Preprint
Article

Scheduling Non-preemptible Jobs to Minimize Peak Demand

This version is not peer-reviewed.

Submitted:

22 September 2017

Posted:

22 September 2017

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
This paper examines an important problem in smart grid energy scheduling; peaks in power demand are proportionally more expensive to generate and provision for. The issue is exacerbated in local microgrids that do not benefit from the aggregate smoothing experienced by large grids. Demand-side scheduling can reduce these peaks by taking advantage of the fact that there is often flexibility in job start times. We focus attention on the case where the jobs are non-preemptible, meaning once started, they run to completion. The associated optimization problem is called the Peak Demand Minimization problem and has been previously shown to be NP-hard. Our results include an optimal fixed-parameter tractable algorithm, a polynomial-time approximation algorithm, as well as an effective heuristic that can also be used in an online setting of the problem. Simulation results show these methods can reduce peak demand by up to 50% versus on-demand scheduling for household power jobs.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

543

Views

455

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated