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Abstract: Object-Based Image Analysis (OBIA) has been successfully used to map slums. In general, 12 
the occurrence of uncertainties in producing geographic data is inevitable. However, most studies 13 
concentrated solely on assessing the classification accuracy and neglecting the inherent 14 
uncertainties. Our research analyses the impact of uncertainties in measuring the accuracy of OBIA-15 
based slum detection. We selected Jakarta as our case study area, because of a national policy of 16 
slum eradication, which is causing rapid changes in slum areas. Our research comprises of four 17 
parts: slum conceptualization, ruleset development, implementation, and accuracy and uncertainty 18 
measurements. Existential and extensional uncertainty arise when producing reference data. The 19 
comparison of a manual expert delineations of slums with OBIA slum classification results into four 20 
combinations: True Positive, False Positive, True Negative and False Negative. However, the higher 21 
the True Positive (which lead to a better accuracy), the lower the certainty of the results. This 22 
demonstrates the impact of extensional uncertainties. Our study also demonstrates the role of non-23 
observable indicators (i.e., land tenure), to assist slum detection, particularly in areas where 24 
uncertainties exist. In conclusion, uncertainties are increasing when aiming to achieve a higher 25 
classification accuracy by matching manual delineation and OBIA classification. 26 
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 28 

1. Introduction 29 

The most recent global target in slum reduction stated in the Sustainable Development Goals 30 
(SDG) is to ensure access to adequate, safe and affordable housing and essential services for all people 31 
by 2030 [1]. Although the target has been stipulated, the number of slum dwellers is growing. In 2012, 32 
the number of dwellers living in urban slums was 863 million, which increased from 776 to 827 and 33 
881 million in 2000, 2010 and 2015 respectively [2,3]. Highly dynamic changes in cities and slums 34 
require techniques that can provide rapid and reliable information for policy formulations related to 35 
slums. However, information regarding the growth and expansion of slums is sparsely available [4]. 36 
Survey-based data collection methods have limitations due to long temporal gaps and the degree of 37 
aggregation [5]. Thus, data might be obsolete when being used [6]. Meanwhile, although satellite 38 
imagery gives the opportunity to provide almost real-time information [6], slums and non-slums 39 
often share similar surface materials [7], and slum morphologies differ within and across cities [8], 40 
which makes their identification somehow difficult.  41 

Among various approaches that were developed, Object-Based Image Analysis (OBIA) has an 42 
excellent potential to extract slums using spectral as well as contextual information through a 43 
hierarchical procedure [9]. However, often the classification process is context and data dependent 44 
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[6] and not flexible to be applied to a different place (city), different images (sensor and different 45 
date). The development of the Generic Slum Ontology (GSO) aimed to bridge this gap [6,9], by 46 
providing a complete characterization of slums using morphological indicators  [7] at three spatial 47 
levels, i.e., environs, settlement and object [10]. This characterization was developed by adopting the 48 
durable housing indicator from UN-Habitat [5]. 49 

Although the GSO assists in slum detection, it provides a generic concept of slums [11], while 50 
slums can show considerable diversity within a city and even within a settlement [7,12]. For instance, 51 
same characteristics (e.g., density), often differ locally and depend on developmental stages of 52 
settlements [5]. Therefore, settlements having similar densities might be considered as slums in one 53 
place but as non-slums in another place [13]. This illustrates challenges faced when aiming at a 54 
transferable slum mapping approach based on a set of generic indicators.  55 

The above-mentioned variability (e.g., spatial, temporal, sensors) requires a local adaptation of 56 
the GSO. In the OBIA context, adaptations of such a ruleset for different images are inevitable 57 
[7,14,15]. Nonetheless, it is crucial to promote transparency of the adaptations to ensure objectivity 58 
[14], in measuring transferability of the ruleset [16]. Here, transferability is defined as the degree of 59 
adaptations of a ruleset to produce comparable results from different imaging conditions [7]. 60 
Previous studies on OBIA-based slum detection focus either on comparability of the results [7,15] or 61 
on the degree of adaptations [17,18] and both approaches use accuracy as a benchmark. 62 

Measuring transferability by only considering the accuracy indicators as a benchmark has some 63 
shortcomings. First, the occurrence of uncertainties in producing geographic data is inevitable [19], 64 
and the level of uncertainties will propagate through the whole process chain [20]. Second, in OBIA, 65 
manual image interpretation is commonly used as reference data [21], often producing ambiguous 66 
results as some interpreters delineate more detailed objects and the others may generalise objects [22]. 67 
Third, it is hard to define the exact transition between slums and non-slums [23]. Fourth, the 68 
differences in experience and the way to conceptualise slums among interpreters may lead to 69 
different delineations of reference data [23]. Hence, reflecting on the uncertainties mentioned above, 70 
it is crucial to consider these in the accuracy assessment for OBIA classifications [22].  71 

In this paper, we analyse the impact of uncertainties in producing reference data for the accuracy 72 
assessment of OBIA-based slum detection. We organised our study into four sections. First, we 73 
describe our case study. Second, we discuss materials and methods, which includes the development 74 
of OBIA rulesets, accuracy and uncertainties measurements. Third, we discuss the results and fourth, 75 
we present the conclusions of our research.  76 

2. Case Study 77 

Jakarta, the capital city of Indonesia, has grown enormously since a half-century ago, and its 78 
metropolitan area is home to more than 30 million inhabitants [24]. The magnitude of economic 79 
activities and the presence of numerous societal infrastructures attract rural people to Jakarta. 80 
However, the lack of capacities by the local government in providing affordable housing has forced 81 
low-income households to settle in substandard housing areas [25]. Thus, Jakarta is facing challenges 82 
in terms of managing its rapid demographic and economic growth, which also affects the growth of 83 
slums [26]. Approximately, 60% of Jakarta’s population, predominately from a low-income 84 
household, are living in informal settlements called kampungs.  85 

At the national level, the Government of Indonesia has set the 100-0-100 policy (100% access to 86 
clean water, 0% slums, 100% access to sanitation) as part of the Medium Term National Development 87 
Program (RPJM) [27]. The national government committed 9.5 billion US Dollars from the national 88 
budget until 2019 for this purpose [28]. Hence, to monitor the slum dynamics is key to determine the 89 
success of implementing this policy [29]. For this purpose, reliable and updated information on slums 90 
is required.  91 

In general, to define slum boundaries in Jakarta is not straightforward. Informal developments 92 
in Jakarta started a half-century ago when Jakarta experienced rapid urbanisation [30], at that time 93 
the planning institutions were not established [31]. Locally, these informal settlements are called 94 
kampungs, and in their earliest development stages, they were housing predominantly low-income 95 
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groups. As a result of the city growth, kampungs expanded and became more heterogeneous, also 96 
housing mid-level income households [32,33]. Nonetheless, kampungs share similar characteristics 97 
with slums, i.e., overcrowding, unorganised layout and limited amenities [34]. Nowadays, many 98 
kampungs have been provided with basic facilities, and many of its dwellers have legal rights on their 99 
lands and properties [30]. In remotely sensed imagery, it is difficult to make a distinction between 100 
slum and non-slum kampungs. However, on the ground, this difference can be observed, e.g., using 101 
building material, household income, floor material, access to sanitation as indicators. 102 

In Indonesia, various governmental bodies, scholars and organisations have attempted to 103 
formulate a slum definition. For instance, the National Board of Statistics developed indicators 104 
according to the housing quality and mentioned that slum building can be characterized by 105 
inadequate living space [35]. Meanwhile, the Ministry of Public Works developed indicators 106 
according to the quality of settlements, where slums can be characterized by its under-served facilities 107 
[36]. Internationally, the most commonly employed definition of a slum is based on the durable 108 
housing indicators, where a slum is an area that is characterised by lack of access to safe water and 109 
sanitation, low building quality, overcrowded and lacks tenure security [37]. 110 

For the purpose of this study, we selected a subset around Tebet district (sized 29 square 111 
kilometres) in Jakarta (Figure 1) due to three reasons. First, Tebet district comprises of various land 112 
uses namely high-income residential areas, shopping arcade, the centre of the transportation hub, 113 
and slums. Second, the Ciliwung river that is locally associated with slums flows through this district. 114 
Third, the district houses various types of slums (e.g., slums that are located on the riverbank, near 115 
the railroad, near the CBD). 116 

(a) (b) 

Figure 1. Map of the study area in Jakarta Province (Indonesia) (a), surrounded by Banten Province 117 
and West Java Province (the metropolitan area includes some parts of these provinces), area boundary 118 
source: Openstreet Map (2015). (b) Selected subset located in Tebet district, Jakarta. Image Source: 119 
Google Earth (2015). 120 

3. Materials and Methods 121 

Our research methods comprise of four main parts: (i) slums conceptualisation, (ii) OBIA ruleset 122 
development, (iii) ruleset implementation, (iv) accuracy and uncertainty measurement. Our 123 
methodology is shown in Figure 2, the detailed process is described in the following paragraph. 124 
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 125 
Figure 2. Research methodology comprising of four main parts and its following activities. 126 

In the first part, we related the definitions of slums by the local experts with image-based 127 
information by using several observable visual elements, e.g., tone, shape, size, texture and 128 
association [6,10]. We selected five local experts from different backgrounds, i.e., government, 129 
consultants and NGO. As mentioned in [23], the selected experts needed to have a professional 130 
knowledge on slums. Therefore, we selected experts that have been involved in programs related to 131 
slums in Jakarta. From the government, we have interviewed two experts, one from the National 132 
Government (Ministry of Public Works), and one from the Local Government (Department of Spatial 133 
Planning, Jakarta). In addition, we interviewed two experts from consultancies that were involved in 134 
formulating the national policy of slums in Indonesia. Lastly, we interviewed one representative from 135 
an NGO, who participated in monitoring settlement targets for the Millennium Development Goals 136 
(MDG). Besides expert interviews, field observations were conducted in the areas experts delineated 137 
as slums. The characteristics of slums obtained during the interviews were used for developing the 138 
ruleset for the OBIA-based slum detection. 139 

In the second part, we developed the OBIA-based ruleset for slum detection according to the 140 
definitions mentioned in the first step. In general, OBIA aiming to relate geographic features with 141 
image objects can be divided into two main parts, namely segmentation and classification [38]. In 142 
general, segmentation delineates regions (segments) of an image which share common attributes [39]. 143 
The result is a relatively homogeneous and significant grouping of pixels [40]. Meanwhile, the 144 
classification process assigns each segment to a particular class according to predefined 145 
characteristics, e.g., tone, shape, size, texture and association. For segmentation, we used multi-146 
resolution segmentation (MRS) since this algorithm has been widely used in OBIA-based slum 147 
detection studies (e.g. [5,12]). However, the implementation of MRS is depended on the Scale 148 
Parameter (SP) [41], controlling the heterogeneity of image objects [42]. The SP value is often selected 149 
in a trial-and-error process [43]. Therefore, we employed the Estimation Scale Parameter (ESP) tool 150 
[41] to determine the most appropriate SP. 151 

In the third part, we implemented the ruleset in our study area. We selected Pleiades imagery 152 
granted from the European Space Agency (ESA) with standard-ortho bundles for the year of 2015, 153 
with a spatial resolution of 0.5-meter for R-G-B-NIR bands. We managed to obtain an image with a 154 
cloud cover of less than 10%. We purposively selected two small test areas (sized 1 square kilometres), 155 
without any cloud cover. For the first test area, we selected an area with a relatively similar agreement 156 
of slum boundaries among experts, while in the second area, experts considerably disagreed about 157 
slum boundaries.  158 

Lastly, in the fourth part, we measured the accuracy of the classification result. Manual 159 
delineation of slum boundaries (on top of the image) by local experts were used to produce the 160 
reference data, as demonstrated in [22,23]. Thus, we compared the extracted slums from the OBIA 161 
ruleset, with the reference data from the local experts. This comparison, obtained four possible results 162 
(Figure 3), i.e., true positive (TP), false positive (FP), true negative (TN) and false negative (FN).  163 
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 164 
Figure 3. Four possible results from combining classification result with the reference data produced 165 
by the experts. 166 

We used three indicators for measuring accuracy, i.e., precision, recall and accuracy. Precision 167 
or confidence describe the proportion of predictive-positive cases, which show a correct match with 168 
the reference data [44]. It can be measured by comparing TP with TP and FP (1). Meanwhile, recall or 169 
sensitivity indicates the proportion of real positive cases that were correctly predicted, and it 170 
indicates the degree of the confidence of our classifiers. It can be measured by comparing the number 171 
of TP, with TP and FN (2). Lastly, accuracy indicates the total correct positive and negative cases (i.e., 172 
TP and TN) to the total number of possible cases (i.e., TP, FP, FN, TN) (3) [44]. Therefore, precision, 173 
recall and accuracy were calculated as: 174 ܲ݊݋݅ݏ݅ܿ݁ݎ = ܶܲܶܲ + (1) ܲܨ

ܴ݈݈݁ܿܽ = ܶܲܶܲ + (2) ܰܨ

ݕܿܽݎݑܿܿܣ = ܶܲ + ܶܰܶܲ + ܲܨ + ܰܨ + ܶܰ (3)

Regarding uncertainties, as pointed out in [23], the difficulties to draw exact boundaries where 175 
slums change into non-slums and vice versa leading to uncertainty, i.e., existential and extensional 176 
uncertainty [45]. First, existential uncertainty indicates the degree of confidence whether a slum exists 177 
in reality [23,45], and it may depend on experts’ experience or conceptual difference upon image 178 
interpretations [23]. Second, extensional uncertainty indicates the area delineated as a slum with 179 
limited certainty [23]. 180 

Furthermore, uncertainties also arose from different slum conceptualizations by local experts. 181 
While [23] aimed to study the deviations of slum boundaries observed from VHR images, our 182 
research emphasises the impact of various degrees of slum boundaries’ agreements on the values of 183 
the accuracy assessment. To do so, we compared the classification result (OBIA slum map for each 184 
test area) obtained in the third part with the reference data showing various agreement levels. For 185 
instance, first, we compared the classification result with an area where the reference data showed 186 
the highest agreement (all five experts agreed that an area is a slum). Next, we measured the accuracy 187 
according to the indicators mentioned in (1) to (3). We repeated this procedure for each subset and 188 
every degree of agreement (ranging from 1-5 experts). This comparison allowed us to examine the 189 
impact of different agreements in the reference data on accuracy levels for mapping slums in Jakarta. 190 

3. Results 191 

3.1. Slums Conceptualisation 192 
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The result of the expert interviews shows the local diversity of slum characteristics (Table 1). The 193 
expert from the national institutions (i.e., Ministry of Public Works) defined slums according to the 194 
building size, which in general, is smaller in size compared to non-slum buildings. In addition, slums 195 
are located commonly on the riverbank or near railroads, with irregular building orientations. The 196 
expert from the local government mentioned similar characteristics regarding the location on the 197 
riverbank and near railroads. With regards to the difficulties to distinguish slum and non-slum 198 
kampungs, the tenure status was often mentioned as a characteristic that could be used for 199 
distinguishing. Experts (NGO and two consultants) also came up with the slum characteristic of small 200 
building sizes. In addition, they also mentioned that slums have irregular building orientations, poor 201 
roof materials and are located on the riverbank and near railroads. The last expert (the second 202 
consultant), however, only mentioned building size and irregular building orientation as slums 203 
characteristics.  204 

Table 1. Different characteristics and definitions of slums among local experts. (1) is from the central 205 
government; (2) is from the local government; (3) is from Non-Government Organization (NGO), 206 

and (4) and (5) are housing policies consultants. 207 

Characteristics 
Local Expert 

(1) (2) (3) (4) (5)
1 Located on/close the river bank/railroad √ √ √ √ 
2 Small building size √  √ √ √ 
3 Irregular building orientation √  √ √ √ 
4 Poor roof material  √ √ √  
5 Built on illegal land  √    

According to the visual image interpretations, local experts have different agreements on slum 208 
locations in our study area. In Error! Reference source not found.4 a, we show the different 209 
agreements of slum extents (delineated by experts), where the red area and blue areas indicate the 210 
highest and lowest agreement respectively. To give a better understanding regarding slum 211 
characteristics on the ground, we conducted field observations. For the first sample (Error! Reference 212 
source not found.4 b), we selected an area along the Tebet Timur Street, which was digitized by 4 of 213 
our experts. From field observations, this area is characterised by its proximity to the river and has 214 
irregular building orientations. We also found that buildings in this area are made up of poor 215 
materials (e.g., cardboard, plastics, corrugated iron, woven bamboo). In addition, we noticed 216 
different types of roof materials (i.e., ranging from tiles to corrugated irons). For the second example, 217 
we selected an area in Manggarai I street (Error! Reference source not found.4 c), which shows 218 
diversity in terms of expert agreements on slums (ranging from 1 to 5 experts).  219 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 September 2017                   doi:10.20944/preprints201709.0139.v1

Peer-reviewed version available at Remote Sens. 2017, 9, 1164; doi:10.3390/rs9111164

http://dx.doi.org/10.20944/preprints201709.0139.v1
http://dx.doi.org/10.3390/rs9111164


 7 of 17 

 

(a) 
 

(b) 

(c) (d) 

Figure 4. Slums extracted from manual delineation by different experts. Figure (a) shows the different 220 
agreements of slum extents, where the red colour indicates areas with the highest agreement and the 221 
blue colour indicate the lowest. Figure (b) shows the ground conditions of slums were four experts 222 
agreed. Figure (c) shows the ground conditions of slums, which were indicated as a slum by all 223 
experts. Figure (d) shows the ground conditions of a slum that was selected by one and two experts. 224 
The red boxes in Figure (a) indicate our test areas. 225 

3.2. OBIA Ruleset Development 226 

When developing the OBIA ruleset, we translated the characteristics of slums obtained from the 227 
local experts, into characteristics that can be recognised by a computer. The association may include 228 
tone, shape, size, texture and associations. Table 2 shows the five characteristics of slums that are 229 
used to develop ruleset.   230 

Table 2. Translation of the real world characteristics into image domain characteristics in the context 231 
of the Generic and the Local Ontology of Slums. 232 
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Real world domain Image domain 
1 Located on the riverbank/near railroad Association: Distance to River/Railroad 
2 Small building size Size: Small 
3 Irregular building orientation Shape: compactness 
4 Poor Roof material Tone: Asbestos, corrugated iron 
5 Built in the illegal land Ancillary data: Land Use Plan 

For the first characteristic, slums are commonly located on the riverbank or near the railroad. 233 
Thus we employed a vector layer of rivers and railroad (Openstreet Map data) using proximity as a 234 
rule. For the second and third characteristics, we associate the size and shape of the building with the 235 
shape and size of the segment. Meanwhile, for the fourth characteristic, we associate the roof material 236 
of slum buildings with the tone/colour of the segment. The last characteristic is most interesting. 237 
Unlike the four previous characteristics, the last one is not directly observable from an image. 238 
Therefore, we used a proxy indicator to determine the tenure status. According to the interview with 239 
the expert from the Jakarta province, Jakarta is implementing a strict zoning regulation, which means 240 
it is illegal to construct within protective zones. Thus, we decided to use the zoning map to delineate 241 
the protected zones, where any construction is illegal and has no legal tenure status. 242 

The idea of using a non-observable indicator has induced us to develop two scenarios when 243 
implementing our ruleset. First, we run our ruleset with four indicators (only observable; indicator 244 
number 1 to 4 in Table 2). Second, we include the non-observable indicator (number 5 in Table 2). We 245 
applied both scenarios for the two test area. 246 

After we associate each slum characteristic with its consecutive image domain, we develop our 247 
ruleset in Trimble’s eCognition software. Our ruleset can be divided into two steps (Figure 5). First, 248 
background removal and second, slum detection. In the background removal step, we implement 249 
MRS with a low SP (SP=1) to extract background classes, i.e., vegetation, railroads, roads, and the 250 
rivers. Next, we apply a coarse segmentation for the remaining unclassified segments, here we 251 
implement our ruleset for slum detection. 252 

 253 
Figure 5. OBIA ruleset flowchart, which starts with background removal, followed by slum detection. 254 

In the first step, we find that among various possible associations (i.e., tone, shape, size, texture 255 
and associations), which can be used for classification, the Normalized Difference Vegetation Index 256 
(NDVI: proportion between near-infrared and red band) shows its ability to detect the vegetation 257 
well. Each object that has an average value of NDVI greater than zero is classified as vegetation. 258 
However, if we choose a coarse segmentation, vegetation is under-segmented (Figure 6). Hence, we 259 
are intentionally over-segmenting, because we aim to obtain the shape and size of the vegetation class 260 
as close as possible to its real shape and size.  261 
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(a) (b) (c) 

Figure 6. Impact of segmentation scale on vegetation classification. Figure (a) shows segments with a 262 
NDVI of greater than zero obtained from fine segmentation and (b) from coarse segmentation, and 263 
(c) image before segmentation process. 264 

For the remaining background classes (i.e., road, railroad, river), we classify the segments using 265 
vector data. For this purpose, we also implemented a fine segmentation for these classes. After we 266 
classified all background classes, the remaining class (i.e., unclassified) has a certain probability to be 267 
classified as a slum. Here, we implement the second step. 268 

In this second step, we re-segment the unclassified class, aiming at coarser segments. The ESP 269 
can produce three levels of segmentation, which can be associated with three level of slums object as 270 
mentioned in [5]. Since slum buildings are characterised by its small size (Table 2), it is difficult to 271 
extract every single building as an object. Therefore, we use the second level of SP obtained from ESP, 272 
which is 95. 273 

After conducting the segmentation process, we implement our concept of slums to develop the 274 
ruleset for classifying each test area. The threshold values were obtained through a trial and error 275 
process, and we assigned these values into the class description in E-cognition software (Table 3).  276 

Table 3. Threshold value for each rule 277 

Rule Threshold value 
Association: Distance to River/Railroad 1. Border to river >0 pixels 

2. Border to railroad 0 > pixels 
Shape: compactness 1. Compactness ≤ 5 

2. GLCM Dissimilarity ≥ 0.0005 
Tone: tile – corrugated iron, asbestos Mean red/green 1 ≤ tone ≤ 1.075 
Ancillary data: Land Use Plan (second scenario) Mean Layer Tenure >0.25 

 278 
For the first rule, we use the border to the river and railroad, and assign each object that has 279 

more than zero pixels touching the border of river/railroad as a slum. Regarding shape, we 280 
implement two rules, compactness and grey level co-occurrence matrix (GLCM) dissimilarity. 281 
Compactness indicates the variations among pixels under one object. The lower the compactness, the 282 
higher the variation of pixel values. Regarding GLCM dissimilarity, the higher the value, the pixel 283 
values show lesser similarity within one segment [46]. For the tone, since the roof materials of slum 284 
houses in our study area are predominated by tiles or corrugated iron, we find that average of 285 
red/green shows a linear relationship with the roof colour. Here, we use the band arithmetic approach 286 
in E-cognition by calculating the proportion of red and green band in each segment. The last rule is 287 
only applicable for the second scenario. To develop this rule, we first converted the zoning map of 288 
the study area from vector to raster. Then, we reclassified the value of each land use class into two 289 
labels, i.e., have tenure and no tenure. Next, this binary image is segmented using MRS. We calculate 290 
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the ‘tenure value’ of each segment and identify the threshold for slums. The more the segmented 291 
image overlapped with the ‘tenure segment’, the higher the chance that the segment is a slum.  292 

We use “OR” function for association in our ruleset, which means that a slum may be located 293 
near the river, or near the railroad, or in the proximity of both of them. Meanwhile, for the rest of the 294 
indicators, we use “AND” function, which means that the object must meet all threshold value to be 295 
classified as slums. 296 

3.3. Ruleset Implementation 297 

We implement our ruleset in the first test area (clear boundaries between slum and non-slum), 298 
and the second area (unclear boundaries). Also, we implement our ruleset for two scenarios, first with 299 
using tenure status as an additional proxy, and second without tenure status. Hence, the four pairs of 300 
results are shown in Figure 7. 301 

(a) (b) 

 
(c) 

 
(d) 

Figure 7. Mapped slums in the first test area (a,b). Figure (a) indicates slums without the tenure 302 
indicator (only consider explicit indicators) (b) indicates slum employing the tenure indicator. 303 
Meanwhile, figure (c) and (d) indicates slums in the second area, by including and excluding the 304 
tenure indicator respectively. 305 
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In Figure 7, we notice some similarities and differences in the classification results for the 306 
different scenarios. Figure 7 (a) and (b) is an area where slum and not slum areas have clear 307 
boundaries. In Figure 7 (a), where the tenure indicator is not implemented, we find two slum zones, 308 
which are located in the western and eastern parts of this area. Meanwhile, in Figure 7 (b), 309 
implementing the tenure indicator, only the eastern part is classified as a slum. Furthermore, Figure 310 
7 (c) and (d) refer to the area where slum and not slum areas have unclear boundaries. The results 311 
show similarities of slum patches in the eastern part in (a) and (b), while result (c) and (d) show a 312 
more distinct pattern of slums. However, we find also similarities of slum patches for the second test 313 
area, particularly for slums that are located near the railroad or the river.  314 

3.4. Accuracy and Uncertainty Measurements 315 

Each classification results shown in Figure 7, we compared with the degree of agreements by 316 
experts, which ranges from five (highest agreement) to only one agreement (only selected by one 317 
expert (reference data). This results in twenty possible values for each accuracy indicator mentioned 318 
in Equation (1) to (3). Figure 8, shows the size of true positive (TP), false positive (FP) and false 319 
negative (FN), measured in square meters. 320 

 321 
Figure 8. The size (in m2) of true positive, false positive and false negative obtained by comparing 322 
classification results with the level of agreement. 2015_TA1_EXP indicates the year of the image, TA1 323 
gives the location of the first test area (TA). EXP indicates that we only used explicit/observable 324 
indicators, while on ANC means that we include an ancillary (not observable in images) indicator. 325 

The number of TP indicates the size of the area that is detected as slums by the OBIA 326 
classification as well as in the reference data. We find differences in the amount of TP between TA1 327 
and TA2, also between EXP and ANC. Apparently, the difference between EXP and ANC in TA1 is 328 
lower than in TA2. Both areas and scenarios show similarities related to the number of agreements. 329 
As we reduce the required degree of agreements for the reference data (from 4 to 1 in TA1, and from 330 
5 to 1 in TA2), the size of TP is increasing. However, we only find two degrees of agreement in TA1 331 
(i.e., one and four experts). Meanwhile, we find various levels of agreements in TA2, which indicates 332 
that our experts have very different perceptions concerning slum boundaries in TA2. 333 
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FP indicates the size of the area, which is detected as slums from by the OBIA classification but 334 
not delineate as slums by the experts. Interestingly, the difference of FP between EXP and ANC in 335 
TA1 is substantially greater than in TA2. In TA1, the size of FP in EXP is thirteenth times higher than 336 
ANC. Meanwhile, the difference of FP in TA2 for EXP is only one-and-half time greater than ANC. 337 
TA1 and TA2 show similarities related to the degree of agreements. As we reduce the degree, we get 338 
a decreasing number of FP. 339 

Lastly, the FN indicates the size of the area that is detected as a slum by the experts but not 340 
detected as a slum by the OBIA classification. We notice a similar pattern of FN between EXP and 341 
ANC in TA1 and TA2. As we decrease the number of required agreements, we have an increasing 342 
number of FN. However, the increasing of FN in TA1 (for EXP and ANC) is more gradual than in 343 
TA2. In TA2, we find a significant increase of FN when we reduce the agreement from 2 to 1. This 344 
points to very diverse perceptions by experts on slum boundaries in TA2. Therefore, it results in a 345 
substantial size of slum patches with only one agreement, Figure 4 (a) in the red box labelled c.  346 

Using the value of TP, FP and FN, we calculate precision, recall and accuracy using Equation (1) 347 
to (3), shown in Figure 9. 348 

 349 
Figure 9. Accuracy values (i.e., precision, recall and accuracy) of classification results for the first and 350 
second area, two scenarios and different degrees of agreement. 351 

Figure 9, shows that the usage of tenure data in the first area results in a high precision. As 352 
shown in Equation (1), precision is measured by comparing TP with TP and FP. Hence, a high 353 
precision results from a low FP, which indicates that our OBIA ruleset is only producing a small 354 
number of slums that are not delineated as slums by our experts.  355 

In TA2, we notice substantial differences compared to TA1. Implementing the tenure status in 356 
TA2 results in the lowest precision compared to other combinations (i.e., TA1_EXP, TA1_ANC and 357 
TA2_EXP). This is due to the high number of FP, which are areas not delineated as a slum by experts 358 
but classified as a slum. Interestingly, in Figure 4 (a) the red box labelled c, no expert selecting the 359 
area adjacent to the railroad as slums. Figure 7 (c) and (d) indicates that our ruleset is detecting areas 360 
adjacent to the railroad as slums since we used this in our ruleset (Table 2). Although TA1 and TA2 361 
show significant differences of precision values, similarities exist across different degrees of slum 362 
agreement, reducing the required degree of agreements results in a higher precision value. These 363 
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higher values result from lower FP, caused by an increase in the size of slum extents in the reference 364 
data. 365 

Recall, as mentioned in Equation (2), is measured by comparing TP with TP and FN. Hence, the 366 
high values of recall result from low FN, this indicates that only a small number of slums in the 367 
reference data is not detected as a slum by the OBIA ruleset. In general, 2015_TA2_ANC has the 368 
lowest recall value compared to others (Figure 10). This indicates that in 2015_TA2_ANC, many 369 
slums from the reference data are not detected by the OBIA ruleset. As shown in Figure 8 (a) in the 370 
red box labelled c, experts have different perceptions of slum boundaries. Thus, selecting only areas 371 
with a high agreement in TA2 will result in high FN. Interestingly, if we compare recall values among 372 
different agreements in the reference data, only TA2_ANC shows a different pattern. The highest 373 
value is obtained for three agreements, however, difference across recall values are small. This 374 
indicates that settlements without tenure status have a high probability to be identified as a slum by 375 
the experts. 376 

Regarding accuracy, we can point to the difference between TA1 and TA2. In TA 1, the highest 377 
accuracy is achieved by the largest number of agreements. In TA2, slightly higher accuracy values 378 
are obtained by lower agreements. This pattern can be seen in both EXP and ANC scenarios. In 379 
general, our ruleset gains higher an accuracy when applied in TA1, where the slum boundaries are 380 
more clear. By comparing different locations, scenarios and indicators, we can examine the impact of 381 
the ruleset’s performance as we decreased the degree of agreement (from highest to lowest 382 
agreement) (Table 4). 383 

Table 4. Changes in performance indicators using the highest and the lowest agreement in the 384 
reference data. 385 

Dataset Precision gain recall gain accuracy gain 

2015_TA1_EXP 0.66% -5.95% -1.65% 

2015_TA1_ANC 1.24% -5.17% -1.65% 

2015_TA2_EXP 34.61% -11.87% -0.66% 

2015_TA2_ANC 33.38% 9.07% -6.56% 

Surprisingly, we notice that no data set gains more accuracy as we reduce the degree of 386 
agreement from the highest to the lowest. In Figure 10, the maximum accuracy of every possible 387 
combination is never obtained by the lowest agreement. For gain, we can notice that only TA2_ANC 388 
shows an increased gain as we decreased the level of agreement. Regarding precision, TA2 shows a 389 
significant increase of precision as we reduce the level of agreement.  390 

4. Discussions 391 

Image interpretations by experts are commonly used to measure the accuracy of OBIA 392 
classification results [23,47]. In this study, we employed reference data generated by manual 393 
delineation of local experts from varied backgrounds. From the results (Figure 4), we noticed different 394 
agreements regarding the extent of slums. Nonetheless, these differences cannot be qualified as 395 
inaccuracies, and every image interpretation is equally valid [22]. It is likely that the different 396 
interpretations are rather caused by the uncertainties existing in a particular area [22]. Comparing 397 
the slum delineations in our two test areas (Figure 4 (a), the red box labelled (b) and (c)), we can notice 398 
how these uncertainties caused variations on slum agreements among experts. In the first test area, 399 
agreements on slum locations and boundaries varied less compared to the second test area. During 400 
ground observations, we noticed clear boundaries of slums in the first test area (eastern part), and 401 
formal housing and commercial area (the western part). On the contrary, the second area is 402 
dominated by kampungs. As mentioned in section 2, kampungs may consist of formal housing 403 
kampungs having also high built-up densities or slum kampungs commonly having very high built-404 
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up densities. These vague boundaries between slum and non-slum kampungs make it difficult to 405 
determine where exactly a slum changes into a non-slum [23].  406 

Regarding experts’ experience, we argue that our experts have a reasonable expertise and have 407 
a strong understanding of slums in Jakarta. Similar to [23], the level of experience is not a significant 408 
factor related to delineations’ accuracy. Meanwhile, regarding the conceptual differences, we noticed 409 
a different characterization of slums among expert (Table 1), which contributed to different 410 
delineations. However, it may not be the only cause. Previous research [48] indicated that the 411 
performance of experts in digitizing in an image is affected by internal and external factors. Internal 412 
factors include demographics, experience and skills, personality, memory span, motivation and 413 
comparative anxiety. The external factors may include quality of screen/images, amount of 414 
distraction, tiredness, time of day. Yet, we do not further examine how this internal factor might 415 
impact the quality of slum identifications by our experts. However, we argue that some external 416 
factor affected the quality of slum identifications. For instance, tiredness and time of day. Our survey 417 
was taken in a different sessions, i.e., during office hours, and after office hours. It is likely that 418 
interviews conducted after office hours affected the quality of image interpretation due to tiredness.  419 

Comparing OBIA classification with a manual delineation can result in three scenarios. First, 420 
slum delineations are outside the OBIA result, i.e., False Negative (FN). Second, slum delineations are 421 
inside the OBIA result, i.e., False Positive (FP). Third, slum delineation is similar with the OBIA result, 422 
i.e., True Positive (TP). In Figure 8, we have shown how FN, FP and TP change across different level 423 
of agreements. In general, a higher level of agreement will lead to more certainty about the delineated 424 
slums. Regarding the first scenario, TA1 and TA2 show a similar pattern, as we reduce the degree of 425 
certainty, the higher the FN results. For the second scenario, the lower the degree of certainty, the 426 
lower the FP. Meanwhile, for the third scenario, the highest TP is obtained with the lowest certainty. 427 
Thus, the more we try to achieve that results from manual delineations and OBIA classification 428 
match, the higher uncertainty will be.  429 

5. Conclusion 430 

Our study aimed to analyse the uncertainties in measuring the accuracy of OBIA-based slum 431 
detection in Jakarta, Indonesia. Comparing the results of manual delineations of slum areas by 432 
experts with OBIA classification results there are, in general, four possible outcomes, i.e. True 433 
Positives (TP), False Positives (FP), False Negatives (FN) and True Negatives (TN). The values of TP, 434 
FP, FN and TN, and the accuracy indices changed when the degree of expert agreements changed in 435 
the reference data. These different degrees of agreements demonstrated that there are uncertainties 436 
on the location and boundaries of slums, referred to as existential and extensional uncertainties 437 
respectively. This outcome stresses the dilemma faced by slum mapping campaigns. Furthermore, 438 
our study demonstrated the role of a non-observable indicator (land tenure), in order to assist slum 439 
detection, particularly when uncertainties exist. However, the degree of confidence of our 440 
classification result decreased by introducing this additional indicator, while the classification 441 
accuracies increased. The inherent uncertainties in reference data (even within a city there is limited 442 
agreement on what defines a slum and where are the boundaries between slum and non-slum areas) 443 
emphasis the need to include uncertainty analysis in slum mapping approaches besides assessing 444 
classification accuracies. We also need to build slum ontologies that integrate local knowledge when 445 
aiming for a city or nationwide slum mapping and monitoring campaign employing VHR imagery. 446 
However, the transferability of slum mapping indicators that are very context specific is limited, i.e. 447 
indicators might work well in one area but may lead to an increase in uncertainties and/or lower 448 
accuracies in other areas. Based on the findings of our research, we conclude that slum mapping 449 
studies need to better address uncertainties embedded in reference data for developing a transferable 450 
and robust set of indicators. 451 
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