

1 Article

2

Coupling Uncertainties with Accuracy Assessment in 3 Object-based Slum Detections, Case Study: Jakarta, 4 Indonesia

5 **Jati Pratomo¹, Monika Kuffer^{1,*}, Javier Martinez¹, Divyani Kohli¹**6 ¹ Faculty of Geo-Information Science & Earth Observation (ITC), University of Twente, Enschede 7514 AE,
7 The Netherlands; E-mails: jati.pratomo@gmail.com; m.kuffer@utwente.nl; j.martinez@utwente.nl;
8 d.kohli@utwente.nl

9 * Correspondence: m.kuffer@utwente.nl; Tel.: +31-534-874-301

10
1112 **Abstract:** Object-Based Image Analysis (OBIA) has been successfully used to map slums. In general,
13 the occurrence of uncertainties in producing geographic data is inevitable. However, most studies
14 concentrated solely on assessing the classification accuracy and neglecting the inherent
15 uncertainties. Our research analyses the impact of uncertainties in measuring the accuracy of OBIA-
16 based slum detection. We selected Jakarta as our case study area, because of a national policy of
17 slum eradication, which is causing rapid changes in slum areas. Our research comprises of four
18 parts: slum conceptualization, ruleset development, implementation, and accuracy and uncertainty
19 measurements. Existential and extensional uncertainty arise when producing reference data. The
20 comparison of a manual expert delineations of slums with OBIA slum classification results into four
21 combinations: True Positive, False Positive, True Negative and False Negative. However, the higher
22 the True Positive (which lead to a better accuracy), the lower the certainty of the results. This
23 demonstrates the impact of extensional uncertainties. Our study also demonstrates the role of non-
24 observable indicators (i.e., land tenure), to assist slum detection, particularly in areas where
25 uncertainties exist. In conclusion, uncertainties are increasing when aiming to achieve a higher
26 classification accuracy by matching manual delineation and OBIA classification.27 **Keywords:** Accuracy; Uncertainties; Object-Based; Slums; Jakarta

28

29

1. Introduction

30 The most recent global target in slum reduction stated in the Sustainable Development Goals
31 (SDG) is to ensure access to adequate, safe and affordable housing and essential services for all people
32 by 2030 [1]. Although the target has been stipulated, the number of slum dwellers is growing. In 2012,
33 the number of dwellers living in urban slums was 863 million, which increased from 776 to 827 and
34 881 million in 2000, 2010 and 2015 respectively [2,3]. Highly dynamic changes in cities and slums
35 require techniques that can provide rapid and reliable information for policy formulations related to
36 slums. However, information regarding the growth and expansion of slums is sparsely available [4].
37 Survey-based data collection methods have limitations due to long temporal gaps and the degree of
38 aggregation [5]. Thus, data might be obsolete when being used [6]. Meanwhile, although satellite
39 imagery gives the opportunity to provide almost real-time information [6], slums and non-slums
40 often share similar surface materials [7], and slum morphologies differ within and across cities [8],
41 which makes their identification somehow difficult.42 Among various approaches that were developed, Object-Based Image Analysis (OBIA) has an
43 excellent potential to extract slums using spectral as well as contextual information through a
44 hierarchical procedure [9]. However, often the classification process is context and data dependent

45 [6] and not flexible to be applied to a different place (city), different images (sensor and different
46 date). The development of the Generic Slum Ontology (GSO) aimed to bridge this gap [6,9], by
47 providing a complete characterization of slums using morphological indicators [7] at three spatial
48 levels, i.e., environs, settlement and object [10]. This characterization was developed by adopting the
49 durable housing indicator from UN-Habitat [5].

50 Although the GSO assists in slum detection, it provides a generic concept of slums [11], while
51 slums can show considerable diversity within a city and even within a settlement [7,12]. For instance,
52 same characteristics (e.g., density), often differ locally and depend on developmental stages of
53 settlements [5]. Therefore, settlements having similar densities might be considered as slums in one
54 place but as non-slums in another place [13]. This illustrates challenges faced when aiming at a
55 transferable slum mapping approach based on a set of generic indicators.

56 The above-mentioned variability (e.g., spatial, temporal, sensors) requires a local adaptation of
57 the GSO. In the OBIA context, adaptations of such a ruleset for different images are inevitable
58 [7,14,15]. Nonetheless, it is crucial to promote transparency of the adaptations to ensure objectivity
59 [14], in measuring transferability of the ruleset [16]. Here, transferability is defined as the degree of
60 adaptations of a ruleset to produce comparable results from different imaging conditions [7].
61 Previous studies on OBIA-based slum detection focus either on comparability of the results [7,15] or
62 on the degree of adaptations [17,18] and both approaches use accuracy as a benchmark.

63 Measuring transferability by only considering the accuracy indicators as a benchmark has some
64 shortcomings. *First*, the occurrence of uncertainties in producing geographic data is inevitable [19],
65 and the level of uncertainties will propagate through the whole process chain [20]. *Second*, in OBIA,
66 manual image interpretation is commonly used as reference data [21], often producing ambiguous
67 results as some interpreters delineate more detailed objects and the others may generalise objects [22].
68 *Third*, it is hard to define the exact transition between slums and non-slums [23]. *Fourth*, the
69 differences in experience and the way to conceptualise slums among interpreters may lead to
70 different delineations of reference data [23]. Hence, reflecting on the uncertainties mentioned above,
71 it is crucial to consider these in the accuracy assessment for OBIA classifications [22].

72 In this paper, we analyse the impact of uncertainties in producing reference data for the accuracy
73 assessment of OBIA-based slum detection. We organised our study into four sections. *First*, we
74 describe our case study. *Second*, we discuss materials and methods, which includes the development
75 of OBIA rulesets, accuracy and uncertainties measurements. *Third*, we discuss the results and *fourth*,
76 we present the conclusions of our research.

77 2. Case Study

78 Jakarta, the capital city of Indonesia, has grown enormously since a half-century ago, and its
79 metropolitan area is home to more than 30 million inhabitants [24]. The magnitude of economic
80 activities and the presence of numerous societal infrastructures attract rural people to Jakarta.
81 However, the lack of capacities by the local government in providing affordable housing has forced
82 low-income households to settle in substandard housing areas [25]. Thus, Jakarta is facing challenges
83 in terms of managing its rapid demographic and economic growth, which also affects the growth of
84 slums [26]. Approximately, 60% of Jakarta's population, predominately from a low-income
85 household, are living in informal settlements called *kampungs*.

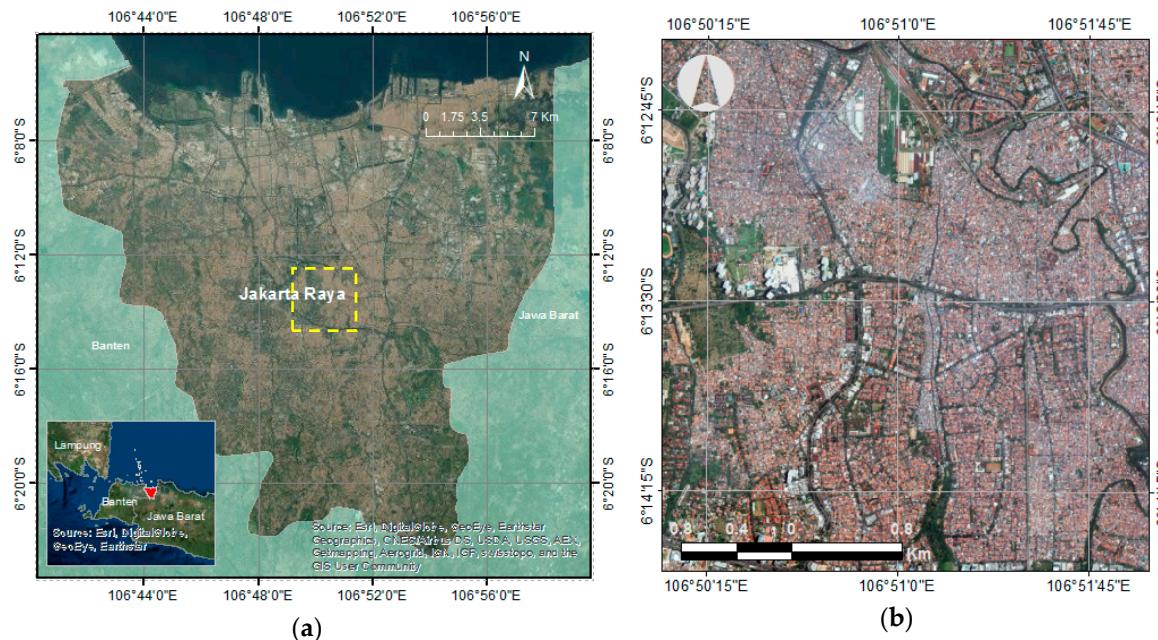
86 At the national level, the Government of Indonesia has set the 100-0-100 policy (100% access to
87 clean water, 0% slums, 100% access to sanitation) as part of the Medium Term National Development
88 Program (RPJM) [27]. The national government committed 9.5 billion US Dollars from the national
89 budget until 2019 for this purpose [28]. Hence, to monitor the slum dynamics is key to determine the
90 success of implementing this policy [29]. For this purpose, reliable and updated information on slums
91 is required.

92 In general, to define slum boundaries in Jakarta is not straightforward. Informal developments
93 in Jakarta started a half-century ago when Jakarta experienced rapid urbanisation [30], at that time
94 the planning institutions were not established [31]. Locally, these informal settlements are called
95 *kampungs*, and in their earliest development stages, they were housing predominantly low-income

96 groups. As a result of the city growth, *kampungs* expanded and became more heterogeneous, also
 97 housing mid-level income households [32,33]. Nonetheless, *kampungs* share similar characteristics
 98 with slums, i.e., overcrowding, unorganised layout and limited amenities [34]. Nowadays, many
 99 *kampungs* have been provided with basic facilities, and many of its dwellers have legal rights on their
 100 lands and properties [30]. In remotely sensed imagery, it is difficult to make a distinction between
 101 slum and non-slum *kampungs*. However, on the ground, this difference can be observed, e.g., using
 102 building material, household income, floor material, access to sanitation as indicators.

103 In Indonesia, various governmental bodies, scholars and organisations have attempted to
 104 formulate a slum definition. For instance, the National Board of Statistics developed indicators
 105 according to the housing quality and mentioned that slum building can be characterized by
 106 inadequate living space [35]. Meanwhile, the Ministry of Public Works developed indicators
 107 according to the quality of settlements, where slums can be characterized by its under-served facilities
 108 [36]. Internationally, the most commonly employed definition of a slum is based on the durable
 109 housing indicators, where a slum is an area that is characterised by lack of access to safe water and
 110 sanitation, low building quality, overcrowded and lacks tenure security [37].

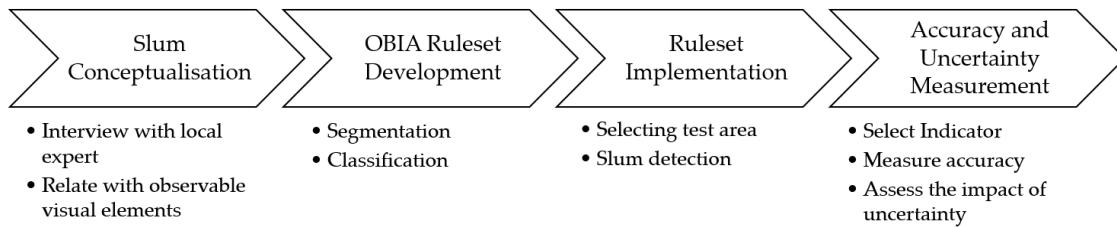
111 For the purpose of this study, we selected a subset around Tebet district (sized 29 square
 112 kilometres) in Jakarta (Figure 1) due to three reasons. *First*, Tebet district comprises of various land
 113 uses namely high-income residential areas, shopping arcade, the centre of the transportation hub,
 114 and slums. *Second*, the Ciliwung river that is locally associated with slums flows through this district.
 115 *Third*, the district houses various types of slums (e.g., slums that are located on the riverbank, near
 116 the railroad, near the CBD).



117 **Figure 1.** Map of the study area in Jakarta Province (Indonesia) (a), surrounded by Banten Province
 118 and West Java Province (the metropolitan area includes some parts of these provinces), area boundary
 119 source: Openstreet Map (2015). (b) Selected subset located in Tebet district, Jakarta. Image Source:
 120 Google Earth (2015).

121 3. Materials and Methods

122 Our research methods comprise of four main parts: (i) slums conceptualisation, (ii) OBIA ruleset
 123 development, (iii) ruleset implementation, (iv) accuracy and uncertainty measurement. Our
 124 methodology is shown in Figure 2, the detailed process is described in the following paragraph.



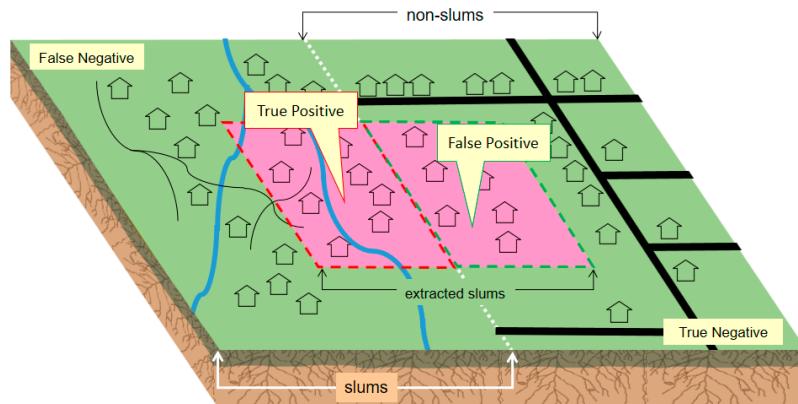
126 **Figure 2.** Research methodology comprising of four main parts and its following activities.

127 In the *first* part, we related the definitions of slums by the local experts with image-based
128 information by using several observable visual elements, e.g., tone, shape, size, texture and
129 association [6,10]. We selected five local experts from different backgrounds, i.e., government,
130 consultants and NGO. As mentioned in [23], the selected experts needed to have a professional
131 knowledge on slums. Therefore, we selected experts that have been involved in programs related to
132 slums in Jakarta. From the government, we have interviewed two experts, one from the National
133 Government (Ministry of Public Works), and one from the Local Government (Department of Spatial
134 Planning, Jakarta). In addition, we interviewed two experts from consultancies that were involved in
135 formulating the national policy of slums in Indonesia. Lastly, we interviewed one representative from
136 an NGO, who participated in monitoring settlement targets for the Millennium Development Goals
137 (MDG). Besides expert interviews, field observations were conducted in the areas experts delineated
138 as slums. The characteristics of slums obtained during the interviews were used for developing the
139 ruleset for the OBIA-based slum detection.

140 In the *second* part, we developed the OBIA-based ruleset for slum detection according to the
141 definitions mentioned in the first step. In general, OBIA aiming to relate geographic features with
142 image objects can be divided into two main parts, namely segmentation and classification [38]. In
143 general, segmentation delineates regions (segments) of an image which share common attributes [39].
144 The result is a relatively homogeneous and significant grouping of pixels [40]. Meanwhile, the
145 classification process assigns each segment to a particular class according to predefined
146 characteristics, e.g., tone, shape, size, texture and association. For segmentation, we used multi-
147 resolution segmentation (MRS) since this algorithm has been widely used in OBIA-based slum
148 detection studies (e.g. [5,12]). However, the implementation of MRS is depended on the Scale
149 Parameter (SP) [41], controlling the heterogeneity of image objects [42]. The SP value is often selected
150 in a trial-and-error process [43]. Therefore, we employed the Estimation Scale Parameter (ESP) tool
151 [41] to determine the most appropriate SP.

152 In the *third* part, we implemented the ruleset in our study area. We selected Pleiades imagery
153 granted from the European Space Agency (ESA) with standard-ortho bundles for the year of 2015,
154 with a spatial resolution of 0.5-meter for R-G-B-NIR bands. We managed to obtain an image with a
155 cloud cover of less than 10%. We purposively selected two small test areas (sized 1 square kilometres),
156 without any cloud cover. For the first test area, we selected an area with a relatively similar agreement
157 of slum boundaries among experts, while in the second area, experts considerably disagreed about
158 slum boundaries.

159 Lastly, in the *fourth* part, we measured the accuracy of the classification result. Manual
160 delineation of slum boundaries (on top of the image) by local experts were used to produce the
161 reference data, as demonstrated in [22,23]. Thus, we compared the extracted slums from the OBIA
162 ruleset, with the reference data from the local experts. This comparison, obtained four possible results
163 (Figure 3), i.e., true positive (TP), false positive (FP), true negative (TN) and false negative (FN).



164

165 **Figure 3.** Four possible results from combining classification result with the reference data produced
166 by the experts.

167 We used three indicators for measuring accuracy, i.e., precision, recall and accuracy. Precision
168 or confidence describe the proportion of predictive-positive cases, which show a correct match with
169 the reference data [44]. It can be measured by comparing TP with TP and FP (1). Meanwhile, recall or
170 sensitivity indicates the proportion of real positive cases that were correctly predicted, and it
171 indicates the degree of the confidence of our classifiers. It can be measured by comparing the number
172 of TP, with TP and FN (2). Lastly, accuracy indicates the total correct positive and negative cases (i.e.,
173 TP and TN) to the total number of possible cases (i.e., TP, FP, FN, TN) (3) [44]. Therefore, precision,
174 recall and accuracy were calculated as:

$$Precision = \frac{TP}{TP + FP} \quad (1)$$

$$Recall = \frac{TP}{TP + FN} \quad (2)$$

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN} \quad (3)$$

175 Regarding uncertainties, as pointed out in [23], the difficulties to draw exact boundaries where
176 slums change into non-slums and vice versa leading to uncertainty, i.e., existential and extensional
177 uncertainty [45]. *First*, existential uncertainty indicates the degree of confidence whether a slum exists
178 in reality [23,45], and it may depend on experts' experience or conceptual difference upon image
179 interpretations [23]. *Second*, extensional uncertainty indicates the area delineated as a slum with
180 limited certainty [23].

181 Furthermore, uncertainties also arose from different slum conceptualizations by local experts.
182 While [23] aimed to study the deviations of slum boundaries observed from VHR images, our
183 research emphasises the impact of various degrees of slum boundaries' agreements on the values of
184 the accuracy assessment. To do so, we compared the classification result (OBIA slum map for each
185 test area) obtained in the *third* part with the reference data showing various agreement levels. For
186 instance, first, we compared the classification result with an area where the reference data showed
187 the highest agreement (all five experts agreed that an area is a slum). Next, we measured the accuracy
188 according to the indicators mentioned in (1) to (3). We repeated this procedure for each subset and
189 every degree of agreement (ranging from 1-5 experts). This comparison allowed us to examine the
190 impact of different agreements in the reference data on accuracy levels for mapping slums in Jakarta.

191 3. Results

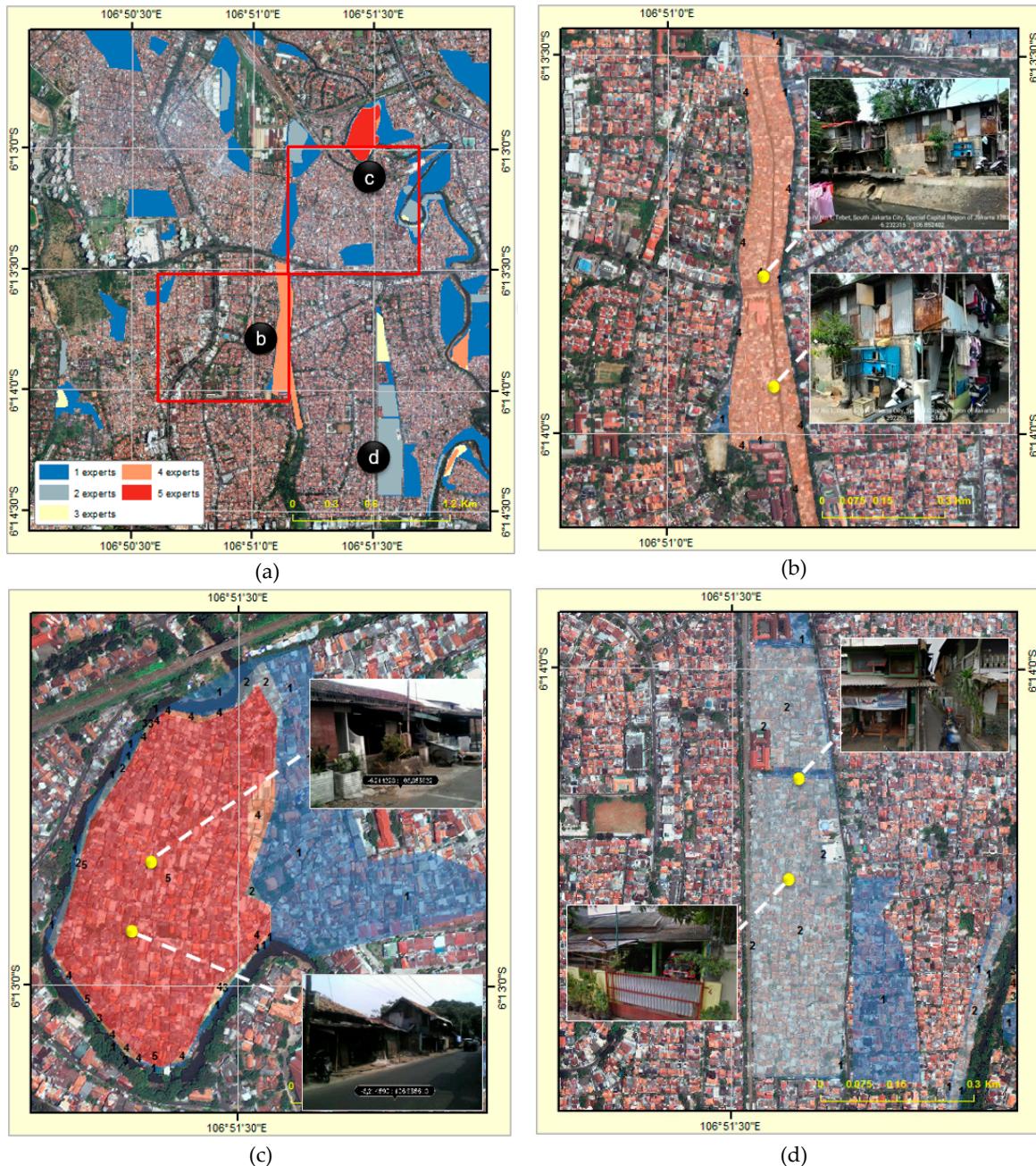
192 3.1. Slums Conceptualisation

193 The result of the expert interviews shows the local diversity of slum characteristics (Table 1). The
 194 expert from the national institutions (i.e., Ministry of Public Works) defined slums according to the
 195 building size, which in general, is smaller in size compared to non-slum buildings. In addition, slums
 196 are located commonly on the riverbank or near railroads, with irregular building orientations. The
 197 expert from the local government mentioned similar characteristics regarding the location on the
 198 riverbank and near railroads. With regards to the difficulties to distinguish slum and non-slum
 199 *kampungs*, the tenure status was often mentioned as a characteristic that could be used for
 200 distinguishing. Experts (NGO and two consultants) also came up with the slum characteristic of small
 201 building sizes. In addition, they also mentioned that slums have irregular building orientations, poor
 202 roof materials and are located on the riverbank and near railroads. The last expert (the second
 203 consultant), however, only mentioned building size and irregular building orientation as slums
 204 characteristics.

205 **Table 1.** Different characteristics and definitions of slums among local experts. (1) is from the central
 206 government; (2) is from the local government; (3) is from Non-Government Organization (NGO),
 207 and (4) and (5) are housing policies consultants.

Characteristics	Local Expert				
	(1)	(2)	(3)	(4)	(5)
1 Located on/close the river bank/railroad	✓	✓	✓	✓	
2 Small building size	✓		✓	✓	✓
3 Irregular building orientation	✓		✓	✓	✓
4 Poor roof material		✓	✓	✓	
5 Built on illegal land		✓			

208 According to the visual image interpretations, local experts have different agreements on slum
 209 locations in our study area. In **Error! Reference source not found.4 a**, we show the different
 210 agreements of slum extents (delineated by experts), where the red area and blue areas indicate the
 211 highest and lowest agreement respectively. To give a better understanding regarding slum
 212 characteristics on the ground, we conducted field observations. For the first sample (**Error! Reference**
 213 **source not found.4 b**), we selected an area along the Tebet Timur Street, which was digitized by 4 of
 214 our experts. From field observations, this area is characterised by its proximity to the river and has
 215 irregular building orientations. We also found that buildings in this area are made up of poor
 216 materials (e.g., cardboard, plastics, corrugated iron, woven bamboo). In addition, we noticed
 217 different types of roof materials (i.e., ranging from tiles to corrugated irons). For the second example,
 218 we selected an area in Manggarai I street (**Error! Reference source not found.4 c**), which shows
 219 diversity in terms of expert agreements on slums (ranging from 1 to 5 experts).



220
 221 **Figure 4.** Slums extracted from manual delineation by different experts. Figure (a) shows the different
 222 agreements of slum extents, where the red colour indicates areas with the highest agreement and the
 223 blue colour indicate the lowest. Figure (b) shows the ground conditions of slums were four experts
 224 agreed. Figure (c) shows the ground conditions of slums, which were indicated as a slum by all
 225 experts. Figure (d) shows the ground conditions of a slum that was selected by one and two experts.
 The red boxes in Figure (a) indicate our test areas.

226 **3.2. OBIA Ruleset Development**

227 When developing the OBIA ruleset, we translated the characteristics of slums obtained from the
 228 local experts, into characteristics that can be recognised by a computer. The association may include
 229 tone, shape, size, texture and associations. Table 2 shows the five characteristics of slums that are
 230 used to develop ruleset.

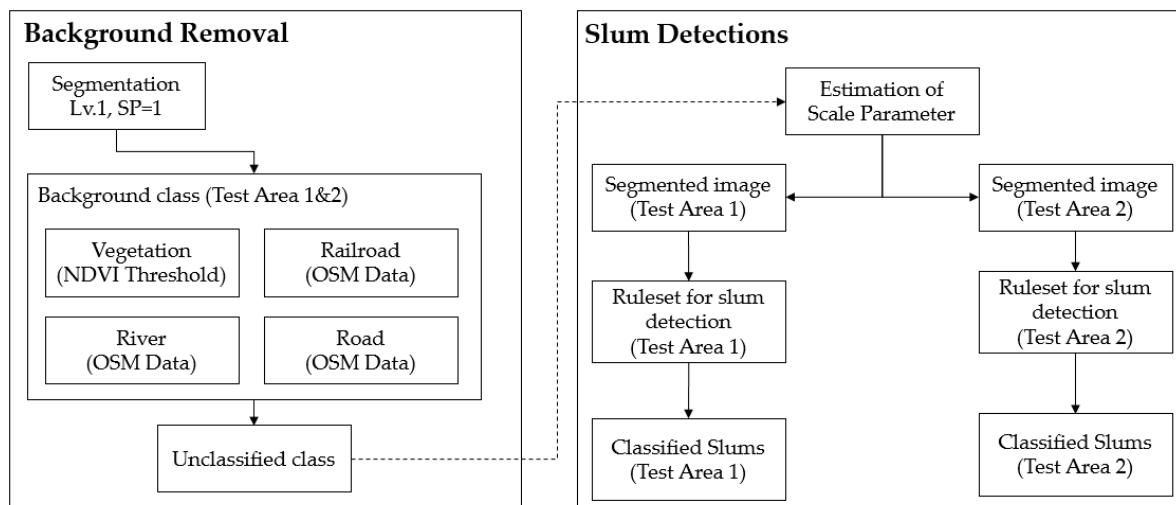
231 **Table 2.** Translation of the real world characteristics into image domain characteristics in the context
 232 of the Generic and the Local Ontology of Slums.

Real world domain	Image domain
1 Located on the riverbank/near railroad	Association: Distance to River/Railroad
2 Small building size	Size: Small
3 Irregular building orientation	Shape: compactness
4 Poor Roof material	Tone: Asbestos, corrugated iron
5 Built in the illegal land	Ancillary data: Land Use Plan

233 For the first characteristic, slums are commonly located on the riverbank or near the railroad.
 234 Thus we employed a vector layer of rivers and railroad (Openstreet Map data) using proximity as a
 235 rule. For the second and third characteristics, we associate the size and shape of the building with the
 236 shape and size of the segment. Meanwhile, for the fourth characteristic, we associate the roof material
 237 of slum buildings with the tone/colour of the segment. The last characteristic is most interesting.
 238 Unlike the four previous characteristics, the last one is not directly observable from an image.
 239 Therefore, we used a proxy indicator to determine the tenure status. According to the interview with
 240 the expert from the Jakarta province, Jakarta is implementing a strict zoning regulation, which means
 241 it is illegal to construct within protective zones. Thus, we decided to use the zoning map to delineate
 242 the protected zones, where any construction is illegal and has no legal tenure status.

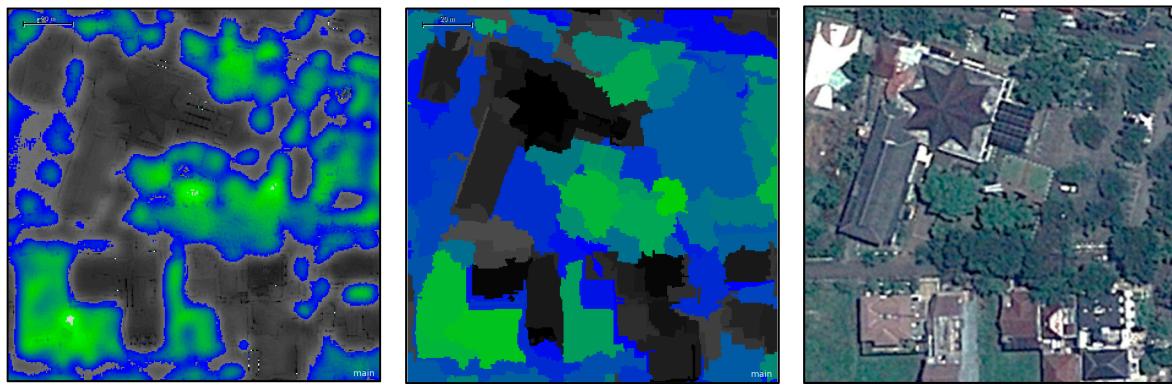
243 The idea of using a non-observable indicator has induced us to develop two scenarios when
 244 implementing our ruleset. *First*, we run our ruleset with four indicators (only observable; indicator
 245 number 1 to 4 in Table 2). *Second*, we include the non-observable indicator (number 5 in Table 2). We
 246 applied both scenarios for the two test area.

247 After we associate each slum characteristic with its consecutive image domain, we develop our
 248 ruleset in Trimble's eCognition software. Our ruleset can be divided into two steps (Figure 5). *First*,
 249 background removal and *second*, slum detection. In the background removal step, we implement
 250 MRS with a low SP (SP=1) to extract background classes, i.e., vegetation, railroads, roads, and the
 251 rivers. Next, we apply a coarse segmentation for the remaining unclassified segments, here we
 252 implement our ruleset for slum detection.



253
 254 **Figure 5.** OBIA ruleset flowchart, which starts with background removal, followed by slum detection.

255 In the *first* step, we find that among various possible associations (i.e., tone, shape, size, texture
 256 and associations), which can be used for classification, the Normalized Difference Vegetation Index
 257 (NDVI: proportion between near-infrared and red band) shows its ability to detect the vegetation
 258 well. Each object that has an average value of NDVI greater than zero is classified as vegetation.
 259 However, if we choose a coarse segmentation, vegetation is under-segmented (Figure 6). Hence, we
 260 are intentionally over-segmenting, because we aim to obtain the shape and size of the vegetation class
 261 as close as possible to its real shape and size.



(a)

(b)

(c)

262 **Figure 6.** Impact of segmentation scale on vegetation classification. Figure (a) shows segments with a
 263 NDVI of greater than zero obtained from fine segmentation and (b) from coarse segmentation, and
 264 (c) image before segmentation process.

265 For the remaining background classes (i.e., road, railroad, river), we classify the segments using
 266 vector data. For this purpose, we also implemented a fine segmentation for these classes. After we
 267 classified all background classes, the remaining class (i.e., unclassified) has a certain probability to be
 268 classified as a slum. Here, we implement the *second* step.

269 In this *second* step, we re-segment the unclassified class, aiming at coarser segments. The ESP
 270 can produce three levels of segmentation, which can be associated with three level of slums object as
 271 mentioned in [5]. Since slum buildings are characterised by its small size (Table 2), it is difficult to
 272 extract every single building as an object. Therefore, we use the second level of SP obtained from ESP,
 273 which is 95.

274 After conducting the segmentation process, we implement our concept of slums to develop the
 275 ruleset for classifying each test area. The threshold values were obtained through a trial and error
 276 process, and we assigned these values into the class description in E-cognition software (Table 3).

277 **Table 3.** Threshold value for each rule

Rule	Threshold value
Association: Distance to River/Railroad	1. Border to river >0 pixels 2. Border to railroad 0 > pixels
Shape: compactness	1. Compactness \leq 5 2. GLCM Dissimilarity \geq 0.0005
Tone: tile – corrugated iron, asbestos	Mean red/green 1 \leq tone \leq 1.075
Ancillary data: Land Use Plan (second scenario)	Mean Layer Tenure >0.25

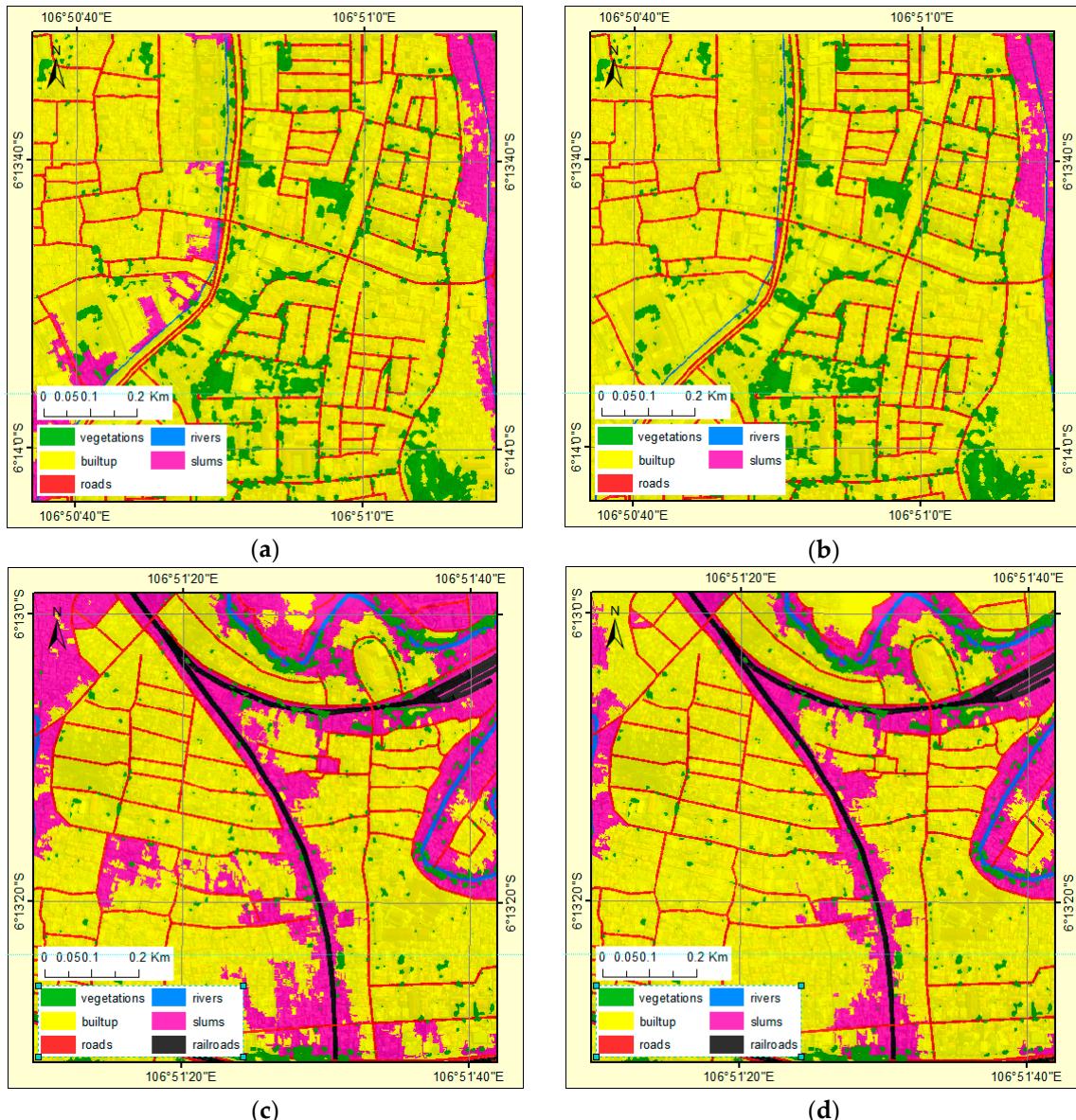
278 For the first rule, we use the border to the river and railroad, and assign each object that has
 279 more than zero pixels touching the border of river/railroad as a slum. Regarding shape, we
 280 implement two rules, compactness and grey level co-occurrence matrix (GLCM) dissimilarity.
 281 Compactness indicates the variations among pixels under one object. The lower the compactness, the
 282 higher the variation of pixel values. Regarding GLCM dissimilarity, the higher the value, the pixel
 283 values show lesser similarity within one segment [46]. For the tone, since the roof materials of slum
 284 houses in our study area are predominated by tiles or corrugated iron, we find that average of
 285 red/green shows a linear relationship with the roof colour. Here, we use the band arithmetic approach
 286 in E-cognition by calculating the proportion of red and green band in each segment. The last rule is
 287 only applicable for the second scenario. To develop this rule, we first converted the zoning map of
 288 the study area from vector to raster. Then, we reclassified the value of each land use class into two
 289 labels, i.e., have tenure and no tenure. Next, this binary image is segmented using MRS. We calculate
 290

291 the 'tenure value' of each segment and identify the threshold for slums. The more the segmented
 292 image overlapped with the 'tenure segment', the higher the chance that the segment is a slum.

293 We use "OR" function for association in our ruleset, which means that a slum may be located
 294 near the river, or near the railroad, or in the proximity of both of them. Meanwhile, for the rest of the
 295 indicators, we use "AND" function, which means that the object must meet all threshold value to be
 296 classified as slums.

297 *3.3. Ruleset Implementation*

298 We implement our ruleset in the first test area (clear boundaries between slum and non-slum),
 299 and the second area (unclear boundaries). Also, we implement our ruleset for two scenarios, *first* with
 300 using tenure status as an additional proxy, and *second* without tenure status. Hence, the four pairs of
 301 results are shown in Figure 7.



302 **Figure 7.** Mapped slums in the first test area (a,b). Figure (a) indicates slums without the tenure
 303 indicator (only consider explicit indicators) (b) indicates slum employing the tenure indicator.
 304 Meanwhile, figure (c) and (d) indicates slums in the second area, by including and excluding the
 305 tenure indicator respectively.

In Figure 7, we notice some similarities and differences in the classification results for the different scenarios. Figure 7 (a) and (b) is an area where slum and not slum areas have clear boundaries. In Figure 7 (a), where the tenure indicator is not implemented, we find two slum zones, which are located in the western and eastern parts of this area. Meanwhile, in Figure 7 (b), implementing the tenure indicator, only the eastern part is classified as a slum. Furthermore, Figure 7 (c) and (d) refer to the area where slum and not slum areas have unclear boundaries. The results show similarities of slum patches in the eastern part in (a) and (b), while result (c) and (d) show a more distinct pattern of slums. However, we find also similarities of slum patches for the second test area, particularly for slums that are located near the railroad or the river.

315 3.4. Accuracy and Uncertainty Measurements

316 Each classification results shown in Figure 7, we compared with the degree of agreements by
 317 experts, which ranges from five (highest agreement) to only one agreement (only selected by one
 318 expert (reference data). This results in twenty possible values for each accuracy indicator mentioned
 319 in Equation (1) to (3). Figure 8, shows the size of true positive (TP), false positive (FP) and false
 320 negative (FN), measured in square meters.

Dataset	True Positive					TP	TN
	5	4	3	2	1		
2015_TA1_EXP	-	41,321	-	-	41,802	█	█
2015_TA1_ANC	-	36,209	-	-	36,690	█	█
2015_TA2_EXP	11,397	11,938	15,155	35,486	94,480	█ █ █	█
2015_TA2_ANC	3,905	4,445	7,662	19,328	57,517	█ █ █	█

Dataset	False Positive					FP	FN
	5	4	3	2	1		
2015_TA1_EXP	-	31,763	-	-	31,281	█	█
2015_TA1_ANC	-	2,502	-	-	2,021	█	█
2015_TA2_EXP	228,686	228,146	224,929	204,598	145,604	█ █ █ █ █	█
2015_TA2_ANC	156,702	156,162	152,945	141,279	103,090	█ █ █ █ █	█

Dataset	False Negative					FN	TP
	5	4	3	2	1		
2015_TA1_EXP	-	56,656	-	-	73,609	█	█
2015_TA1_ANC	-	61,768	-	-	78,721	█	█
2015_TA2_EXP	7,217	9,701	10,280	28,408	96,939	█ █ █ █ █	█
2015_TA2_ANC	14,710	14,156	14,727	42,044	133,902	█ █ █ █ █	█

Figure 8. The size (in m^2) of true positive, false positive and false negative obtained by comparing classification results with the level of agreement. 2015_TA1_EXP indicates the year of the image, TA1 gives the location of the first test area (TA). EXP indicates that we only used explicit/observable indicators, while on ANC means that we include an ancillary (not observable in images) indicator.

326 The number of TP indicates the size of the area that is detected as slums by the OBIA
 327 classification as well as in the reference data. We find differences in the amount of TP between TA1
 328 and TA2, also between EXP and ANC. Apparently, the difference between EXP and ANC in TA1 is
 329 lower than in TA2. Both areas and scenarios show similarities related to the number of agreements.
 330 As we reduce the required degree of agreements for the reference data (from 4 to 1 in TA1, and from
 331 5 to 1 in TA2), the size of TP is increasing. However, we only find two degrees of agreement in TA1
 332 (i.e., one and four experts). Meanwhile, we find various levels of agreements in TA2, which indicates
 333 that our experts have very different perceptions concerning slum boundaries in TA2.

334 FP indicates the size of the area, which is detected as slums from by the OBIA classification but
 335 not delineate as slums by the experts. Interestingly, the difference of FP between EXP and ANC in
 336 TA1 is substantially greater than in TA2. In TA1, the size of FP in EXP is thirteenth times higher than
 337 ANC. Meanwhile, the difference of FP in TA2 for EXP is only one-and-a-half time greater than ANC.
 338 TA1 and TA2 show similarities related to the degree of agreements. As we reduce the degree, we get
 339 a decreasing number of FP.

340 Lastly, the FN indicates the size of the area that is detected as a slum by the experts but not
 341 detected as a slum by the OBIA classification. We notice a similar pattern of FN between EXP and
 342 ANC in TA1 and TA2. As we decrease the number of required agreements, we have an increasing
 343 number of FN. However, the increasing of FN in TA1 (for EXP and ANC) is more gradual than in
 344 TA2. In TA2, we find a significant increase of FN when we reduce the agreement from 2 to 1. This
 345 points to very diverse perceptions by experts on slum boundaries in TA2. Therefore, it results in a
 346 substantial size of slum patches with only one agreement, Figure 4 (a) in the red box labelled c.

347 Using the value of TP, FP and FN, we calculate precision, recall and accuracy using Equation (1)
 348 to (3), shown in Figure 9.

Dataset	Precision				
	5	4	3	2	1
2015_TA1_EXP	-	56.54%	-	-	57.20%
2015_TA1_ANC	-	93.54%	-	-	94.78%
2015_TA2_EXP	4.75%	4.97%	6.31%	14.78%	39.35%
2015_TA2_ANC	2.43%	2.77%	4.77%	12.03%	35.81%

Dataset	Recall				
	5	4	3	2	1
2015_TA1_EXP	-	42.17%	-	-	36.22%
2015_TA1_ANC	-	36.96%	-	-	31.79%
2015_TA2_EXP	61.23%	55.17%	59.58%	55.54%	49.36%
2015_TA2_ANC	20.98%	23.90%	34.22%	31.49%	30.05%

Dataset	Accuracy				
	5	4	3	2	1
2015_TA1_EXP	-	91.16%	-	-	89.51%
2015_TA1_ANC	-	93.57%	-	-	91.93%
2015_TA2_EXP	76.41%	76.22%	76.48%	76.70%	75.75%
2015_TA2_ANC	82.86%	82.97%	83.23%	81.67%	76.30%

 Highest Value

349

350 **Figure 9.** Accuracy values (i.e., precision, recall and accuracy) of classification results for the first and
 351 second area, two scenarios and different degrees of agreement.

352 Figure 9, shows that the usage of tenure data in the first area results in a high precision. As
 353 shown in Equation (1), precision is measured by comparing TP with TP and FP. Hence, a high
 354 precision results from a low FP, which indicates that our OBIA ruleset is only producing a small
 355 number of slums that are not delineated as slums by our experts.

356 In TA2, we notice substantial differences compared to TA1. Implementing the tenure status in
 357 TA2 results in the lowest precision compared to other combinations (i.e., TA1_EXP, TA1_ANC and
 358 TA2_EXP). This is due to the high number of FP, which are areas not delineated as a slum by experts
 359 but classified as a slum. Interestingly, in Figure 4 (a) the red box labelled c, no expert selecting the
 360 area adjacent to the railroad as slums. Figure 7 (c) and (d) indicates that our ruleset is detecting areas
 361 adjacent to the railroad as slums since we used this in our ruleset (Table 2). Although TA1 and TA2
 362 show significant differences of precision values, similarities exist across different degrees of slum
 363 agreement, reducing the required degree of agreements results in a higher precision value. These

364 higher values result from lower FP, caused by an increase in the size of slum extents in the reference
 365 data.

366 Recall, as mentioned in Equation (2), is measured by comparing TP with TP and FN. Hence, the
 367 high values of recall result from low FN, this indicates that only a small number of slums in the
 368 reference data is not detected as a slum by the OBIA ruleset. In general, 2015_TA2_ANC has the
 369 lowest recall value compared to others (Figure 10). This indicates that in 2015_TA2_ANC, many
 370 slums from the reference data are not detected by the OBIA ruleset. As shown in Figure 8 (a) in the
 371 red box labelled c, experts have different perceptions of slum boundaries. Thus, selecting only areas
 372 with a high agreement in TA2 will result in high FN. Interestingly, if we compare recall values among
 373 different agreements in the reference data, only TA2_ANC shows a different pattern. The highest
 374 value is obtained for three agreements, however, difference across recall values are small. This
 375 indicates that settlements without tenure status have a high probability to be identified as a slum by
 376 the experts.

377 Regarding accuracy, we can point to the difference between TA1 and TA2. In TA 1, the highest
 378 accuracy is achieved by the largest number of agreements. In TA2, slightly higher accuracy values
 379 are obtained by lower agreements. This pattern can be seen in both EXP and ANC scenarios. In
 380 general, our ruleset gains higher an accuracy when applied in TA1, where the slum boundaries are
 381 more clear. By comparing different locations, scenarios and indicators, we can examine the impact of
 382 the ruleset's performance as we decreased the degree of agreement (from highest to lowest
 383 agreement) (Table 4).

384 **Table 4.** Changes in performance indicators using the highest and the lowest agreement in the
 385 reference data.

Dataset	Precision gain	recall gain	accuracy gain
2015_TA1_EXP	0.66%	-5.95%	-1.65%
2015_TA1_ANC	1.24%	-5.17%	-1.65%
2015_TA2_EXP	34.61%	-11.87%	-0.66%
2015_TA2_ANC	33.38%	9.07%	-6.56%

386 Surprisingly, we notice that no data set gains more accuracy as we reduce the degree of
 387 agreement from the highest to the lowest. In Figure 10, the maximum accuracy of every possible
 388 combination is never obtained by the lowest agreement. For gain, we can notice that only TA2_ANC
 389 shows an increased gain as we decreased the level of agreement. Regarding precision, TA2 shows a
 390 significant increase of precision as we reduce the level of agreement.

391 4. Discussions

392 Image interpretations by experts are commonly used to measure the accuracy of OBIA
 393 classification results [23,47]. In this study, we employed reference data generated by manual
 394 delineation of local experts from varied backgrounds. From the results (Figure 4), we noticed different
 395 agreements regarding the extent of slums. Nonetheless, these differences cannot be qualified as
 396 inaccuracies, and every image interpretation is equally valid [22]. It is likely that the different
 397 interpretations are rather caused by the uncertainties existing in a particular area [22]. Comparing
 398 the slum delineations in our two test areas (Figure 4 (a), the red box labelled (b) and (c)), we can notice
 399 how these uncertainties caused variations on slum agreements among experts. In the first test area,
 400 agreements on slum locations and boundaries varied less compared to the second test area. During
 401 ground observations, we noticed clear boundaries of slums in the first test area (eastern part), and
 402 formal housing and commercial area (the western part). On the contrary, the second area is
 403 dominated by *kampungs*. As mentioned in section 2, *kampungs* may consist of formal housing
 404 *kampungs* having also high built-up densities or slum *kampungs* commonly having very high built-

405 up densities. These vague boundaries between slum and non-slum kampungs make it difficult to
406 determine where exactly a slum changes into a non-slum [23].

407 Regarding experts' experience, we argue that our experts have a reasonable expertise and have
408 a strong understanding of slums in Jakarta. Similar to [23], the level of experience is not a significant
409 factor related to delineations' accuracy. Meanwhile, regarding the conceptual differences, we noticed
410 a different characterization of slums among expert (Table 1), which contributed to different
411 delineations. However, it may not be the only cause. Previous research [48] indicated that the
412 performance of experts in digitizing in an image is affected by internal and external factors. Internal
413 factors include demographics, experience and skills, personality, memory span, motivation and
414 comparative anxiety. The external factors may include quality of screen/images, amount of
415 distraction, tiredness, time of day. Yet, we do not further examine how this internal factor might
416 impact the quality of slum identifications by our experts. However, we argue that some external
417 factor affected the quality of slum identifications. For instance, tiredness and time of day. Our survey
418 was taken in a different sessions, i.e., during office hours, and after office hours. It is likely that
419 interviews conducted after office hours affected the quality of image interpretation due to tiredness.

420 Comparing OBIA classification with a manual delineation can result in three scenarios. *First*,
421 slum delineations are outside the OBIA result, i.e., False Negative (FN). *Second*, slum delineations are
422 inside the OBIA result, i.e., False Positive (FP). *Third*, slum delineation is similar with the OBIA result,
423 i.e., True Positive (TP). In Figure 8, we have shown how FN, FP and TP change across different level
424 of agreements. In general, a higher level of agreement will lead to more certainty about the delineated
425 slums. Regarding the *first* scenario, TA1 and TA2 show a similar pattern, as we reduce the degree of
426 certainty, the higher the FN results. For the *second* scenario, the lower the degree of certainty, the
427 lower the FP. Meanwhile, for the *third* scenario, the highest TP is obtained with the lowest certainty.
428 Thus, the more we try to achieve that results from manual delineations and OBIA classification
429 match, the higher uncertainty will be.

430 5. Conclusion

431 Our study aimed to analyse the uncertainties in measuring the accuracy of OBIA-based slum
432 detection in Jakarta, Indonesia. Comparing the results of manual delineations of slum areas by
433 experts with OBIA classification results there are, in general, four possible outcomes, i.e. True
434 Positives (TP), False Positives (FP), False Negatives (FN) and True Negatives (TN). The values of TP,
435 FP, FN and TN, and the accuracy indices changed when the degree of expert agreements changed in
436 the reference data. These different degrees of agreements demonstrated that there are uncertainties
437 on the location and boundaries of slums, referred to as existential and extensional uncertainties
438 respectively. This outcome stresses the dilemma faced by slum mapping campaigns. Furthermore,
439 our study demonstrated the role of a non-observable indicator (land tenure), in order to assist slum
440 detection, particularly when uncertainties exist. However, the degree of confidence of our
441 classification result decreased by introducing this additional indicator, while the classification
442 accuracies increased. The inherent uncertainties in reference data (even within a city there is limited
443 agreement on what defines a slum and where are the boundaries between slum and non-slum areas)
444 emphasis the need to include uncertainty analysis in slum mapping approaches besides assessing
445 classification accuracies. We also need to build slum ontologies that integrate local knowledge when
446 aiming for a city or nationwide slum mapping and monitoring campaign employing VHR imagery.
447 However, the transferability of slum mapping indicators that are very context specific is limited, i.e.
448 indicators might work well in one area but may lead to an increase in uncertainties and/or lower
449 accuracies in other areas. Based on the findings of our research, we conclude that slum mapping
450 studies need to better address uncertainties embedded in reference data for developing a transferable
451 and robust set of indicators.

452 **Acknowledgements:** We obtained Pleiades imagery that was used in this research from the European Space
453 Agency (ESA).

454 **Author Contributions:** Jati Pratomo designed the research framework and wrote the draft of the manuscript.
455 Monika Kuffer revised and edited the manuscript and gave advice for the research design. Javier Martinez gave
456 advice in paper writing and research design. Divyani Kohli gave advice in ruleset development and uncertainty
457 measurement and supported in the review of the manuscript.

458 **Conflicts of Interest:** The authors declare no conflict of interest.

459 **References**

- 460 1. Open Working Group SDG. *Sustainable Development Goals Open Working Group proposal for Sustainable*
461 *Development Goals*; 2014.
- 462 2. United Nation. *The Millennium Development Goals Report*; New York, NY, 2014.
- 463 3. UN Habitat. *Slums Almanac 2015-16. Tracking Improvement in the Lives of Slum Dwellers*. Nairobi, 2016.
- 464 4. Shoko, M.; Smit, J. Use of Agent Based Modelling in the Dynamics of Slum Growth. *South African*
465 *Journal of Geomatics* **2013**, *2*, 54-67.
- 466 5. Kohli, D.; Kerle, N.; Sliuzas, R. In *Local ontologies for object-based slum identification and classification*, 4th
467 GEOBIA Conference, Rio de Janeiro, 7-9 May, 2012; Rio de Janeiro, pp 201-205.
- 468 6. Hofmann, P.; Strobl, J.; Blaschke, T.; Kux, H. Detecting informal settlements from Quickbird data in
469 Rio de Janeiro using an object based approach. In *Object-Based Image Analysis. Lecture Notes in*
470 *Geoinformation and Cartography*, Blaschke, T.; Lang, S.; Hay, G.J., Eds. Springer: Berlin, Heidelberg,
471 2008; pp 531-553.
- 472 7. Kohli, D.; Warwadekar, P.; Kerle, N.; Sliuzas, R.; Stein, A. Transferability of object-oriented image
473 analysis methods for slum identification. *Remote Sensing* **2013**, *5*, 4209-4228.
- 474 8. Kuffer, M.; Pfeffer, K.; Sliuzas, R.; Baud, I.; van Maarseveen, M. Capturing the Diversity of Deprived
475 Areas with Image-Based Features: The Case of Mumbai. *Remote Sens.* **2017**, *9*, 384.
- 476 9. Ebert, A.; Kerle, N.; Stein, A. Urban social vulnerability assessment with physical proxies and spatial
477 metrics derived from air- and spaceborne imagery and GIS data. *Natural Hazards* **2009**, *48*, 275-294.
- 478 10. Kohli, D.; Sliuzas, R.; Kerle, N.; Stein, A. An ontology of slums for image-based classification.
479 *Computers, Environment and Urban Systems* **2012**, *36*, 154-163.
- 480 11. Hofmann, P. Defining Robustness Measures for OBIA Framework: A Case Study for Detecting
481 Informal Settlements. In *Global Urban Monitoring and Assessment through Earth Observation*, Weng, Q.,
482 Ed. CRC Press: Boca Raton, FL, 2014; pp 303-324.
- 483 12. Kuffer, M.; Barros, J.; Sliuzas, R. The development of a morphological unplanned settlement index
484 using very-high-resolution (VHR) imagery. *Computers, Environment and Urban Systems* **2014**, *48*, 138-
485 152.
- 486 13. Gilbert, A. The return of the slum: Does language matter? *International Journal of Urban and Regional*
487 *Research* **2007**, *31*, 697-713.
- 488 14. Anders, N.S.; Seijmonsbergen, A.C.; Bouting, W. Rule Set Transferability for Object-Based Feature
489 Extraction: An Example for Cirque Mapping. *Photogrammetric Engineering & Remote Sensing* **2015**, *81*,
490 507-514.
- 491 15. Tiede, D.; Lang, S.; Hölbling, D.; Füreder, P. Transferability of obia rulesets for idp camp analysis in
492 darfur. *Geobia* **2010**, 2006.
- 493 16. Drăguț, L.; Blaschke, T. Automated classification of landform elements using object-based image
494 analysis. *Geomorphology* **2006**, *81*, 330-344.
- 495 17. Hofmann, P.; Blaschke, T.; Strobl, J. Quantifying the robustness of fuzzy rule sets in object-based
496 image analysis. *International Journal of Remote Sensing* **2011**, *32*, 7359-7381.

