Preprint
Article

Integral Representations for Multivariate Logarithmic Polynomials

Altmetrics

Downloads

879

Views

729

Comments

6

A peer-reviewed article of this preprint also exists.

Feng Qi  *

This version is not peer-reviewed

Submitted:

22 September 2017

Posted:

23 September 2017

You are already at the latest version

Alerts
Abstract
In the paper, by induction and recursively, the author proves that the generating function of multivariate logarithmic polynomials and its reciprocal are a Bernstein function and a completely monotonic function respectively, establishes a Lévy-Khintchine representation for the generating function of multivariate logarithmic polynomials, deduces an integral representation for multivariate logarithmic polynomials, presents an integral representation for the reciprocal of the generating function of multivariate logarithmic polynomials, computes real and imaginary parts for the generating function of multivariate logarithmic polynomials, derives two integral formulas, and denies the uniform convergence of a known integral representation for Bernstein functions.
Keywords: 
Subject: Computer Science and Mathematics  -   Computational Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated