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Abstract: We focus on macromolecules which are modeled as sequentially growing dual scale-free
networks. The dual networks are built by replacing star-like units of the primal treelike scale-free
networks through rings, which are then transformed in a small-world manner up to the complete
graphs. In this respect, the parameter y describing the degree distribution in the primal treelike
scale-free networks regulates the size of the dual units. The transition towards the networks of
complete graphs is controlled by the probability p of adding link between non-neighboring nodes of
the same initial ring. The relaxation dynamics of the polymer networks is studied in the framework
of generalized Gaussian structures by using the full eigenvalue spectrum of the Laplacian matrix.
The dynamical quantities on which we focus here are the averaged monomer displacement and
the mechanical relaxation moduli. For several intermediate values of the parameter’s set (7, p) we
encounter for these dynamical properties regions of constant in-between slope.

Keywords: polymer networks; scale-free networks; mechanical relaxation; eigenvalue problem.

1. Introduction

Nowadays, in different areas of science, such as physics, chemistry, biology, economics, the study
of complex networks becomes of huge significance. In particular the concept of scale-free networks
was applied with great success to World Wide Web [1,2], metabolic networks in biological organisms
[3], reaction-diffusion processes [4], financial networks [5], and transport networks [6,7], to name only
a few, but also to model hyperbranched polymers [8,9]. Inspired by recent experimental techniques
allowing to make chemical transformations from hyperbranched polymers to functional core-shell
nanogel systems [10] as well as to being interested in the fundamental role of the presence of loops in
the polymer networks (e.g. in crosslinked systems [11] and elastomers [12]), we study in this article a
new kind of polymer networks, the dual scale-free networks.

Here we construct the dual scale-free polymers by using the procedure implemented in Ref. [13].
Being the dual structures [14] of treelike scale-free networks, which have a power-law distribution
for their degrees [4,9,15,16], our networks contain dual units with their sizes following the same
power-law decay. The limiting topologies that one can get as a function of this power-law exponent, v,
are networks made of huge dual units for very low values of  and linear chains for very high values
of . For intermediate values we obtain networks composed of dual units of diverse sizes, coupled one
to another. In our model the minimum allowed size corresponds to a line (or two connected nodes),
that guarantees the construction procedure to never stops by itself, but only when we reach a desired
network’s size. The dual units considered in this article range from rings to complete graphs. The
transition between these units is implemented by adding, with probability p, links between nodes from
the same ring. In this way, we stick for p = 0 to the ring limit and for p = 1 we obtain complete graphs.
The relaxation dynamics of these networks is studied in the framework of generalized Gaussian
structures (GGS) [9,17-25], which concentrates on the role of connectivity of the structures. In the
model, the monomers are visualized as beads experiencing viscous friction connected only to their
nearest neighbours by means of elastic springs. The relaxation dynamics of polymers is completely
determined by knowing all eigenvalues and eigenvectors of the connectivity (Laplacian) matrix, that
allows one to study very large systems.
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The paper is structured as follows: In Section 2 we briefly describe the algorithm used to construct
the dual scale-free networks. In Section 3 we recall the general formalism of GGS and we remind the
basic equations which govern the monomer displacement under a constant force and the mechanical
relaxation of polymers. In Section 4 we study the relaxation dynamics of polymers modeled in Section
2. Here, we study the eigenvalues spectrum of our networks and then we focus on their dynamics by
exploring the parameter set (7, p). Section 5 concludes this paper.

2. Sequentially growing dual scale-free networks

The original model of scale-free networks proposed by Barabasi and Albert [15] attracted a lot of
interest from the scientific community, also proved by the continuously increasing number of scale-free
models [4,8,9,16,26], to cite only a few. In this article we extend these works by studying the dual
structures of treelike scale-free networks, making use of the model developed in Ref. [13] by some for
us for study of quantum transport.

(© (e)

(b) (d)

Figure 1. Some realizations of sequentially growing dual scale-free networks with N = 50 nodes and
(a) and (b) p = 0 ('DSEN), (c) and (d) p = 0.1 (pDSFN), and (e) and (f) p = 1 (cDSEN). The upper row
[(a),(c),(e)] corresponds to networks with v = 2.5 and the lower row [(b),(d),(f)] is for 7y = 4.0.

The scale-free network models consider a power-law for the distribution of functionalities (or
degrees)
?k & ki,y/ (1)

where p, is the probability that the functionality of a node is k and y is the parameter which controls
how densely a network is connected. In this article we construct the scale-free networks by following
the algorithm developed elsewhere [9], but differently from this reference here we consider their dual
structures. This means that instead of adding a node with functionality k we construct a ring or a ring
with additional bonds (i la small-world network [21,27,28]) consisting of k nodes. Equation (1) holds
starting only from k = 2, assuming that p; = 0. Thus, the probability to have an object with k nodes
(for k = 2 it is a bond connecting two beads, for k = 3 it is a ring of three bonds) is given by
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where N is the total number of nodes and the sum on the denominator is used to keep the total

probability equal to 1.

In the left column of Fig. 1 we display two particular realizations of the algorithm for creating the
ring-based dual scale-free networks (rDSFNs) containing N = 50 nodes and ¢y = 2.5, and 4.0, from
top to bottom. In order to help the reader to distinguish how the parameters’ set (1, p) influences
the topology of the network we display by red colour the bonds (links) appearing with probability
p2 and by green colour the bonds that compose a ring of length 3. In the following we describe the
construction algorithm using Fig. 1(a), ¥ = 2.5, as toy-model. In this subfigure the numbering is
according to the chronological order in which the nodes were created. The algorithm starts by choosing
randomly the size of the ring from the degree-distribution (2). In this case the first chosen size was
k =5, thus we create five nodes, labeled 1,2, 3,4, 5. Then we pick at random one of the open vertices, in
this case all five nodes are still available. It turned out to be the node 2 and its size was again obtained
from the degree-distribution py. For this particular realization the size was chosen to be k = 2, thus we
have to add a line connecting node 2 with a new node, labeled by 6. This procedure is iterated until the
desired network’s size is reached, N = 50 for this example. The minimum allowed size is two, thus
the construction will never stop by itself since we will always have at least one open node. Also by
comparing Figs. 1(a) and (b) one can clearly notice a transition from networks with few but large rings,
low 7s, to networks with many linear spacers and small rings, high «s.

In this article we focus particularly on a transition from rDSFNs to complete-graph based scale-free
networks (cDSFNs) by performing bond percolation between non-neighboring beads of each ring
inside an rDSFN. For this we introduce a new parameter, p, which is the probability to add an internal
bond between two non-neighboring nodes from a ring. Being a probability the parameter p takes
values from 0 to 1. In Figs. 1(c) and (d) we show realizations of sequentially growing partially dual
scale-free networks (pDSFNs) with p = 0.1. The construction of these networks starts from rDSFN with
a given v and where we add links between non-neighboring nodes of the same ring with probability
p = 0.1. These additional internal links are displayed by blue colour in Fig. 1. In Figs. 1(e) and (f) we
show the complete-graph-based dual scale-free networks (cDSFNSs), for which all possible internal
links were added, p = 1.0. We observe that by increasing 7 the number of possible additional links
diminishes, due to a higher amount of rings with sizes smaller than 4. This fact has a tremendous
influence on the results, as will be shown in Section 4.

3. Theoretical model

In this paper we study the relaxation dynamics of polymers constructed by implementing an
algorithm described in the previous section. The dynamics is solved using the concept of generalized
Gaussian structures (GGS) [17,18,25,29,30], which are extensions to complex topologies of the Rouse
model initially developed for linear polymer chains [31]. This model allows to study with a very good
performance many features related to polymer dynamics, although it neglects important interactions,
such as the hydrodynamic interactions, or sometimes essential effects, such as the excluded volume,
the entanglements, or the stiffness. The GGS consists of N beads, attached to each other by Gaussian
elastic springs (i.e., obeying a Gaussian statistics) with elasticity constant K. Here we consider the
simplest case, namely a homogeneous situation, in which all the beads experience the same friction
constant ¢ with respect to the surrounding medium. The configuration of the GGS is given by a set
of position vectors {R, }, where R, (t) = (Xy(t), Yu(t), Zn(t)) is the position vector of the nth bead at
time t. The linear Langevin equation for the dynamics of bead i written only for one component reads
[25,29]:
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Y, (t)
ot

iiYi(t) = fyi(t) + Fy(t). 3)

In the last equation the friction constant can be written as { = 67rpa, where a is the effective radius
and p is the viscosity of the solvent and the elasticity constant of any spring K = 3kpT/I? is related
to the temperature T, the Boltzmann constant kg, and to the mean square bond length [ (we note
that loop closure leads to a shrinking of bonds [32], hence I? is the parameter of a spanning tree of
the network). Here f,; and F,; are the y-components of the stochastic forces and the external forces
acting on the ith bead, respectively. Making use of the fluctuation-dissipation theorem, the random
forces f; are connected with the dissipative friction and they are considered to be a Gaussian process,
which has its first two moments written as (f,;(t)) = 0 and (fo;(t)fs;(t")) = 2kpT{0;j00pd(t — t') (with
« and B denoting the x,y and z directions). All the information about the topology of the GGS are
stored in the connectivity matrix A = Aj;j, which is also called the Laplacian (or Rouse) matrix [17].
This matrix is an N x N symmetric matrix, having its nondiagonal elements A;; equal to —1 if the the
ith and jth beads are directly connected and 0 otherwise; while the diagonal elements Aj; are equal
with the number of bonds of bead ;.

Being encouraged by the experimental techniques [33-37] we study the motion of the GGS under
a constant external force F = F - O(t) - e, (where O(t) is the Heaviside step function), switched on
at t = 0 and acting on a single bead in the y— direction. The displacement, after averaging over the
random forces f;(t) and over all the beads in the GGS, is given by [18,21,25,29]

N 1_ _
<<Y(t)>> _ %+ Uzli]g Zzl eXP/\(n U/\nt)l (@)

where o = X is the bond rate constant. In this model, the average displacement depends only on the
eigenvalues A, of the connectivity matrix A, but not on its eigenvectors. In the case of more complex
force configurations, such as used for layered flows [38], the eigenvectors are indispensable. From
Eq. (4), the behavior of the averaged displacement for extremely short times and for very long times
become evident. In the limit of very short times and sulfficiently large N one gets ((Y(t))) = Ft/{ and
for very long times one obtains ((Y(t))) = Ft/N(. Thus, for very short times one observes only the
motion of single beads that do not feel yet their neighbors, whereas for very long times the whole GGS
diffuses, resulting in an increase of the friction from ¢ to N{. However, in the intermediate time region
there is a strong dependence on the particular topology of the GGS; the behavior of the averaged
displacement will indeed depend on the eigenvalues of the matrix A. Since in this article we are mainly
interested in the characteristic behavior of ((Y(¢))) we consider F/{ =1and ¢ = 1.

In this article we are also interested in the viscoelastic properties of the polymeric structures
and we calculate the mechanical relaxation form, namely the complex dynamic modulus G*(w) or,
more exactly, its real G'(w) and imaginary G”(w) components (known as the storage and the loss
moduli)[39,40]. For very dilute solutionsthe storage and loss moduli are given by [18]

N 2
/
= 5
G'(w) = vksT— lZzwz+ 20A;)2 5)
and N
G (w) = vkpT~ 20A; )

N 1222 w?+ (207,)%"

In (5) and (6) v is the number of polymer segments (beads) per unit volume and, as in Eq. (4), A; are the
eigenvalues of the connectivity matrix A. In these equations are considered only the non-vanishing
eigenvalues, because A; = 0 corresponds to the translation of the system as a whole and does
not contribute to the moduli. The factor 2 in the relaxation times 7; = 1/20A; appears from the
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stress-stress correlations leading to a product of two bond autocorrelation functions [41]. As in the case
of monomer displacement we are mostly interested in the slopes of G’ (w) and G”(w) and therefore
choose vkgT/N = 1 and ¢ = 1in (5) and (6).