497 18. Hofmann, P. Detecting Informal Settlements From Ikonos Image Data Using Methods of Object
498 Oriented Image Analysis- An Example From Cape Town (South Africa). In *Remote Sensing of Urban*
499 *Areas/ Fernerkundung in urbanen Räumen*, Regensburg, Germany, 2001; pp 107-118.

500 19. Albrecht, F. In *Assessing the spatial accuracy of object-based image classifications*, Geospatial Crossroad,
501 GI_Forum '08, Salzburg, 2008; Salzburg, pp 11-20.

502 20. Zhang, J.; Goodchild, M.F. *Uncertainty in Geographical Information*. Taylor & Francis: London, 2002; p
503 266-266.

504 21. Schiewe, J.; Gähler, M. Modelling uncertainty in high resolution remotely sensed scenes using a fuzzy
505 logic approach. In *Object-Based Image Analysis. Lecture Notes in Geoinformation and Cartography*,
506 Blaschke, T.; Lang, S.; Hay, G.J., Eds. Springer, Berlin, 2008; pp 755-768.

507 22. Albrecht, F. In *Uncertainty in Image Interpretation as Reference for Accuracy Assessment in Object-based*
508 *Image Analysis*, Accuracy 2010 Symposium, Leicester, UK, 2010, 2010; Leicester, UK, pp 13-16.

509 23. Kohli, D.; Stein, A.; Sliuzas, R. Uncertainty analysis for image interpretations of urban slums.
510 *Computers, Environment and Urban Systems* 2016, 60, 37-49.

511 24. Demographia. *Demographia World Urban Areas*; Belleville, 2015; pp 132-132.

512 25. Centre on Housing Rights and Evictions. *Women, Slums and Urbanization: Examining the Causes and*
513 *Consequences*. Geneva, 2008; p 1-134.

514 26. New Cities Foundation. Jakarta to host 2015 New Cities Summit : " This is Indonesia ' s Moment ". In
515 *New Cities Foundation*,, New Cities Foundation: Jakarta, 2015; pp 1-3.

516 27. UN Habitat. Indonesia prepares National Report for Habitat III. <http://unhabitat.org/indonesia-prepares-national-report-for-habitat-iii/> (24 August),

517 28. Ministry of Public Works and Public Housing. Draft of Technical Documents on Monitoring and
518 Evaluation of Spatial Planning (in bahasa). 2015.

519 29. Pratomo, J. Transferability of The Generic and Local Ontology of Slum in Multi-temporal Imagery,
520 Case Study: Jakarta. University of Twente, Enschede, 2016.

521 30. Putranto, S. Redefining the Spatial Form of Urban Village in Mega Kuningan Jakarta as A New Urban
522 Integrator: A Study of Socio-economic Aspect in the Forming of Urban Spatial Configuration. 2009.

523 31. Rukmana, D. Planning the Megacity: Jakarta in the Twentieth Century. *Journal of the American*
524 *Planning Association* 2008, 74, 263-264.

525 32. Sihombing, A. Drawing Kampung through Cognitive Maps Case Study: Jakarta. *APCBEE Procedia*
526 2014, 9, 347-353.

527 33. Sihombing, A. Living in the Kampungs : A Firsthand Account of Experiences in Jakarta ' s Kampungs.
528 *Forum Journal of Postgraduate Studies in Architecture, Planning and Landscape* 2007, 7, 15-22.

529 34. Zhu, J.; Bunnell, T.; Yeo, V. Symmetric Development of Informal Settlements and Gated
530 Communities: Capacity of the State - The Case of Jakarta , Indonesia. 2010.

531 35. Indonesian Central Board of Statistics. Indikator Rumah Tangga Kumuh [Slum Household Indicator].
532 <http://sirusa.bps.go.id/index.php?r=indikator/view&id=453> (4 october),

533 36. Ministry of Public Works and Public Housing. *Panduan Penyusunan SPPIP dan RPKPP [Guideline for*
534 *Urban Settlement and Infrastructure Development]*; Ministry of Public Works and Public Housing:
535 Jakarta, 2014.

536 37. UN Habitat. *The Challange of Slum, Global Report on Human Settlements 2003*. Earthscan Publication Ltd:
537 Nairobi, 2003.

538

539 38. Arvor, D.; Durieux, L.; Andrés, S.; Laporte, M.A. Advances in Geographic Object-Based Image
540 Analysis with ontologies: A review of main contributions and limitations from a remote sensing
541 perspective. *ISPRS Journal of Photogrammetry and Remote Sensing* **2013**, *82*, 125–137.

542 39. Liu, Y.; Guo, Q.; Kelly, M. A framework of region-based spatial relations for non-overlapping features
543 and its application in object based image analysis. *ISPRS Journal of Photogrammetry and Remote Sensing*
544 **2008**, *63*, 461–475.

545 40. Blaschke, T. Object based image analysis for remote sensing. *ISPRS Journal of Photogrammetry and*
546 *Remote Sensing* **2010**, *65*, 2–16.

547 41. Drăguț, L.; Tiede, D.; Levick, S.R. ESP: a tool to estimate scale parameter for multiresolution image
548 segmentation of remotely sensed data. *International Journal of Geographical Information Science* **2010**, *24*,
549 859–871.

550 42. Baatz, M.; Schäpe, A. Multiresolution Segmentation: an optimization approach for high quality multi-
551 scale image segmentation. In *Angewandte Geographische Informationsverarbeitung XII*, Strobl, J.;
552 Blaschke, T.; Griesebner, G., Eds. Wichmann-Verlag: Heidelberg, 2000; pp 12–23.

553 43. Whiteside, T.G.; Boggs, G.S.; Maier, S.W. Comparing object-based and pixel-based classifications for
554 mapping savannas. *International Journal of Applied Earth Observation and Geoinformation* **2011**, *13*, 884–
555 893.

556 44. Powers, D.M.W. Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness
557 & Correlation. *Journal of Machine Learning Technologies* **2011**, *2*, 37–63.

558 45. Molenaar, M. In *Three Conceptual Uncertainty Levels for Spatial Objects*, International Archives of
559 Photogrammetry and Remote Sensing, Amsterdam, 2000; ISPRS: Amsterdam, pp 670–677.

560 46. Trimble Germany GmbH. *User Guide - eCognition ® Developer*. 9.1.1 ed.; Trimble: Munich, 2015; p 256–
561 256.

562 47. Albrecht, F. Uncertainty in Image Interpretation as Reference for Accuracy Assessment in Object-
563 based Image Analysis. In *Accuracy 2010 Symposium*, Leicester, UK, 2010; pp 13–16.

564 48. van Coillie, F.; Gardin, S.; Anseel, F.; Ducyk, W.; Verbeke, L.P.C.; de Wulf, R.R. Variability of
565 Operator Performance in Remote-sensing Image Interpretation: the Importance of Human and
566 External Factors. *International Journal of Remote Sensing* **2014**, *35*, 754–778.

567