ionisation energy pathways. Nevertheless very few absolute cross sections are
447 available.

448 *4.4 Electron impact excitation and dissociation*

449 Electron impact excitation and dissociative excitation of molecular systems is a critical process
450 for a study of cometary coma and its tenuous atmosphere. As discussed above, OSIRIS and ALICE
451 data from Rosetta shows the electron induced dissociation of water may be the source of the O I line
452 at 135.6 nm while electron impact by CO and CO₂ yields C I lines at 156.1 and 165.7 nm. However
453 this hypothesis is handicapped by the dearth of data on electron impact excitation and electron
454 induced neutral fragmentation for all molecules, not just those of immediate comet interest. This lack
455 of experimental data can be attributed to difficulties in measuring neutral atoms and molecules.
456 When an atom or molecule is in an excited state it may decay (fluoresce) with the emitted light being
457 detected. Such experiments may identify some fragmentation or de-excitation pathways but the
458 sensitivity of the optical detector and ability to 'capture' all of the emitted photons as well as the
459 problem of cascades from higher lying states into the decaying state make measurements of absolute
460 cross sections difficult. Furthermore some excited states decay to 'dark' non fluorescent or metastable
461 states which makes them hard to detect, although metastable fragments may be detected directly by
462 surface ionization they will suffer from the same problems as photon detection i.e. cascade
463 contributions may dominate [66,67]. Presently there are few experiments measuring electronically
464 excited fragments by optical or metastable spectroscopy and more experiments are to be encouraged,
465 building on the recent commissioning of electron induced fluorescence (EIF) experiment in Comenius
466 University Bratislava. Figure 5 shows the H atom spectra recorded by electron impact of molecular

467 hydrogen. This experiment is well equipped to study EIF of water, CO and CO₂ as required for
 468 cometary studies although, due to the low cross sections, data collection periods may be days or even
 469 weeks placing stringent conditions on the stability of the incident electron and gas beams.

470

471 472

Figure 5. Electron induced fluorescence of the H₂ molecule—Balmer lines and Fulcher α system. Measurements performed by Danko et al. [68].

473 474 475 476 477 478

Electron Energy loss spectroscopy monitors the energy of the incident electron post collision and may also be used to probe the direct excitation cross section of the parent molecule excited states but cannot provide data on the fragmentation patterns of that excited state as it decays. Furthermore in most molecules the electronically excited states are both close together and overlap their ro-vibrational bands, making deconvolution very difficult if discrete electronic excitation cross sections are to be derived.

479 480 481 482 483 484 485 486 487 488

Finally the production of neutral fragments in their ground state must be considered. Photon and electron induced dissociation produces many fragments in their ground state where ground state in this case includes fragments that are ro-vibrationally excited but still in the electronic ground state. This low internal energy precludes their detection by fluorescence since IR detection has not proven possible due to IR sources in the apparatus (e.g. electron filaments). Several alternative methods have been proposed to detect ground state neutral fragments including using a second electron beam to ionize the product, or use of surfaces to 'getter' the fragments. In the current context there are only two experiments relevant to the modelling of electron dissociation of primary comet molecules that of Harb et al. [69] measuring OH radical production from water and C and O from CO by Cosby et al. [670] using a fast beam method.

489 490 491 492 493

Further experimental studies on electron impact dissociation to neutral fragments will not only benefit the cometary community but the wider electron chemistry community with applications in many plasma systems, aeronomy and radiation chemistry. However given the experimental difficulty much of the necessary data may be provided by theoretical calculations which require more detailed exploration.

494 5. Possibility of electron induced surface chemistry

495 As discussed above (Section 2.3) many of the larger more complex molecules observed by
 496 COSAC and Ptolemy on the Philae lander may be made by addition reactions from simpler
 497 molecules. How are such reactions induced? Photodissociation has been considered the primary
 498 process but electron induced chemistry within ices has been shown to be an efficient route to
 499 molecular synthesis and simple electron irradiation of primary ices has been shown to be produce
 500 most (all) of the larger molecular species. For example Figure 6 shows the yield of formamide in an
 501 ice film composed of CO and NH₃ as a function of electron energy [71]. The ice was prepared with a
 502 mixing ratio of 1:8 and thickness corresponding to 12–18 monolayers and an electron exposure of 200
 503 $\mu\text{C}/\text{cm}^2$. Formamide is readily formed and the resonance like feature between 6 and 12 eV is
 504 characteristic of the synthesis by reactants prepared in a dissociative electron attachment process [71].
 505 Similar experiments have shown that as many as 15 products can be formed by electron irradiation
 506 of pure methanol ices [72] including ethylene glycol and methyl formate whilst formamide HCONH₂
 507 is formed in irradiation of binary mixtures of ammonia and methanol ice and the simplest amino acid
 508 glycine from irradiation of a methylamine and carbon dioxide ice [73]. Thus electron induced
 509 synthesis of simple cometary ices may be a route to formation of several of the organic species
 510 observed in surface material from comet 67P.

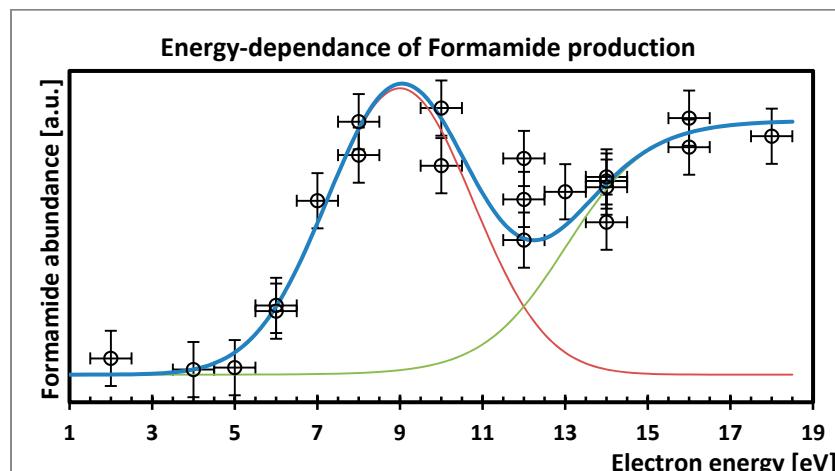

511
512
513
514

Figure 6. The production of formamide present in mixed multilayer films of CO and NH₃. The resonance like feature (red line) between 6 and 12 eV is characteristic of the synthesis of formamide by reactants prepared in a DEA process, Bredehoef et al. [71].

515 The route by which molecular oxygen was formed as the fourth most abundant compound in
 516 the coma observed by Rosetta, is still subject to debate. However laboratory experiments [74,75] have
 517 shown that radiolysis of water by both electrons and photons yields molecular oxygen but also
 518 copious amounts of hydrogen peroxide. Furthermore, comparative experiments between photon and
 519 electron irradiation show that electron induced yields are higher for the same energy. Whether this
 520 is due to penetration depth of electrons or that electrons open more dissociative pathways (through
 521 dipole or spin forbidden transitions) is unknown. The role of electron induced chemistry in comets,
 522 in ice covered planetary and lunar objects and in the rich chemistry of the interstellar medium is
 523 therefore an emerging topic of modern astronomy and one that has been encouraged by the results
 524 of the Rosetta mission.

525 6. Conclusions

526 In this paper we have presented a review of recent results from the Rosetta mission to comet
 527 67P/Churyumov-Gerasimenko. The role of electron induced processes has been highlighted with the
 528 emission of [O I] lines in the coma explained by the process of electron impact dissociation of water.
 529 The role of other electron processes e.g. in the production of the unexpectedly large amounts of
 530 molecular oxygen in the coma, is handicapped by lack of detailed knowledge of electron impact cross

531 sections We have reviewed the need for electron scattering data and discussed how such data should
532 be collated and reviewed in electron scattering databases. The BEAMD database which is a part of a
533 larger consortium of Virtual Atomic and Molecular Data Centre – VAMDC has been used as an
534 example of modern generation of databases.

535 The importance of electron processes in comet 67P/Churyumov-Gerasimenko highlights the
536 need for closer interactions and joint projects between the cometary and electron communities and
537 this paper has identified some topics for joint research.

538 **Acknowledgments:** BPM recognizes support from MESTD-RS project #OI 171020 and the grant under 2016
539 VAMDC Consortium Call-#1. VV and DJ recognizes support from MESTD-RS project #III 44002. NJM recognizes
540 support from Europlanet 2020 RI which has received funding from the European Union's Horizon 2020 research
541 and innovation programme under grant agreement No 654208 and ELEvaTE grant agreementno :692335 as well
542 as support of the UK STFC and Leverhulme trust. We thank to Dr. Juraj Ország for providing us with the
543 unpublished figure of hydrogen spectrum (Fig. 5).

544 **Author Contributions:** BPM wrote sections 2.1, 2.2, parts of section 3 and provided figures 1-4. JHB wrote section
545 2.3, provided figure 6 and table 1 and provided language editing. VV and DJ wrote section 3.2. NJM wrote
546 sections 2,4,5 and edited the paper. BPM is responsible for maintaining electron cross section data in BEAMDB,
547 while VV and DJ are responsible for maintaining database according to the VAMDC standards.

548 **Conflicts of Interest:** "The authors declare no conflict of interest."

549 References

1. Altweig K.; Balsiger H.; Bar-Nun A.; Berthelier J.J.; Bieler A.; Bochsler P.; Briois C.; Calmonte U.; Combi M.; De Keyser J.; Eberhardt P.; Fiethen B.; Fuselier S.; Gasc S.; Gombosi T.I.; Hansen K.C.; Hässig M.; Jäckel A.; Kopp E.; Korth A.; Le Roy L.; Mall U.; Marty B.; Mousis O.; Neefs E.; Owen T.; Rème H.; Rubin M.; Sémon T.; Tzou C.-Y.; Waite H.; Wurz P. 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. *Science*, **2015**, 347(6220), 1261952, [DOI: 10.1126/science.1261952](https://doi.org/10.1126/science.1261952)
2. Feldman P.D.; A'Hearn M.F.; Bertaux J.-L.; Feaga L.M.; Parker J.Wm.; Schindhelm E.; Steffl A.J.; Stern S.A.; Weaver H.A.; Sierks H.; Vincent J.-B. Measurements of the near-nucleus coma of comet 67P/Churyumov-Gerasimenko with the Alice far-ultraviolet spectrograph on Rosetta. *Astron Astrophys* **2015**, 583, A8 (8pp) [DOI: 10.1051/0004-6361/201525925](https://doi.org/10.1051/0004-6361/201525925)
3. Itikawa Y.; Mason N. J. Cross Sections for Electron Collisions with Water Molecules. *Phys. Chem. Ref. Data*, **2005**, 34, 1-22, [DOI: 10.1063/1.1799251](https://doi.org/10.1063/1.1799251)
4. Galand M.; Héritier K. L.; Odelstad E.; Henri P.; Broiles T.W.; Allen A.J.; Altweig K.; Beth A.; Burch J.L.; Carr C.M.; Cupido E.; Eriksson A.I.; Glassmeier K.-H.; Johansson F.L.; Lebreton J.-P.; Mandt K.E.; Nilsson H.; Richter I.; Rubin M.; Sagnières L.B.M.; Schwartz S.J.; Sémon T.; Tzou C.-Y.; Vallières X.; Vigren E.; Wurz P. Ionospheric plasma of comet 67P probed by Rosetta at 3 au from the Sun. *MNRAS*, **2016**, S331-S351, [DOI:10.1093/mnras/stw2891](https://doi.org/10.1093/mnras/stw2891)
5. Altweig K.; Balsiger H.; Berthelier J.J.; Bieler A.; Calmonte U.; Fuselier S.A.; Goessmann F.; Gasc S.; Gombosi T.I.; Le Roy L.; de Keyser J.; Morse A.; Rubin M.; Schuhmann M.; Taylor M.G.G.T.; Tzou C.-Y.; Wright I. Vertical structure of the near-surface expanding ionosphere of comet 67P probed by Rosetta. *MNRAS*, **2017**, S130–S141 [DOI: 10.1093/mnras/stx1459](https://doi.org/10.1093/mnras/stx1459)
6. Bodewits D.; Lara L.M.; A'Hearn M.F.; La Forgia F.; Gicquel A.; Kovacs G.; Knollenberg J.; Lazzarin M.; Lin (林忠義) Z. -Y.; Shi X.; Snodgrass C.; Tubiana C.; Sierks H.; Barbieri C.; Lamy P.L.; Rodrigo R.; Koschny D.; Rickman H.; Keller H.U.; Barucci M.A.; Bertaux J.-L.; Bertini I.; Boudreault S.; Cremonese G.; Da Deppo V.; Davidsson B.; Debei S.; De Cecco M.; Fornasier S.; Fulle M.; Groussin O.; Gutierrez P.J.; Gütler C.; Hviid S.F.; Ip W.-H.; Jorda L.; Kramm J.-R.; Kührt E.; Küppers M.; López-Moreno J.J.; Marzari F.; Naletto G.; Oklay N.; Thomas N.; Toth I.; Vincent J.-B. Changes in the physical environment of the inner coma of 67P/Churyumov-Gerasimenko with decreasing heliocentric distance. *Astron J* **2016**, 152, 130 (15pp), [DOI: 10.3847/0004-6256/152/5/130](https://doi.org/10.3847/0004-6256/152/5/130)
7. Krüger H.; Goessmann F.; Giri Ch.; Wright I.; Morse A.; Bredehöft J.H.; Ulamec S.; Cozzoni B.; Ehrenfreund P.; Gautier T.; McKenna-Lawlor S.; Raulin F.; Steininger H.; Szopa C. Decay of COSAC and Ptolemy mass spectra at comet 67P/Churyumov-Gerasimenko. *Astron Astrophys* **2017**, 600, A56, [DOI: 10.1051/0004-6361/201630286](https://doi.org/10.1051/0004-6361/201630286)

582 8. Goesmann F.; Rosenbauer H.; Bredehöft J.H.; Cabane M.; Ehrenfreund P.; Gautier T.; Giri C.; Krüger H.;
583 Le Roy L.; MacDermott A.J.; McKenna-Lawlor S.; Meierhenrich U.J.; Muñoz Caro G.M.; Raulin F.; Roll R.;
584 Steele A.; Steininger H.; Sternberg R.; Szopa C.; Thiemann W.; Ulamec S. Organic compounds on comet
585 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry. *Science*, **2015**, 349, aab0689 (3pp)
586 DOI: 10.1126/science.aab0689

587 9. Altwegg K.; Balsiger H.; Berthelier J.J.; Bieler A.; Calmonte U.; Fuselier S.A.; Goesmann F.; Gasc S.; Gombosi
588 T.I.; Le Roy L.; de Keyser J.; Morse A.; Rubin M.; Schuhmann M.; Taylor M.G.G.T.; Tzou C.-Y.; Wright I.
589 Organics in comet 67P – a first comparative analysis of mass spectra from ROSINA-DFMS, COSAC, and
590 Ptolemy. *MNRAS*, **2017**, S130–S141 DOI: 10.1093/mnras/stx1415

591 10. Wright I.P.; Sheridan S.; Barber S.J.; Morgan G.H.; Andrews D.J.; Morse A.D. CHO-bearing organic
592 compounds at the surface of 67P/Churyumov-Gerasimenko revealed by Ptolemy. *Science*, **2015**, 349(6247)
593 aab0673, DOI: 10.1126/science.aab0673

594 11. Bieler A.; Altwegg K.; Balsiger H.; Bar-Nun A.; Berthelier J.-J.; Bochsler P.; Briois C.; Calmonte U.; Combi
595 M.; De Keyser J.; van Dishoeck E.F.; Fiethe B.; Fuselier S.A.; Gasc S.; Gombosi T.I.; Hansen K.C.; Hässig M.;
596 Jäckel A.; Kopp E.; Korth A.; Le Roy L.; Mall U.; Maggiolo R.; Marty B.; Mousis O.; Owen T.; Rème H.;
597 Rubin M.; Sémon T.; Tzou C.-Y.; Waite J.H.; Walsh C.; Wurz P. Abundant molecular oxygen in the coma of
598 comet 67P/Churyumov–Gerasimenko. *Nature*, **2015**, 526, 678–681, DOI: 10.1038/nature15702

599 12. Carr C.; Cupido E.; Lee C.G.Y.; Balogh A.; Beek T.; Burch J.L.; Dunford C.N.; Eriksson A.I.; Gill R.;
600 Glassmeier K.H.; Goldstein R.; Lagoutte D.; Lundin R.; Lundin K.; Lybekk B.; Michau J.L.; Musmann G.;
601 Nilsson H.; Pollock C.; Richter I.; Trotignon J.G. RPC: The Rosetta Plasma Consortium. *Space Sci. Rev.* **2007**,
602 128, 629–647, DOI: 10.1007/s11214-006-9136-4

603 13. Burch J.L.; Goldstein R.; Cravens T.E.; Gibson W.C.; Lundin R.N.; Pollock C.J.; Winningham J.D.; Young
604 D.T. RPC-IES: The Ion and Electron Sensor of the Rosetta Plasma Consortium. *Space Sci. Rev.* **2007**, 128, 697–
605 712, DOI: 10.1007/s11214-006-9002-4

606 14. Eriksson A.I.; Boström R.; Gill R.; Åhlén L.; Jansson S.-E.; Wahlund J.-E.; M. André M.; Mälkki A.; Holtet
607 J.A.; Lybekk B.; Pedersen A.; Blomberg L.G. RPC-LAP: The Rosetta Langmuir Probe Instrument. *Space Sci.
608 Rev.* **2007**, 128, 723–744, DOI: 10.1007/s11214-006-9003-3

609 15. Trotignon J.G.; Michau J.L.; Lagoutte D.; Chabassière M.; Chalumeau G.; Colin F.; Décréau P.M.E.;
610 Geisswiller J.; Gille P.; Grard R.; Hachemi T.; Hamelin M.; Eriksson A.; Laakso H.; Lebreton J.P.; Mazelle C.;
611 Randriamboarison O.; Schmidt W.; Smit A.; Telljohann U.; Zamora P. RPC-MIP: the Mutual Impedance
612 Probe of the Rosetta Plasma Consortium. *Space Sci. Rev.* **2007**, 128, 713–728, DOI: 10.1007/s11214-006-9005-
613 1

614 16. Cravens, T.E.; Kozyra, J.U.; Nagy, A.F.; Gombosi, T.I.; and Kurtz, M. Electron impact ionization in the
615 vicinity of comets. *J. Geophys. Res.-Space* **1987**, 92, 7341–7353, DOI: 10.1029/JA092iA07p07341

616 17. Edberg N.J.T.; Eriksson A.I.; Odelstad E.; Henri P.; Lebreton J.P.; Gasc S.; Rubin M.; André M.; Gill R.;
617 Johansson E.P.G.; Johansson F.; Vigren E.; Wahlund J.E.; Carr C.M.; Cupido E.; Glassmeier K.-H.; Goldstein
618 R.; Koenders C.; Mandt K.; Nemeth Z.; Nilsson H.; Richter I.; Stenberg Wieser G.; Szego K.; Volwerk M.
619 Spatial distribution of low-energy plasma around comet 67P/CG from Rosetta measurements. *Geophys. Res.
620 Lett.* **2015**, 42, 4263–4269, doi:10.1002/2015GL064233

621 18. Clark G.; Broiles T.W.; Burch J.L.; Collinson G.A.; Cravens T.; Frahm R.A.; Goldstein J.; Goldstein R.; Mandt
622 K.; Mokashi P.; Samara M.; Pollock C.J. Suprathermal electron environment of comet 67P/Churyumov-
623 Gerasimenko: Observations from the Rosetta Ion and Electron Sensor. *Astron. Astrophys.* **2015**, 583, A24
624 (6pp), DOI: 10.1051/0004-6361/201526351

625 19. Broiles T.W.; Burch J.L.; Chae K.; Clark G.; Cravens T.E.; Eriksson A.; Fuselier S.A.; Frahm R.A.; Gasc S.;
626 Goldstein R.; Henri P.; Koenders C.; Livadiotis G.; Mandt K.E.; Mokashi P.; Nemeth Z.; Odelstad E.; Rubin
627 M.; Samara M. Statistical analysis of suprathermal electron drivers at 67P/Churyumov–Gerasimenko.
628 *MNRAS* Oxford University Press (OUP): Policy P - Oxford Open Option A, **2016**, 462, S312–S322 DOI:
629 10.1093/mnras/stw2942

630 20. Deca J.; Divin A.; Henri P.; Eriksson A.; Markidis S.; Olshevsky V.; Horányi M. Electron and Ion Dynamics
631 of the Solar Wind Interaction with a Weakly Outgassing Comet. *Phys. Rev. Lett.* **2017**, 118, 205101 (6pp),
632 DOI: 10.1103/PhysRevLett.118.205101

633 21. Le Roy L.; wegg K.; Balsiger H.; Berthelier J.-J.; Bieler A.; Briois C.; Calmonte U.; Combi M.R.; De Keyser J.;
634 Dhooghe F.; Fiethe B.; Fuselier S.A.; Gasc S.; Combosi T.I.; Hässig M.; Jäcke A.; Rubin M.; Tzou C.-Yu.
635 Rosetta mission results pre-perihelion Special feature Inventory of the volatiles on comet 67P/Churyumov-

636 Gerasimenko from Rosetta/ROSINA. *Astron. Astrophys.* **2015**, *583*, A1 (12pp) [DOI: 10.1051/0004-6361/201526450](https://doi.org/10.1051/0004-6361/201526450)

637 22. Calmonte U.; Altwegg K.; Balsiger H.; Berthelier J.J.; Bieler A.; Cessateur G.; Dhooghe F.; van Dishoeck E.F.;
638 Fiethe B.; Fuselier S.A.; Gasc S.; Gombosi T.I.; Hässig M.; Le Roy L.; Rubin M.; Sémon T.; Tzou C.-Y.;
639 Wamplfer S.F. Sulphur-bearing species in the coma of comet 67P/Churyumov–Gerasimenko. *MNRAS*,
640 **2016**, *462*, S253–S273 [DOI: 10.1093/mnras/stw2601](https://doi.org/10.1093/mnras/stw2601)

641 23. Pitchford L.C.; Alves L.L.; Bartschat K.; Biagi S.F.; Bordage M.-C.; Bray I.; Brion C.E.; Brunger M.J.;
642 Campbell L.; Chachereau A.; Chaudhury B.; Christophrorou L.G.; Carbone E.; Dyatko N.A.; Franck C.M.;
643 Fursa D.V.; Gangwar R.K.; Guerra V.; Haefliger P.; Hagelaar G.J.M.; Hoesl A.; Itikawa Y.; Kochetov I.V.;
644 McEachran R.P.; Morgan W.L.; Napartovich A.P.; Puech V.; Rabie M.; Sharma L.; Srivastava R.; Stauffer
645 A.D.; Tennyson J.; de Urquijo J.; van Dijk J.; Viehland L.A.; Zammit M.C.; Zatsarinny O.; Pancheshnyi S.
646 LXCat: an Open-Access, Web-Based Platform for Data Needed for Modeling Low-Temperature Plasmas.
647 *Plasma Process. Polym.* **2016**, *14*, 1600098 [DOI: 10.1002/ppap.201600098](https://doi.org/10.1002/ppap.201600098)

648 24. Wakelam V.; Herbst E.; Loison J.-C.; Smith I.W.M.; Chandrasekaran V.; Pavone B.; Adams N.G.; Bacchus-
649 Montabonel M.-C.; Bergeat A.; Béroff K.; Bierbaum V.M.; Chabot M.; Dalgarno A.; van Dishoeck E.F.; Faure
650 A.; Geppert W.D.; Gerlich D.; Galli D.; Hébrard E.; Hersant F.; Hickson K.M.; Honvau P.; Klippenstein
651 S.J.; Le Picard S.; Nyman G.; Pernot P.; Schlemmer S.; Selsis F.; Sims I.R.; Talbi D.; Tennyson J.; Troe J.;
652 Wester R.; Wiesenfeld L. A KInetic Database for Astrochemistry (KIDA). *Astrophys. J. Suppl. S.* **2012**, *199*,
653 21 (10pp), [DOI: 10.1088/0067-0049/199/1/21](https://doi.org/10.1088/0067-0049/199/1/21)

654 25. Hibbert A. Calculation of Rates of 4p–4d Transitions in Ar II. *Atoms* **2017**, *5*, 8 (7pp) [DOI: 10.3390/atoms5010008](https://doi.org/10.3390/atoms5010008)

655 26. Dubernet M.L.; Antony B.K.; Ba Y.A.; Babikov Yu.L.; Bartschat K.; Boudon V.; Braams B.J.; Chung H-K.;
656 Daniel F.; Delahaye F.; Del Zanna D.; de Urquijo J.; Dimitrijević M.S.; Domaracka A.; Doronin M.; Drouin
657 B.J.; Endres C.P.; Fazliev A.Z.; Gagarin S.V.; Gordon I.E.; Gratier P.; Heiter U.; Hill C.; Jevremović D.; Joblin
658 C.; Kasprzak A.; Krishnakumar E.; Leto G.; Loboda P.A.; Louge T.; Maclot S.; Marinković B.P.; Markwick
659 A.; Marquart T.; Mason H.E.; Mason N.J.; Mendoza C.; Mihajlov A.A.; Millar T.J.; Moreau N.; Mulas G.;
660 Pakhomov Yu.; Palmeri P.; Pancheshnyi S.; Perevalov V.I.; Piskunov N.; Postler J.; Quintet P.; Quintas-
661 Sánchez E.; Ralchenko Yu.; Rhee Y.-J.; Rixon G.; Rothman L.S.; Roueff E.; Ryabchikova T.; Sahal-Bréchot S.;
662 Scheier P.; Schlemmer S.; Schmitt B.; Stempels E.; Tashkun S.; Tennyson J.; Tyuterev Vl.G.; Vujčić V.;
663 Wakelam V.; Walton N.A.; Zatsarinny O.; Zeippen C.J.; Zwölf C.M. The virtual atomic and molecular data
664 centre (VAMDC) consortium. *J. Phys. B* **2016**, *074003* (18pp) [DOI: 10.1088/0953-4075/49/7/074003](https://doi.org/10.1088/0953-4075/49/7/074003)

665 27. VAMDC Dictionary. Available online: <http://dictionary.vamdc.eu/> (accessed on 30 08 2017).

666 28. Marinković B.P.; Jevremović D.; Srećković V.A.; Vujčić V.; Ignjatović Lj.M.; Dimitrijević M.S.; Mason N.J.
667 BEAMDB and MolD – databases for atomic and molecular collisional and radiative processes: Belgrade
668 nodes of VAMDC. *Eur. Phys. J. D* **2017**, *71*, 158 (9pp), [DOI: 10.1140/epjd/e2017-70814-6](https://doi.org/10.1140/epjd/e2017-70814-6)

669 29. Denifl S.; Garcia G.; Huber B.A.; Marinković B.P.; Mason N.; Postler J.; Rabus H.; Rixon G.; Solov'yov A.V.;
670 Suraud E.; Yakubovich A.V. Radiation damage of biomolecules (RADAM) database development: current
671 status. *J. Phys. Conf. Ser.* **2013**, *438* 012016 (8pp), [DOI: 10.1088/1742-6596/438/1/012016](https://doi.org/10.1088/1742-6596/438/1/012016)

672 30. Register D.F.; Trajmar S.; Srivastava S.K. Absolute elastic differential electron scattering cross sections for
673 He: A proposed calibration standard from 5 to 200 eV. *Phys. Rev. A* **1980**, *21*, 1134–1151, [DOI: 10.1103/PhysRevA.21.1134](https://doi.org/10.1103/PhysRevA.21.1134)

674 31. Maljković, J.B.; Blanco F.; García G.; Marinković B.P.; Milosavljević A.R. Elastic electron scattering from
675 formamide molecule. *Nucl. Instrum. Meth. B* **2012**, *279*, 124–127, [DOI: 10.1016/j.nimb.2011.10.029](https://doi.org/10.1016/j.nimb.2011.10.029)

676 32. Belić D.S.; Urbain X.; Cherkani-Hassani H.; Defrance P. Electron-impact dissociation and ionization of CN+
677 ions. *Phys. Rev. A* **2017**, *95*, 052702 (11pp) [DOI: 10.1103/PhysRevA.95.052702](https://doi.org/10.1103/PhysRevA.95.052702)

678 33. Huebner W.F. Composition of comets: observations and models. *Earth Moon Planets*, **2002**, *89*, 179–195 [DOI: 10.1023/A:1021506821862](https://doi.org/10.1023/A:1021506821862)

679 34. Campbell L.; Brunger M.J. Modelling of plasma processes in cometary and planetary atmospheres. *Plasma
680 Sources Sci. T.* **2013**, *22*, 013002 (34pp) [DOI: 10.1088/0963-0252/22/1/013002](https://doi.org/10.1088/0963-0252/22/1/013002)

681 35. Simmons J.D.; Bass A.M.; Tilford S.G. The Fourth Positive System of Carbon Monoxide Observed in
682 Absorption at High Resolution in the Vacuum Ultraviolet Region. *Astrophys. J.* **1969**, *155*, 345–358, [DOI: 10.1086/149869](https://doi.org/10.1086/149869)

683 36. Campbell L.; Brunger M.J. Electron collisions in atmospheres. *Int. Rev. Phys. Chem.* **2016**, *35*, 297–351 [DOI: 10.1080/0144235X.2016.1179002](https://doi.org/10.1080/0144235X.2016.1179002)

690 37. Zecca, A.; Karwasz, G.P.; Brusa, R.S. One century of experiments on electron-atom and molecule scattering.
691 A critical review of integral cross-sections I. Atoms and diatomic molecules. *Riv. Nuovo Cimento*, **1996**, *19*(3),
692 1-101, [DOI: 10.1007/BF02742990](https://doi.org/10.1007/BF02742990)

693 38. Bransden B.H.; McDowell M.R.C. Electron scattering by atoms at intermediate energies II. Theoretical and
694 experimental data for light atoms. *Phys. Rep.* **1978**, *46*, 249-394, [DOI: 10.1016/0370-1573\(78\)90133-3](https://doi.org/10.1016/0370-1573(78)90133-3)

695 39. Brunger M.J.; Buckman S.J. Electron-molecule scattering cross-sections. I. Experimental techniques and
696 data for diatomic molecules. *Phys. Rep.* **2002**, *357*, 215-458, [DOI: 10.1016/S0370-1573\(01\)00032-1](https://doi.org/10.1016/S0370-1573(01)00032-1)

697 40. Flower D.R. Molecular collision processes in interstellar clouds. *Phys. Rep.* **1989**, *174*, 1-66, [DOI: 10.1016/0370-1573\(89\)90143-9](https://doi.org/10.1016/0370-1573(89)90143-9)

698 41. Anzai K.; Kato H.; Hoshino M.; Tanaka H.; Itikawa Y.; Campbell L.; Brunger M.J.; Buckman S.J.; Cho H.;
699 Blanco F.; García G.; Limão-Vieira P.; Ingólfsson O. Cross section data sets for electron collisions with H₂,
700 O₂, CO, CO₂, N₂O and H₂O. *Eur. Phys. J. D* **2012**, *66*, 36 (8pp), [DOI: 10.1140/epjd/e2011-20630-1](https://doi.org/10.1140/epjd/e2011-20630-1)

701 42. King G.C. The Use of the Magnetic Angle Changer in *Electron Spectroscopy. Changer in Electron Scattering. Physics of Atoms and Molecules*, Whelan C.T., Mason N.J., Eds.; Springer: Boston, MA, 2005, pp. 111-120, ISBN: 978-0-306-48701-9. [DOI: 10.1007/0-387-27567-3_11](https://doi.org/10.1007/0-387-27567-3_11)

702 43. Khakoo M.A.; Silva H.; Muse J.; Lopes M.C.A.; Winstead C.; McKoy V. Electron scattering from H₂O: Elastic
703 scattering. *Phys. Rev. A* **2008**, *78*, 052710 [DOI: 10.1103/PhysRevA.78.052710](https://doi.org/10.1103/PhysRevA.78.052710); Erratum *Phys. Rev. A* **2013**, *87*,
704 049902 [DOI: 10.1103/PhysRevA.87.049902](https://doi.org/10.1103/PhysRevA.87.049902)

705 44. Muñoz A.; Oller J.C.; Blanco F.; Gorfinkel J.D.; Limão-Vieira P.; Maira-Vidal A.; Borge M.J.G.; Tengblad
706 O.; Huerga C.; Téllez M.; García G. Energy deposition model based on electron scattering cross section data
707 from water molecules. *J. Phys. Conf. Ser.* **2008**, *133*, 012002 (13pp), DOI: 10.1088/1742-6596/133/1/012002

708 45. de Urquijo J.; Basurto E.; Juárez A.M.; Ness K.F.; Robson R.E.; Brunger M.J.; White R.D. Electron drift
709 velocities in He and water mixtures: Measurements and an assessment of the water vapour cross-section
710 sets. *J. Chem. Phys.* **2014**, *141*, 014308 [DOI: 10.1063/1.4885357](https://doi.org/10.1063/1.4885357)

711 46. Song Mi-Y.; Yoon J.-S.; Cho H.; Itikawa Y.; Karwasz G.P.; Kokouline V.; Nakamura Y.; Tennyson J. Cross
712 Sections for Electron Collisions with Methane. *J. Phys. Chem. Ref. Data*, **2015**, *44*, 023101, [DOI: 10.1063/1.4918630](https://doi.org/10.1063/1.4918630)

713 47. Song Mi-Y.; Yoon J.-S.; Cho H.; Karwasz G.P.; Kokouline V.; Nakamura Y.; Tennyson J. Cross Sections for
714 Electron Collisions with Acetylene. *J. Phys. Chem. Ref. Data*, **2017**, *46*, 013106, [DOI: 10.1063/1.4976569](https://doi.org/10.1063/1.4976569)

715 48. Sanz A.G.; Fuss M.C.; Blanco F.; Sebastianelli F.; Gianturco F.A.; García G. Electron scattering cross sections
716 from HCN over a broad energy range (0.1–10 000 eV): Influence of the permanent dipole moment on the
717 scattering process. *J. Chem. Phys.* **2012**, *137*, 124103, [DOI: 10.1063/1.4754661](https://doi.org/10.1063/1.4754661)

718 49. Ranković M.Lj.; Maljković J.B.; Tókesi K.; Marinković B.P. Elastic electron differential cross sections for
719 argon atom in the intermediate energy range from 40 eV to 300 eV. *Eur. Phys. J. D*, submitted

720 50. McEachran R.P.; Stauffer A.D. An optical potential method for elastic electron and positron scattering from
721 argon *J. Phys. B* **2009**, *42*, 075202 (6pp), [DOI: 10.1088/0953-4075/42/7/075202](https://doi.org/10.1088/0953-4075/42/7/075202)

722 51. Paikeday J.M.; Alexander J. Polarization Potential for e-Argon Scattering by Differential Scattering
723 Minimization at Intermediate Energies. *Int. J. Quant. Chem.* **2002**, *90*, 778-785, [DOI: 10.1002/qua.932](https://doi.org/10.1002/qua.932)

724 52. Nahar S.N.; Wadehra J.M. Elastic scattering of positrons and electrons by argon. *Phys. Rev. A*, **1987**, *35*,
725 2051-2064, [DOI: 10.1103/PhysRevA.35.2051](https://doi.org/10.1103/PhysRevA.35.2051)

726 53. Fon W.C.; Berrington K.A.; Burke P.G.; Hibbert A. The elastic scattering of electrons from inert gases. III.
727 Argon. *J. Phys. B* **1983**, *16*, 307-321, [DOI: 10.1088/0022-3700/16/2/018](https://doi.org/10.1088/0022-3700/16/2/018)

728 54. McCarthy I.E.; Noble C.J.; Phillips B.A.; Turnbull A.D. Optical model for electron scattering by inert gases.
729 *Phys. Rev. A* **1977**, *15*, 2173-2185, [DOI: 10.1103/PhysRevA.15.2173](https://doi.org/10.1103/PhysRevA.15.2173)

730 55. Joachain C.J.; Vanderpoorten R.; Winters K.H.; Byron Jr F.W. Optical model theory of elastic electron- and
731 positron-argon scattering at intermediate energies. *J. Phys. B* **1977**, *10*, 227-238, [DOI: 10.1088/0022-3700/10/2/011](https://doi.org/10.1088/0022-3700/10/2/011)

732 56. Milosavljević A.R.; Telega S.; Šević D.; Sienkiewicz J.E.; Marinković B.P. Elastic electron scattering by argon
733 in the vicinity of the high-energy critical minimum. *Rad. Phys. Chem.* **2004**, *70*, 669-676 [DOI: 10.1016/j.radphyschem.2004.01.001](https://doi.org/10.1016/j.radphyschem.2004.01.001)

734 57. Panajotović R.; Filipović D.M.; Marinković B.P.; Pejčev V.; Kurepa M.; Vušković L. Critical minima in elastic
735 electron scattering by argon. *J. Phys. B* **1997**, *30*, 5875-5894 [DOI: 10.1088/0953-4075/30/24/022](https://doi.org/10.1088/0953-4075/30/24/022)

736 58. Srivastava S.K.; Tanaka H.; Chutjian A.; Trajmar S. Elastic scattering of intermediate-energy electrons by
737 Ar and Kr. *Phys. Rev. A* **1981**, *23*, 2156-2166, [DOI: 10.1103/PhysRevA.23.2156](https://doi.org/10.1103/PhysRevA.23.2156)

744 59. DuBois R.D. ; Rudd M.E. Differential cross sections for elastic scattering of electrons from argon, neon,
745 nitrogen and carbon monoxide. *J. Phys. B* **1976**, *9*, 2657-2667 [DOI: 10.1088/0022-3700/9/15/016](https://doi.org/10.1088/0022-3700/9/15/016)

746 60. Jansen R.H.J.; de Heer F.J.; Luyken H.J.; van Wingerden B.; Blaauw H.J. Absolute differential cross sections
747 for elastic scattering of electrons by helium, neon, argon and molecular nitrogen. *J. Phys. B* **1976**, *9*, 185-212,
748 [DOI: 10.1088/0022-3700/9/2/009](https://doi.org/10.1088/0022-3700/9/2/009)

749 61. Williams J.F.; Willis B.A. The scattering of electrons from inert gases I. Absolute differential elastic cross
750 sections for argon atoms. *J. Phys. B* **1975**, *8*, 1670-1682, [DOI: 10.1088/0022-3700/8/10/017](https://doi.org/10.1088/0022-3700/8/10/017)

751 62. NIST Chemistry WebBook. Available online: <http://webbook.nist.gov/chemistry/> (accessed on 30 08 2017).

752 63. Tanaka H., Brunger M.J.; Campbell L.; Kato H.; Hoshino M.; Rau A.R.P. Scaled plane-wave Born cross
753 sections for atoms and molecules. *Rev. Mod. Phys.* **2016**, *88*, 025004 [DOI: 10.1103/RevModPhys.88.025004](https://doi.org/10.1103/RevModPhys.88.025004)

754 64. <http://ideadb.uibk.ac.at/> [accessed on 18/10/2017].

755 65. Cordiner M.A.; Charnley S.B. Negative ion chemistry in the coma of comet 1P/Halley. *Meteorit. Planet. Sci.*
756 **2014**, *49*, 21-27, [DOI: 10.1111/maps.12082](https://doi.org/10.1111/maps.12082)

757 66. Barnett S.M.; Mason N.J.; Newell W.R. Production of the N₂(A¹Σ_{u+}) Metastable State by Electron
758 Dissociation of N₂O. *Chemical Physics* **1991**, *153*, 283-295, [DOI: 10.1016/0301-0104\(91\)90024-N](https://doi.org/10.1016/0301-0104(91)90024-N)

759 67. Barnett S.M.; Mason N.J.; Newell W.R. Dissociative Excitation of Metastable Fragments by Electron Impact
760 on Carbonyl Sulphide, Carbon Dioxide and Carbon Monoxide. *J. Phys. B* **1992**, *25*, 1307-1320, [DOI: 10.1088/0953-4075/25/6/021](https://doi.org/10.1088/0953-4075/25/6/021)

762 68. Danko M.; Ribar A.; Ďurian M.; Ország J.; Matejčík Š. Electron induced fluorescence of the H₂ molecule—
763 Balmer lines and Fulcher α system. *Plasma Sources Sci. Technol.* **2016**, *25*, 065007 (8pp), [DOI: 10.1088/0963-0252/25/6/065007](https://doi.org/10.1088/0963-0252/25/6/065007)

765 69. Harb T.; Kedzierski W.; McConkey J. W. Production of ground state OH following electron impact on H₂O.
766 *J. Chem. Phys.* **2001**, *115*, 5507-5512, [DOI: 10.1063/1.1397327](https://doi.org/10.1063/1.1397327)

767 70. Cosby P.C. Electron-impact dissociation of carbon monoxide. *J. Chem. Phys.* **1993**, *98*, 7804-7818, [DOI: 10.1063/1.464588](https://doi.org/10.1063/1.464588)

769 71. Bredehöft J.H.; Böhler E.; Schmidt F.; Borrmann T.; Swiderek P. Electron-Induced Synthesis of Formamide
770 in Condensed Mixtures of Carbon Monoxide and Ammonia. *ACS Earth Space Chem.* **2017**, *1*, 50-59, [DOI: 10.1021/acsearthspacechem.6b00011](https://doi.org/10.1021/acsearthspacechem.6b00011)

772 72. Boyer M.C.; Rivas N.; Tran A.A.; Verish C.A.; Arumainayagam C.R. The role of low-energy (≤ 20 eV)
773 electrons in astrochemistry. *Surf. Sci.* **2016**, *652*, 26-32, [DOI: 10.1016/j.susc.2016.03.012](https://doi.org/10.1016/j.susc.2016.03.012)

774 73. Mason N.J.; Nair B.; Jheeta S.; Szymańska E. Electron induced chemistry: a new frontier in astrochemistry.
775 *Faraday Discuss.* **2014**, *168*, 235-247 [DOI: 10.1039/C4FD00004H](https://doi.org/10.1039/C4FD00004H)

776 74. Zheng W.; Jewitt D.; Kaiser R.I. Formation of Hydrogen, Oxygen, and Hydrogen Peroxide in Electron-
777 irradiated Crystalline Water Ice. *Astrophys. J.* **2006**, *639*, 534-548 [DOI: 10.1086/499231](https://doi.org/10.1086/499231)

778 75. Zheng W.; Jewitt D.; Kaiser R.I. Temperature Dependence of the Formation of Hydrogen, Oxygen, and
779 Hydrogen Peroxide in Electron-Irradiated Crystalline Water Ice. *Ice. Astrophys. J.* **2006**, *648*:753-761, [DOI: 10.1086/505901](https://doi.org/10.1086/505901)