4. Results

4.1. Eigenvalues spectrum

N
5 -

10~ = :
102 10" 10° 10" 10* 10° 10

A

Figure 2. Spectral density of S = 100 realizations of pDSFNs with N = 10000 and y = 2.5 for different
values of p: (a) 0.0, (b) 0.01, (c) 0.1, and (d) 1.0.

In Figure 2 we display in double logarithmical scale the eigenvalues’ density, p(A), for pDSFNs
with N = 10000 nodes and S = 100 realizations. Here, we vary the parameter p, which controls
bond addition to the rings, from p = 0.0 (rfDSEN consisting of rings) to p = 1.0 (cDSFN consisting
of complete graphs) for an intermediate value of the parameter v = 2.5. We note that for pDSFN5s
with very high -y the parameter p does not play an important role since the number of rings with
more than 3 nodes gets low. In Fig. 2 (a) one can notice a weak interplay between a single ring or
chain’s spectrum, namely a continuous spectrum until A ~ 4, and traces of a collection of coupled
rings. Increasing the parameter p we get nodes with higher functionalities, which provide an increase
in the magnitude of the highest eigenvalues, enlarging the width of the spectrum. This enlargement
can be also understood by employing some considerations to the number of links. By increasing the
parameter p the number of additional links will increase, thus also the sum of all the eigenvalues will
increase: ) ; A; = 2L, where L stands for the total number of links. But the total number of eigenvalues
keeps the same, N, and as a consequence we expect higher eigenvalues when p gets higher. Even
for very small values of p, which correspond to a small amount of additional links, we observe a
clear difference from the rDSFNs (no aditional internal links). This fact was also observed for another
type of networks: small-world networks [42]. In the region of high eigenvalues the appearance of a
power-law behaviour occurs even for very low p, namely p = 0.01. For higher parameter’s value,
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p = 0.1, this behaviour gets more pronounced and the appearance of a fat tail gets more visible, see Fig.
2 (c). For cDSENs, which corresponds to p = 1.0, the higher eigenvalues get larger and additionally
we notice an increase in their degeneracy, as shown also in Fig. 2 (d). In the region of low eigenvalues
we obtain a power-law behavior with the exponent ¢ that varies from —0.4 for p = 0.0 to —0.18 for
p = 1.0. We remark that one can define the spectral dimension ds based on the exponent J by the
relation § = % — 1, following the pioneering work of Ref. [43].

4.2. Relaxation dynamics

Now we consider the relaxation dynamics of pDSFNSs, starting with the components of the
complex dynamic modulus, the storage and the loss moduli.

In Figure 3 we plot in double logarithmic scale the storage modulus, Eq. (5), with vkgT/N =1
and o = 1, for rDSFNSs (i.e., pDSFNs with p = 0.0) with a fixed number of monomers, N = 10000. Here

we varied the parameter y from 1.0 to 4.0 and for a better visualization we also display as inset figure
d(log1oG")
d(logow) ~ i ¢
for very low and very high frequencies, namely power-laws with slopes 2 and 0, respectively. In the

intermediate range one notices the influence of the topology of the networks. For the studied case,
p = 0.0, we observe regions with almost constant slope for ¢ < 2.5, ranging for more than three orders
of magnitude, which is due to the linear spacers of the rDSFNs. These slopes are a little bit different
than the standard value of 0.5 of the linear chains [39]: &’ = 0.52 for v = 1.0, &’ =~ 0.54 for v = 1.5,
a' ~ 0.59 for v = 2.0, and &’ ~ 0.64 for v = 2.5 (the latter value is closely related to the spectral
dimension observed in Fig. 2(a), bearing in mind that a’ ~ % [18,44]). For larger values, v > 3.0,
the region of constant slopes observed in the region 102 < w < 10° disappears. This finding can be
related to a growth of the number of the branches, in this case there are nodes only with functionalities

the local derivative a’ = for all the curves. Immediately apparent are the limiting behaviors

3 and 4.
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| |— =10
1.5
L |— 2.0 _
2 2.5
L 3.0 i
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Figure 3. Storage modulus and the corresponding derivative (inset) for rDSFNs (p = 0.0) with
N = 10000 and various values of 7. The frequency w has units of o = K/(.

In Figure 4 we display the storage modulus, G’ (w) for pDSFNs with N = 10000 monomers and
7 fixed to 2.0 (top row) and 2.5 (bottom row). In the right column we plot the local derivative a’ for
all the curves from the left column. The two chosen values of 7y correspond to pDSFNs that show in
Fig. 3 a scaling behavior in the intermediate frequency domain. For these s one obtains rDSFNs with
medium-size rings, which are not as large as in the case of v = 1.0 and not very small as for v > 3.0. In
Fig. 4 we monitor the influence of the parameter p, which was varied from 0.0 to 1.0, on the relaxation
dynamics. Again, the limiting behaviors for very low and very high frequencies are well recovered. In
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the intermediate frequency domain one can easily notice that even for very small values of p, i.e., for
a small amount of additional internal links between nodes from the same ring, the scaling behavior
observed for rDSFNs (p = 0) vanishes. It is replaced with a nonmonotonous behavior, which was
also observed for some fractal polymers [45], or with another slope. In particular, for v = 2.0 and
p = 0.01 we notice an almost constant slope &’ ~ 0.77 in the frequency range 10730 < w < 10715,
For v = 2.5 the constant slope is maintained for all the values of p, but with slightly different values
for the exponent &/, varying between 0.77 and 0.82. For y = 2.5 the difference between curves with
different non-zero p is less prominent, due to a smaller amount of possible additional internal links.
This statement will become more evident when the loss modulus is considered.

o) e . B B B
1.5F v=2.0]
B 1F ;
0’5-_ ]
p=0.0| o[ P PR (NP BN B s ]
0011 876 4 2 0 2 4 6

log, — 0l log,,®

— 05
5 I 10 2 T

) - 1,5-_ — ]
o O T T=23]
%E I 3 in .
= S 0.5F .
10 ok P EPR R B B s ]
'S 4 0 4 8 8 6 4 2 0 2 4 6

log, @ log, @

Figure 4. Storage modulus G’ and its derivative &’ for pDSFNs with N = 10000 and various values of
p and 1, as indicated. The frequency w has units of ¢ = K/(.

Now we turn our attention to the influence of p on the loss modulus, Eq. (6). In Fig. 5 we display

in double logarithmic scale the modulus and its the derivative o’ = % for vy = 2.0 and 2.5. Here
we set vkgT/N = 1 and o = 1. For each value of v we choose the same p-values as in Figure 4, from
0.0 to 1.0. As previously observed, even for small values of p the behavior changes drastically when
the parameter p is switched on. Also for higher v the size of the rings gets smaller, meaning that the
number of possible additional links decreases, thus there are only slight differences between various
p > 0.01-values. For pDSFNs with 7y = 2.5 we observe scaling in the intermediate frequency region for
all the values of p, while for v = 2.0 we get a region of constant slope for pDSFNs with the parameter
p equal to 0.01. From Fig. 5 it is evident a shift towards higher frequencies’ region when p gets higher,
which fades away by increasing the parameter . These findings can be understood by considering the
average number of rings, which can be written as < ¢ >= (N —1)/(< n > —1), where < n > is the
average size of rings. The last quantity follows from Eq. (2) and it can be written in the thermodynamic
limit (N — o0) based on the Riemann zeta function [46] as < n >= ({(y—1) —1)/({(y) — 1). This
equation provides a finite and relatively small value of < n >~ 4.72 for v = 2.5, but for ¢y = 2.0 the
average size of rings < n > grows logarithmically with N. Thus, for y = 2.5 there is a high number of
connected small-size rings, whereas for y = 2.0 one has a collection of rather large rings.
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Figure 5. Loss modulus and its derivative for pDSFNs with N = 10000 and various values of p, having
v = 2.0 and 2.5. The frequency w has units of o = K/¢.

As we have observed in Figures 4 and 5, the value p = 0.01 leads to a transition to a new
characteristic behavior. Therefore, in Figure 6 we consider the loss modulus, Eq. (6), for pDSFNs
with p = 0.01 and <y ranging from 1.0 to 4.0. For a better visualization of the slopes we display as
inset panel the local derivative a”. In the intermediate range of frequencies, where the topology of
the networks plays an important role, we observe a region with almost constant slope for v = 2.0,
which was spotted also in Fig. 5, and which it is close to the slope observed for the storage modulus:
o = 0.75. For v = 1.0 the region with constant slope observed in Fig. 3 for rDSFNSs vanishes, due to
the presence of additional internal bonds. For pDSFNs with ¢y > 3.0 and p = 0.01 we do not observe
scaling in the intermediate frequency domain.

The characteristic behaviors observed in the mechanical relaxation are also reflected in other
dynamical properties, as we proceed to show by considering the average monomer displacement

((Y(t))), Eq. (4). In Figure 7 we show in double logarithmic scale ((Y(¢))) with F/{ =1land 0 =1,

d(logio((Y))) ¢
d(logiot)
the curves plotted in the right panels. We fixed the parameters (N, S) to (10000, 100) and we varied

the parameter p from 0.0 to 1.0. Immediately apparent for all panels are the limiting behaviors in the
region of very short and very long times, namely a linear time-dependence, ((Y(t))) « t. Already for

for pDSFNs of v = 2.0 and 2.5. In the left panels we display the local derivative &« =

small values of p > 0 a new scaling behavior (related to that observed in the mechnical relaxation) was
encountered, namely (v, p) = (2.0,0.01) with a = 0.26. Remarkably, for v = 2.5 we observe a more
pronounced slope region of almost two orders of magnitude, & ~ 0.25. The constant slope of ((Y(t)))
in the intermediate time region corresponds to the spectral dimension, &« = 1 — d;/2, see [18] for more
details. The dependence on p gets lower by increasing -, because the networks have a small amount of
rings with more than 3 nodes, which do not have an internal bond. For an illustration of this statement
see the corresponding typical realization in Fig. 1(f).
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Figure 6. Loss modulus and the corresponding derivative (inset) for pDSFNs with N = 10000, p = 0.01,
and various values of . The frequency w has units of o = K/Z.

5. Conclusions

In this paper we have studied a new kind of polymeric networks that are the dual structures of
treelike scale-free networks. The dual patterns are realized based on sequentially connected rings
whose size follows a scale-free degree distribution [13]. Hence the topology of these networks varies
with the power-law exponent 7 of the scale-free distribution. For small values of y we get with high
probability some connected rings which have a very large size (similar with the hubs from treelike
scale-free networks) and for very high s we obtain a big amount of linear segments and small rings.
Furthermore, we have also considered a small-world like [21,27,28] transition of the sequentially
attached rings towards complete graphs. In doing so, we have added links with probability p to
nodes from the same rings. In the limiting case, p = 1.0, we have obtained networks of sequentially
connected complete graphs.

The relaxation dynamics of these networks is studied on the mechanical relaxation moduli and
the average monomer displacement, employing the generalized Gaussian structures’ framework [18].
Addition of bonds into the sequentially growing rings plays a crucial role for the dynamical behavior
of the polymeric networks. Already for for a low probability of having bond, p = 0.01, we have
encountered a new scaling behavior, which is persistent for several values of the tuple (v, p). So for
the mechanical relaxation moduli we find characteristic exponents with the values between 0.75 and
0.82 which are then reflected in the time behavior of the monomer displacement characterized by
the exponents close to the value 0.25. Thus the addition of bonds leads to a slowing down on the
dynamics.

We believe that our findings can be helpful for studies of supramacromolecular complexes, such
as core-shell nanogel systems [10]. From the theoretical point, further extensions of the model through
inclusion of excluded volume and hydrodynamic interactions can be of much interest.
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Figure 7. Average monomer displacement and its derivative for pDSFNs with N = 10000 and various
values of p and v, as indicated. The time ¢ has units of 1/0 = /K.

The following abbreviations are used in this manuscript:

GGS: generalised Gaussian structures

rDSFNss: ring-based dual scale-free networks

c¢DSFNs: complete-graph based scale-free networks

pDSENSs: sequentially growing partially dual scale-free networks
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