

Article

Transfer-Efficient Face Routing Using the Planar Graphs of Neighbors in High Density WSNs

Eun-Seok Cho ^{1,2,†,‡}, Yongbin Yim ¹ and Sang-Ha Kim ^{1,*}

¹ Department of Computer Science and Engineering, Chungnam National University, Daejeon, Korea; escho@cnu.ac.kr (E-S.C.); ybyim@cclab.cnu.ac.kr (Y.Y.)

² Information Technology Management Division, Agency for Defense Development, Daejeon, Korea; nicesok@add.re.kr

* Correspondence: shkim@cnu.ac.kr; Tel.: +82-42-821-6271

† Current address: [34186] P.O.Box 35, Yuseong, Daejeon, Korea

‡ These authors contributed equally to this work.

1 **Abstract:** Face routing has been adopted in wireless sensor networks (WSNs) where topological
2 changes occur frequently or maintaining full network information is difficult. For message forwarding
3 in networks, a planar graph is used to prevent looping, and because long edges are removed by
4 planarization and the resulting planar graph is composed of short edges, messages are forwarded
5 along multiple nodes connected by them even though they can be forwarded directly. To solve this,
6 face routing using information on all nodes within 2-hop range was adopted to forward messages
7 directly to the farthest node within radio range. However, as the density of the nodes increases,
8 network performance plunges because message transfer nodes receive and process increased node
9 information. To deal with this problem, we propose a new face routing using the planar graphs
10 of neighboring nodes to improve transfer efficiency. It forwards a message directly to the farthest
11 neighbor and reduces loads and processing time by distributing network graph construction and
12 planarization to the neighbors. It also decreases the amount of location information to be transmitted
13 by sending information on the planar graph nodes rather than on all neighboring nodes. Simulation
14 results show that it significantly improves transfer efficiency.

15 **Keywords:** face routing; distributed processing; planar graph; transfer efficiency; high density WSN

16 1. Introduction

17 Wireless sensor network (WSN) is a multi-hop wireless network composed of a number of
18 randomly deployed sensors capable of communicating for a specific purpose. For data delivery
19 in WSNs, geographic routing has been considered as an appropriate routing strategy due to
20 being stateless under the constrained resources and a number of data transferring methods using
21 geographic information in WSNs have been studied [1–4]. Geographic routing using the location
22 information of a node instead of its network address has been classified as single-path, multi-path,
23 and flooding-based [5]. Greedy routing and face routing are used in the single-path approach.

24 Greedy routing forwards a message to a neighbor node closest to the destination, but routing
25 fails if there is no neighbor node closer to the destination than the message transfer node. However,
26 face routing transmits a message along the face boundary of a planar graph built by eliminating
27 intersecting edges that can cause loops in a network graph. It is used as one of the methods for
28 handling communications in a void area where a message cannot be forwarded by greedy routing [6].

29 Face routing involves a planarization process which removes intersecting edges in a network
30 graph in order to construct a planar graph, whereby the generated planar graph should not be
31 segmented due to the eliminated edges. The Gabriel graph (GG) [7] and the relative neighborhood
32 graph (RNG) [8] are representative planar graphs in which the network is not cut off when they are
33 constructed using only local information [9]. In order to perform planarization while preventing the

34 segmentation of a network, GG and RNG remove long edges that might be an intersecting edge in
35 a network graph. Therefore, planarization results in a planar graph consisting of only short edges.
36 However, this causes inefficiency because a message is sequentially transferred to the remote node
37 within radio range along the nodes on a face boundary made up of short edges even though it could
38 be directly forwarded.

39 In order to mitigate the inefficiency, face routing using the location information on all nodes
40 within 2-hop range has been proposed [10]. It forwards a message directly to the most remote neighbor
41 located on the routing path within radio range. In this method, a message transfer node builds a local
42 full network graph within radio range using 1- and 2-hop node information, performs planarization
43 to construct a local full planar graph within radio range, discovers the most remote node to which a
44 message can be forwarded, and sends a message directly to the selected node without traveling via
45 intermediate nodes. Since the location information on all the 2-hop nodes as well as the immediate
46 neighboring nodes must be transmitted to the message transfer node, the amount of information to be
47 transmitted is increased compared to legacy face routing. In addition, because the method requires
48 construction of a network graph using the increased information and then performing planarization,
49 the number of calculations is increased, as is the consumption of resources such as memory and energy.

50 This phenomenon makes the efficiency drop sharply due to the long computation time and the
51 high energy consumption caused by the large number of nodes deployed within radio range and
52 their position information in a high density WSN. In addition, whenever a node within 2-hop range is
53 added or deleted and regardless of whether it affects the routing, the message transfer node always
54 receives information on the changed node and performs network graph generation, planarization, and
55 routing again.

56 In this paper, we propose a novel face routing that uses the planar graphs of the message transfer
57 node's neighbors to forward a message to the most remote neighbor on the route within radio range
58 without traveling via intermediate nodes to improve transfer efficiency and to solve the problems
59 previously mentioned in existing face routing methods.

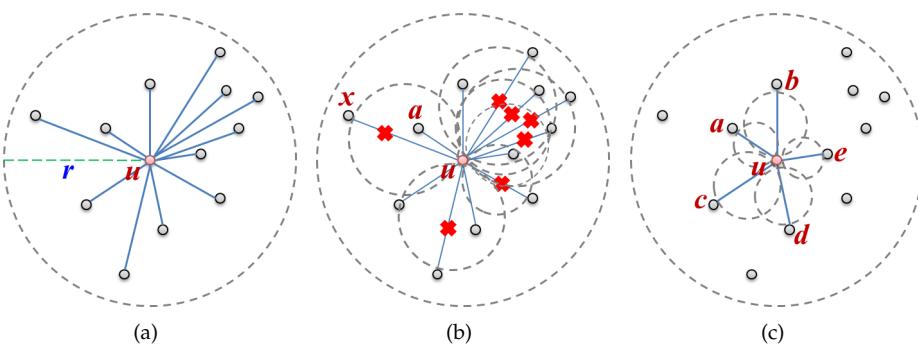
60 In the proposed face routing, a message transfer node receives the information on the planar graph
61 of its neighbors and it constructs a local full planar graph within radio range. Using the generated
62 planar graph, the most remote neighbor node on a routing path is discovered and the message is
63 transferred directly to the node without traveling via intermediate nodes. Unlike face routing using
64 2-hop node information, the load for generating the local planar graph is distributed to each neighbor,
65 which reduces the amount of location information to be transmitted by sending only the information
66 on the planar graph nodes rather than on all of the neighboring nodes. In addition, the efficiency
67 can be improved by virtue of only receiving information when a node changes and recalculating the
68 routing if there is an influence on the planar graph rather than every time a node is added or destroyed.
69 That is to say, if a node is added to the network but it is removed during the planarization process
70 of the neighbor, the changed node information need not be transmitted to the message transfer node
71 and it is not necessary to recalculate the routing. And, if a node is removed from the network but
72 has already been deleted in the existing planar graph, the changed topology need not be transmitted.
73 Furthermore, in order to improve transfer efficiency while balancing energy consumption of each node,
74 a message transfer node, if its remaining power is low, sends a message to the nearest neighbor along
75 a face boundary instead of forwarding it to the remote node to minimize energy consumption.

76 The rest of the paper is organized as follows. In Section 2, we provide a review of related work.
77 In Section 3, we discuss the problem of planar graphs and planarization, and in Section 4, we explain
78 the proposed face routing in detail. In Section 5, a comparison of its performance with existing
79 researches through experiments is reported, and conclusions are drawn in Section 6.

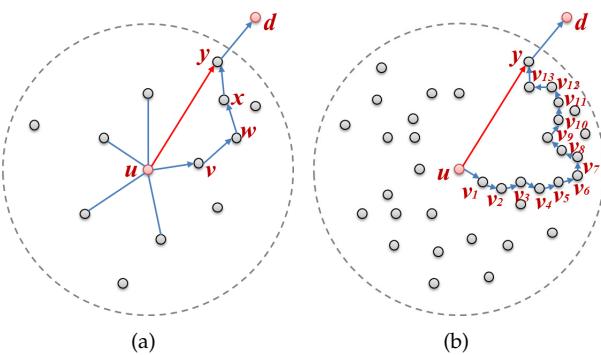
80 2. Related Works

81 Early proposals for face routing methods using planar graphs include Greedy Face
82 Greedy (GFG) [11], Compass Routing II [12], Greedy Perimeter Stateless Routing (GPSR) [9],

83 Greedy Other Adaptive Face Routing (GOAFR+) [13], GOAFR++ [14], and Greedy Path Vector Face
84 Routing (GPVFR) [15]. The methods forward a message along a sequence of faces intersecting with
85 line \overline{st} between the source (s) and the destination (t). A face change occurs when the edge of a
86 face intersects with line \overline{st} . Messages are delivered based solely on local information and the faces
87 are traversed sequentially, and to improve performance, they are able to choose whether to pass
88 through the intersecting edge or not when changing the face or to change how line \overline{st} is set up and
89 used. That is to say, they improve performance by changing the face after going through or without
90 passing through the intersecting edge. They also enhance efficiency by using the initial setup of line \overline{st}
91 without changing during the entire routing process, or using a newly set up line \overline{st} whenever a face is
92 changed. Their performance also depends on the choice of traversal direction change, i.e. clockwise or
93 counterclockwise. In short, early face routing improves performance and efficiency by determining
94 how line \overline{st} is set, when to change the face, which face to change to, and in which direction to explore
95 the face is.


96 ProgressFace [16] and Concurrent Face Routing (CFR) [17] have improved the performance and
97 efficiency of early face routing by modifying how to forward the message instead of adjusting how
98 to change the face. ProgressFace alleviates the problem of too many hops being taken if messages
99 are forwarded in the wrong direction due to the unbalanced deployment of the nodes. It finds the
100 direction with the smallest number of hops through an additional traversal step and improves routing
101 efficiency by setting the forwarding direction to the way it finds, after which it sends the message.
102 CFR focuses on the speed of message delivery and accelerates the message propagation by sending
103 messages concurrently in both directions of faces intersecting with line \overline{st} . It can send messages to the
104 destination via the shortest possible route because it disseminates them through all available routes via
105 the faces adjacent to line \overline{st} . Although it sends many duplicate messages to the network, it improves
106 routing performance by sending messages at speeds similar to those sent by the shortest path.

107 All of these face routing methods have improved the performance, efficiency, and speed of routing
108 by selecting the face, enabling changes of the face if necessary, adjusting the search direction, and using
109 an additional traversal step or forwarding duplicate messages. However, since they forward messages
110 by sequentially exploring all the nodes constituting a face regardless of radio range, performance
111 rapidly deteriorates due to the increased number of nodes that need to be traversed in high density
112 WSNs.


113 In order to improve the forwarding efficiency by considering radio range, face routing using
114 all of the node information within 2 hops has been proposed [10]. This improves routing efficiency
115 by building a local full planar graph with the information of the 1- and 2-hop nodes, and directly
116 forwarding the message to the most remote node within radio range using the generated graph.
117 However, it is also unsuitable for high density WSNs due to the increased communication cost for
118 transmitting the location information of such a large number of nodes within a 2-hop range and the
119 performance degradation caused by the increased calculation cost due to the increased number of
120 nodes.

121 3. The Problem with Planar Graphs and Planarization

122 GG and RNG are representative planar graphs constructed using only local information and do
123 not divide a network. They are built by removing what might be intersecting edges among the edges
124 between a message transfer node and its neighbors. Figure 1 shows the process of building a local
125 GG: Figure 1a represents the local network graph of node u and Figure 1b depicts the planarization
126 process which eliminates edges that do not fit the GG edge condition. An edge is removed if there is a
127 node other than node u and a neighbor in the circle whose diameter is their edge. To illustrate this, in
128 Figure 1b, node a exists in the circle within the edge diameter between nodes u and x , so $edge(u, x)$
129 is removed. Figure 1c shows the planar graph generated after planarization. For the edge removal
130 process according to the GG edge condition, long edges are removed and only short edges are left.
131 Since the constructed planar graph consists of short edges, it causes a problem when forwarding a

Figure 1. Planarization process: (a) local full network graph (r : radio range), (b) planarization, and (c) local Gabriel graph (GG).

Figure 2. Face routing according to the node density: (a) a low density network, and (b) a high density network.

132 message sequentially along multiple nodes in the face in spite of being able to send it directly when in
 133 radio range.

134 In Figure 2a, if nodes u, v, w, x, y , and d are on the routing path that make up the face, a problem
 135 with efficiency arises in that a message should have been transferred to node y after exploring nodes
 136 v, w , and x , but because $edge(u, y)$ was removed during planarization, the message cannot be forwarded
 137 from node u directly to node y . Consequently, in a high density WSN, the inefficiency caused by
 138 this becomes even more exacerbated, as shown in Figure 2b; a message is transmitted through
 139 15 hops ($u \rightarrow v_1 \rightarrow \dots \rightarrow v_{13} \rightarrow y \rightarrow d$) even though it could be transferred in only 2 hops ($u \rightarrow y \rightarrow d$).
 140 As the density of the nodes increases, the number of nodes within radio range increases, and as this
 141 happens, the edges of the planar graph become shorter during planarization. The shortened edges
 142 intensify the inefficiency because they increase the number of nodes that need to be traversed when
 143 forwarding a message.

144 4. Transfer-Efficient Face Routing

145 In this section, we explain in detail the proposed face routing: transfer-efficient face routing
 146 (TEFR), which improves transfer efficiency by using the planar graph of the neighbor. We describe the
 147 exchange of location information between nodes and the construction of local planar graphs, then we
 148 define the process of discovering the node to send a message to using the generated planar graphs of
 149 its neighbors. Finally, we analyze the performance of the proposed face routing.

150 TEFR is used in conjunction with greedy routing for message forwarding in void areas where
 151 greedy routing cannot deliver a message. We assumed that nodes are deployed randomly in a

152 two-dimensional plane, that the link between nodes is reliable, and that their power status, their own
 153 position and the location of the source and destination of the message are known. We used a GG
 154 composed of a unit disk graph as a planar graph.

155 *4.1. The Exchange of Location Information*

156 The first step of TEFR is to exchange location information between nodes. Since TEFR is a
 157 position-based routing method, it is necessary to collect the location information of the neighbors
 158 that is exchanged periodically using a beacon or aperiodically when there are topological changes. A
 159 beacon message consists of three fields:

160 • *id*: the local identifier of a node used to distinguish nodes within 2-hop range.
 161 • L_x and L_y : the x and y coordinates of a node indicating its location.

162 Since the message transfer node in TEFR uses the planar graph of itself and its neighbors, it can
 163 receive position information on 2-hop nodes from its neighbors. Therefore, all node *ids* should be
 164 identified within 2-hop range. Figure 3 demonstrates the exchange of location information between
 165 nodes. Since message transfer node *u* can receive location information on n_1, n_2, n_3, n_4 , and n_5 located
 166 at 2 hops from neighbors i_1, i_2, i_3, i_4, i_5 , and i_6 , node *ids* need to be distinguished within 2-hop range.

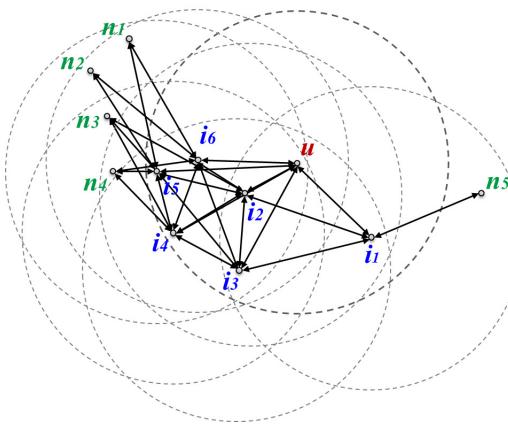
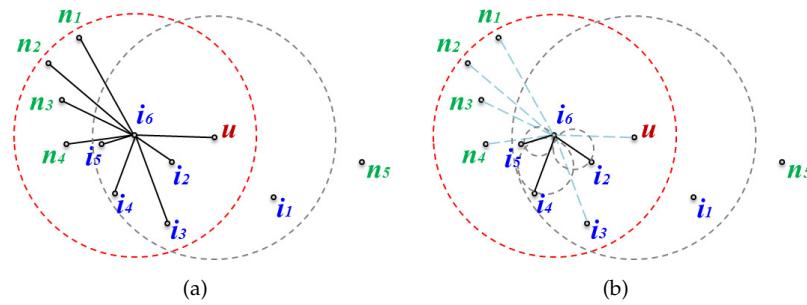


Figure 3. Beacons: the exchange of position information between nodes.


167 *4.2. Build a Local Planar Graph*

168 The second step of TEFR is to construct a local planar graph using the location information on the
 169 neighboring nodes and to transfer the information on the constructed planar graph to the message
 170 transfer node. The message transfer node and its neighbors generate their own local network graphs
 171 and their local GGs are built after planarization. Table 1 shows the edge list of the constructed local
 172 network graph of the message transfer node and its neighbors after exchanging location information
 173 between nodes in the network in Figure 3. Although the local network graph is part of the overall
 174 network graph, it is still possible to cause a loop across the entire network. Thus, even though the local
 175 network is tiny, it is necessary to remove any intersecting edges which might cause a loop by applying
 176 planarization.

177 A local GG edge list is built for the message transfer node and its neighbors by removing edges
 178 that do not satisfy the GG edge condition from the edge list of the local network graphs to prevent
 179 looping. Figure 4 shows a local network graph and a local planar graph of node i_6 as an example of a
 180 planar graph built for the neighbors of a message transfer node. In Figure 4a, to perform planarization
 181 for node i_6 , the GG edge condition is applied to all the edges connected to its neighbors. The resulting
 182 planar graph is shown in Figure 4b.

Table 1. The local network graph edge lists of message transfer node u and its neighbors in Figure 3.

node u	node i_1	node i_2	node i_3	node i_4	node i_5	node i_6
u, i_1	i_1, u	i_2, u	i_3, u	i_4, u	i_5, u	i_6, u
u, i_2	i_1, i_2	i_2, i_1	i_3, i_1	i_4, i_2	i_5, i_2	i_6, i_2
u, i_3	i_1, i_3	i_2, i_3	i_3, i_2	i_4, i_3	i_5, i_3	i_6, i_3
u, i_4	i_1, i_5	i_2, i_4	i_3, i_4	i_4, i_5	i_5, i_4	i_6, i_4
u, i_5		i_2, i_5	i_3, i_5	i_4, i_6	i_5, i_6	i_6, i_5
u, i_6		i_2, i_6	i_3, i_6	i_4, n_3	i_5, n_1	i_6, n_1
			i_2, n_4	i_4, n_4	i_5, n_2	i_6, n_2
					i_5, n_3	i_6, n_3
					i_5, n_4	i_6, n_4

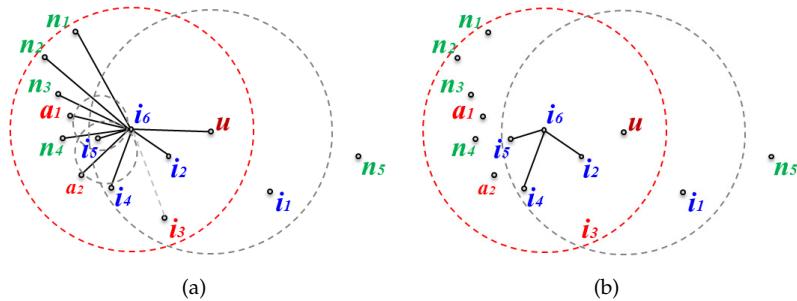
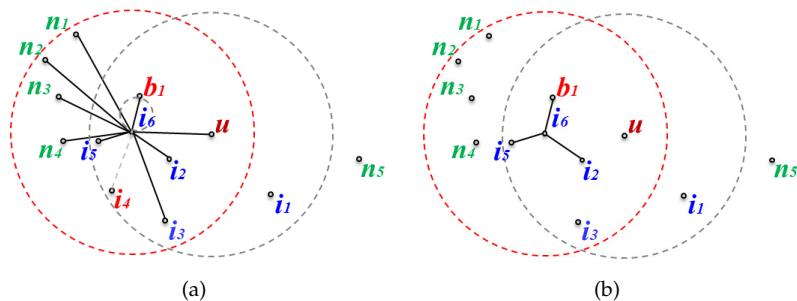
Figure 4. Local graphs of node i_6 : (a) the local network graph, and (b) the local Gabriel graph (GG).

183 Planarization is performed independently on the message transfer node and all its neighbors.
 184 The pseudo-code running on each node for generating the GG edge list from the edge list of a local
 185 network graph is as follows.

Algorithm 1 Generating the GG edge list from the edge list of a local network graph.

LNG: edge list of the local network graph
 LGG: edge list of the local Gabriel graph

```



for all edges in LNG do
  if (there exists no node in the circle with edge's diameter) then
    add edge to LGG
  end if
end for
  
```

186 The algorithm generates the GG edge list by selecting those edges meeting the GG edge condition
 187 among all edges on the local network graph. Table 2 shows the GG edge lists constructed by applying
 188 Algorithm 1 to the local network graph edge lists in Table 1. The strikethroughs in Table 2 represent
 189 edges that were deleted during planarization, so are not GG edges.

Table 2. The local planar graph edge lists of node u and its neighbors in Figure 3.

node u	node i_1	node i_2	node i_3	node i_4	node i_5	node i_6
u, i_1	i_1, u	i_2, u	i_3, u	i_4, u	i_5, u	i_6, u
u, i_2	i_1, i_2	i_2, i_1	i_3, i_1	i_4, i_2	i_5, i_2	i_6, i_2
u, i_3	i_1, i_3	i_2, i_3	i_3, i_2	i_4, i_3	i_5, i_3	i_6, i_3
u, i_4	i_1, n_5	i_2, i_4	i_3, i_4	i_4, i_5	i_5, i_4	i_6, i_4
u, i_5		i_2, i_5	i_3, i_5	i_4, i_6	i_5, i_6	i_6, i_5
u, i_6		i_2, i_6	i_3, i_6	i_4, n_3	i_5, n_1	i_6, n_1
			i_2, n_4	i_4, n_4	i_5, n_2	i_6, n_2
					i_5, n_3	i_6, n_3
					i_5, n_4	i_6, n_4

190 Since TEFR distributes planarization to the neighbors of the message transfer nodes, it is possible
 191 to solve the problem that the load is concentrated on the message transfer nodes, which makes face
 192 routing using 2-hop node information so inefficient. Moreover, because a message transfer node only
 193 receives information of the planar graph nodes rather than of all neighboring nodes, the amount of
 194 position information to be transmitted can be reduced. In addition, the changes are transmitted to a
 195 message transfer node each time a node is added or removed only if the planar graph is affected due
 196 to a change in topology. Therefore, TEFR improves efficiency and minimizes the amount of location
 197 information that needs to be transferred.

Figure 5. Topological changes that do not affect the planar graph: (a) changed local network graph, and (b) (a)'s planar graph.**Figure 6.** Topological changes that affect the planar graph: (a) changed local network graph, and (b) (a)'s planar graph.

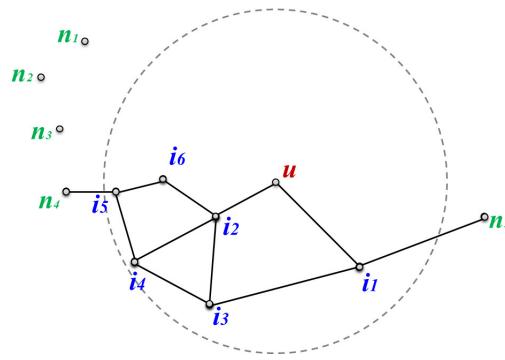
198 Figure 5 and Figure 6 show two cases where the changed node information is either sent or not
 199 sent to the message transfer node when a node is added or removed. Figure 5 shows the case where the

200 topology is changed but the changes do not affect the planar graph, while Figure 6 shows the opposite
 201 case to Figure 5 where the changed node information should be sent to the message transfer node.

202 Figure 5a is the local network where new nodes a_1 and a_2 are added, and node i_3 is deleted in the
 203 network of Figure 4a. Even if nodes a_1 and a_2 are added but the edges between node i_6 and them are
 204 deleted during planarization, this does not affect the existing planar graph. Furthermore, even though
 205 node i_3 is removed from the network since $edge(i_6, i_3)$ has already been deleted from the existing
 206 planar graph due to not fitting the GG edge condition, this also does not affect the existing planar
 207 graph. Figure 5b shows the planar graph after topological changes have occurred. Since it is the same
 208 as before the network change, the changed node information is not transmitted even though there
 209 have been topological changes.

210 Figure 6 shows the case where a topological change affects the planar graph. Figure 6a depicts the
 211 local network where new node b_1 is added to the network of Figure 4a and i_4 is deleted. $edge(i_6, b_1)$
 212 becomes a new edge on the planar graph according to the GG edge condition, and $edge(i_6, i_4)$, which
 213 was an edge on the existing planar graph, is removed because the node has been deleted (Figure 6b
 214 shows the planar graph after adding and removing the nodes). Since the existing planar graph has
 215 been changed, the changed planar graph information on node i_6 must be sent to the message transfer
 216 node.

217 4.3. Remote Node Selection and Message Forwarding

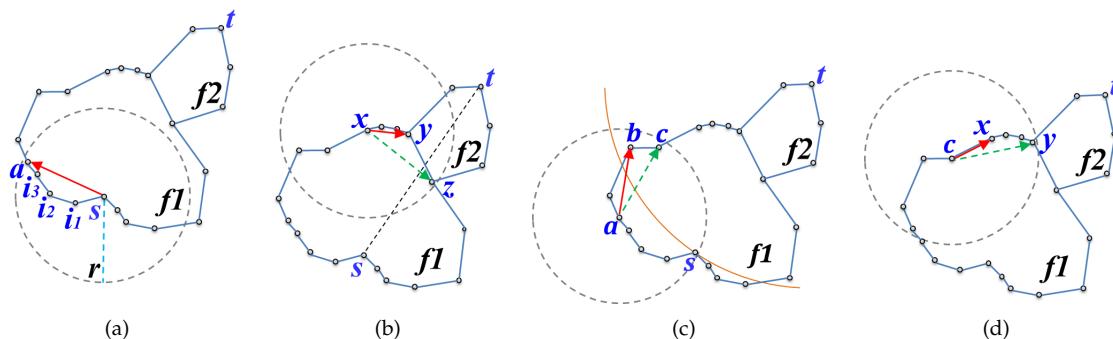

218 The last step in the TEFR is to discover the node located at the most distant hop on a routing
 219 path within radio range using the information on the planar graphs of the neighbors at the message
 220 transfer node, and then send the message. The message transfer node generates an edge list of the full
 221 planar graph within radio range using the local planar graph information received from the neighbor
 222 to determine which node the message is to be transferred to.

223 Table 3 shows the full GG edge list within radio range built with the planar graph information
 224 of its neighbors at message transfer node u in Figure 3. Each item in the edge list consists of the start
 225 node id , the end node id , and their x, y coordinates: p_id , the immediate neighbor of the message
 226 transfer node, is the node id whose local planar graph is sent to the message transfer node and is the
 227 starting node of the edge; n_id represents the opposite side node of the edge; and L_x and L_y represent
 228 the location information for the p_id and n_id nodes. When the start and end nodes of all edges in
 229 the list are connected, a full planar graph within radio range of a message transfer node is generated.
 230 Figure 7 shows the local full GG within radio range of message transfer node u , which is constructed
 231 using the edges in Table 3.

232 TEFR uses the generated edge list to determine the node to send the message to. In the discovery
 233 process, four cases need to be considered, as shown in Figure 8. The first three cases are for direct
 234 forwarding to the remote node within radio range and the last case is for sequential forwarding applied

Table 3. The GG full edge list of node u within radio range in Figure 3.

p_id	n_id	p_id		n_id		p_id	n_id	p_id		n_id	
		L_x	L_y	L_x	L_y			L_x	L_y	L_x	L_y
u	i_2	x_u	y_u	x_{i_2}	y_{i_2}	i_3	i_2	x_{i_3}	y_{i_3}	x_{i_2}	y_{i_2}
u	i_1	x_u	y_u	x_{i_1}	y_{i_1}	i_3	i_4	x_{i_3}	y_{i_3}	x_{i_4}	y_{i_4}
i_1	u	x_{i_1}	y_{i_1}	x_u	y_u	i_4	i_3	x_{i_4}	y_{i_4}	x_{i_3}	y_{i_3}
i_1	i_3	x_{i_1}	y_{i_1}	x_{i_3}	y_{i_3}	i_4	i_2	x_{i_4}	y_{i_4}	x_{i_2}	y_{i_2}
i_1	n_5	x_{i_1}	y_{i_1}	x_{n_5}	y_{n_5}	i_4	i_5	x_{i_4}	y_{i_4}	x_{i_5}	y_{i_5}
i_2	u	x_{i_2}	y_{i_2}	x_u	y_u	i_5	i_6	x_{i_5}	y_{i_5}	x_{i_6}	y_{i_6}
i_2	i_6	x_{i_2}	y_{i_2}	x_{i_6}	y_{i_6}	i_5	n_4	x_{i_5}	y_{i_5}	x_{n_4}	y_{n_4}
i_2	i_4	x_{i_2}	y_{i_2}	x_{i_4}	y_{i_4}	i_5	i_4	x_{i_5}	y_{i_5}	x_{i_4}	y_{i_4}
i_2	i_3	x_{i_2}	y_{i_2}	x_{i_3}	y_{i_3}	i_6	i_5	x_{i_6}	y_{i_6}	x_{i_5}	y_{i_5}
i_3	i_1	x_{i_3}	y_{i_3}	x_{i_1}	y_{i_1}	i_6	i_2	x_{i_6}	y_{i_6}	x_{i_2}	y_{i_2}


Figure 7. Local full Gabriel graph (GG) within radio range of node u .

235 when the remaining power of a message transfer node is insufficient. For direct transmission, the first
 236 is when message forwarding occurs within the same face, the second is when a face change occurs,
 237 and the third is when the routing mode is switched from face routing to greedy routing.

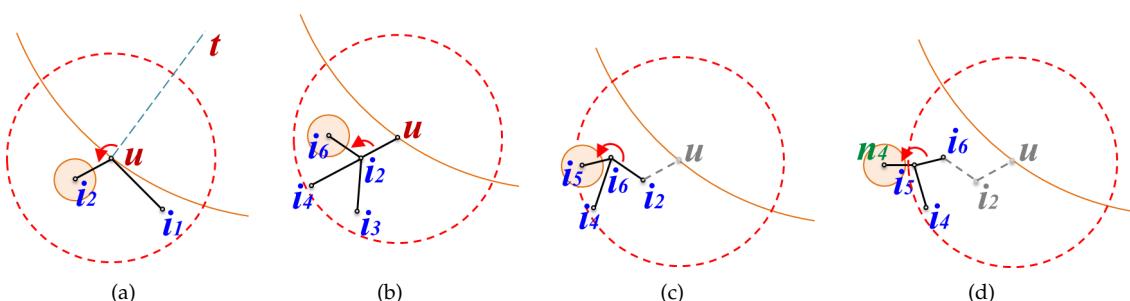
238 In the first case, a message is sequentially transferred along the face within radio range and the
 239 change of face or routing mode does not occur during the routing. In this instance, the node located at
 240 the last hop of the face boundary within radio range is selected as the node where the message is to be
 241 sent to. Figure 8a shows the case where a message is forwarded within the same face. TEFR selects
 242 node a located at the farthest hop within radio range of message transfer node s as the most remote
 243 node, and the message is sent to it.

244 The second case arises when a face change occurs while the message is forwarded within radio
 245 range because the line from the source to the destination and a face boundary edge intersect. In this
 246 case, TEFR transmits a message to the node where the intersecting line occurs, not the most distant
 247 hop node within radio range. After the selected node receives the message, it changes the face and
 248 routing is continued. Figure 8b shows the case where the face is changed because the intersection
 249 between line \overline{st} and edge(y, z) occurs while traveling to the face within radio range of message transfer
 250 node x . If a message is sent to the most distant node z without considering the face change at message
 251 transfer node x , a loop occurs because the face change does not execute. Therefore, message transfer
 252 node x forwards the message to node y where the face change occurs, after which node y changes the
 253 face and then continues routing.

254 The third case happens when it is necessary to switch to greedy routing while traveling to a face
 255 within radio range. TEFR immediately switches from face routing to greedy routing when greedy

Figure 8. Four cases of node selection: (a) routing within the same face, (b) a face change occurs,
 (c) return to greedy mode, and (d) sequential forwarding. The arc in (c) signifies the distance between
 the destination (t) and node s where the face routing started.

256 routing is enabled and it forwards a message according to greedy routing. Figure 8c shows the case
 257 where the routing mode needs to be switched from face routing to greedy routing during face traversal
 258 within radio range. Message transfer node a forwards a message to the first node b closer to the
 259 destination (t) than node s where face routing started without sending a message to the farthest hop
 260 node c on the face boundary within radio range. After receiving the message, node b switches to
 261 greedy routing and performs message forwarding.


262 The last case occurs when a message transfer node has low residual power. A message is sent
 263 sequentially along a face boundary instead of being forwarded to the remote node. Because energy
 264 consumption increases as the distance to be transmitted increases in wireless communication [18], a
 265 message transfer node sends a message to its nearest neighbor when the energy level is low to minimize
 266 power consumption. This extends the lifetime of the node and consequently prolongs the lifetime
 267 of the WSN. By selectively transmitting a message to the remote node or nearby nodes according to
 268 the remaining power, transfer efficiency can be improved while using the energy of each node in a
 269 balanced manner. Figure 8d shows the case where a message transfer node has less energy than the
 270 threshold for direct transmission. Message transfer node c can forward a message directly to remote
 271 node y , but it sends a message to nearest node x to minimize energy consumption.

272 Since TEFR can determine the routing path in advance within radio range using the full GG edge
 273 list, it can establish the most remote node where a message can be transferred most efficiently, and a
 274 message can be sent directly to the selected node. That is to say, TEFR can directly send a message
 275 without journeying via intermediate nodes by simulating routing internally using the edge list as in
 276 Table 3 and selecting a remote node in the same way as actually traveling the nodes constituting the
 277 face within radio range.

278 Figure 9 shows the internal process of node selection at a message transfer node required to send
 279 a message, which corresponds to the case of forwarding a message within the same face as in Figure 8a.
 280 All the processes in Figure 9 are performed internally at message transfer node u , and after the process
 281 is finished, a message is forwarded to the selected node.

282 Figure 9a shows the beginning of the face routing simulation to establish the node where the
 283 message is to be sent to. Face routing is started at message transfer node u because there is no node
 284 closer than itself to the destination (t) among the neighbors. Node u selects i_2 as the next node to be
 285 explored by applying the left-hand rule based on line ut among neighboring nodes i_1 and i_2 in the GG
 286 edge list in Table 3.

287 In Figure 9b, node i_2 selects i_6 as the next node to explore according to the left-hand rule, and
 288 checks whether it is within radio range of node u , whether the routing mode should be switched to
 289 greedy routing, and whether an intersecting edge occurs. Node i_6 is located within radio range of
 290 node u , is farther from the destination than node u where face routing started, and $edge(i_2, i_6)$ does not

287 **Figure 9.** Phases of TEFR node selection: (a) the start of simulating face routing, (b) & (c) select the
 288 next nodes of nodes i_2 and i_6 , respectively, and (d) the termination of node selection. The arc signifies
 289 the distance between the destination (t) and node u where face routing started.

291 intersect line \overline{ut} . Thus, i_6 is selected as the next node to navigate to. In Figure 9c, i_5 is selected as the
 292 next node to travel to from node i_6 in the face routing procedure according to the same condition as
 293 node i_6 .

294 In Figure 9d, node n_4 , which is the next node along from node i_5 , is beyond the radio range of
 295 message transfer node u . Therefore, message transfer node u terminates the node discovery process
 296 and selects i_5 as the target node to send the message to. Message transfer node u improves the transfer
 297 efficiency by sending a message directly to the most remote node i_5 without actually passing through
 298 the intermediate nodes i_2 and i_6 . The pseudo-code for selecting the most remote node using the GG
 299 full edge list of a message transfer node and sending a message is as Algorithm 2.

Algorithm 2 Selecting the most remote node using the GG edge list and sending a message.

lhn : a node according to left hand rule
ctn : a current traversal node
mtn : a message transfer node
frn : a node where face routing started
thd : the power threshold for direct transmission

select *lhn* of *ctn* from GG edge list
if (the power level of *ctn* < *thd*) **then**
 send message to *lhn*, exit
end if
while (*lhn* is located within radio range of *mtn*) **do**
if (*lhn* is closer to the destination than *frn*) **then**
 change mode to greedy routing
 send message to *lhn*, exit
else if (the edge between *lhn* and *ctn* intersects \overline{st}) **then**
 send message to *ctn*, exit
else
 set *ctn* with *lhn*
 select *lhn* of *ctn* from GG edge list
end if
end while
 send message to *ctn*, exit

300 4.4. Analysis

TEFR utilizing the local planar graphs of the message transfer node's neighbors needs more location information compared with legacy face routing using local information but uses less position information than face routing using the information on all nodes within 2-hop range. Equation (1) compares the quantity of location information transmitted to a message transfer node. In the equation, the left hand side is legacy face routing, the middle is TEFR, and the right hand side is face routing using 2-hop node information:

$$n \times m \leq n \times m + n \times ((1 - \lambda) \times n) \times m \leq n \times m + n^2 \times m, \quad (1)$$

301 where n is the average number of neighboring nodes per node, m is the data size of location information
 302 for one node, and λ is the ratio of nodes removed in planarization ($0 \leq \lambda < 1$).

303 In equation (1), in legacy face routing, a message transfer node only receives location information
 304 on the average number of neighboring nodes, while TEFR receives the location information on the
 305 immediate neighbors and their planar graph nodes after planarization. Face routing using 2-hop node
 306 information receives the location information on the immediate neighbors and all of their neighbors as

307 well. The amount of location information required for TEFR is the same as that for face routing using
 308 2-hop node information when nodes are not removed in the planarization step ($\lambda = 0$), and becomes
 309 close to that of legacy face routing as the number of removed nodes increases.

310 In a high density WSN, TEFR does not rapidly increase the amount of position information to be
 311 transmitted because even if the number of nodes increases, those removed by planarization increases
 312 and λ becomes bigger as the density of the nodes increases. TEFR uses the location information on
 313 more nodes than the legacy face routing to improve transfer efficiency, but it reduces the amount of
 314 position information in comparison with face routing using 2-hop node information because message
 315 transfer nodes only receive the information on the planar graph nodes of their neighbors.

Equation (2) compares the end-to-end delay of face routing within radio range. The first formula is the delay of legacy face routing, the second is that of face routing using 2-hop node information, and the last is that of TEFR.

$$\begin{aligned}
 & (n - 1) \times (D_{ew} + D_t + k \times D_{pp} + D_{ps} + D_q), \\
 & D_{ew} + D_t + k^2 \times D_{pp} + D_{ps} + D_q \\
 & \geq D_{ew} + D_t + k \times D_{pp} + D_{ps} + D_q. \tag{2}
 \end{aligned}$$

316 End-to-end delay can be divided into propagation delay (D_{ew}), transmission delay (D_t), processing
 317 delay (D_p), and queueing delay (D_q) [19]; we divide D_p into the time (D_{pp}) required to execute
 318 planarization for individual neighboring nodes and the time (D_{ps}) for determining the node to which
 319 the message is to be sent. Furthermore, in the formulae, n is the number of nodes on the face boundary
 320 to be traveled within radio range ($n > 1$) and k represents the average number of neighboring nodes.

321 In equation (2), since legacy face routing needs to sequentially travel the nodes on the face
 322 boundary, the end-to-end delay is highly influenced by the number of nodes constituting the face.
 323 However, TEFR and face routing using 2-hop node information are not affected by the number of
 324 nodes constituting the face because the message is forwarded directly to the most remote node within
 325 radio range.

326 Since face routing using 2-hop node information performs planarization on all edges within 2-hop
 327 range of the message transfer node, the execution time of planarization is required for the square
 328 of the number of neighboring nodes. On the other hand, TEFR only requires the execution time for
 329 planarization on the local nodes because it performs planarization independently on each neighboring
 330 node. As the number of deployed nodes increases, the performance of face routing using 2-hop
 331 node information decreases rapidly due to the increase in planarization time caused by squaring the
 332 number of neighboring nodes. In contrast, TEFR can forward a message without an abrupt decrease in
 333 performance because the planarization time is gradually prolonged in proportion to the number of
 334 neighboring nodes.

335 5. Performance Evaluation

336 In this section we compare the performance of legacy face routing, face routing using 2-hop
 337 node information, and the face routing proposed in this paper. In order to compare the independent
 338 performance of each, we implemented the simulation with only face routing except greedy routing.

339 5.1. Simulation Environment

340 We simulated the performance of the proposed face routing using the network simulator Qualnet
 341 4.0 [20]. The radio range of the sensor node was $50 \sim 250m$, and $200 \sim 1,500$ nodes were randomly
 342 deployed in a space of $1,000 \times 1,000m^2$. The network model was a unit disk graph connected from the
 343 source to the destination, and GG was used as the planar graph. The simulation time was set to 100
 344 seconds and each sensor node transmitted its position to its neighbors. All the results were the average
 345 of each simulation experiment repeated 100 times. In the simulation, Greedy Face Greedy Routing
 346 (GFG) [11] as legacy face routing using local information, Shortcut Based Face Routing (SBFR) [10]

347 using all node information within 2-hop range, and TEFR using the planar graphs of neighbors were
 348 used.

349 *5.2. Simulation Results*

350 Figure 10 shows a graph comparing the time at which the message was forwarded from the
 351 source to the destination according to the number of deployed nodes. With GFG, as the number
 352 of deployed nodes increases, the number of nodes to be traveled increases because the number of
 353 nodes constituting a face increases. Thereby, the transfer time increases gradually in proportion to the
 354 increased number of nodes. With SBFR, since a message is sent directly to the most remote node within
 355 radio range, even if the number of nodes increases, the time for forwarding a message is constant.
 356 However, since it performs planarization on all nodes within 2-hop range of a message transfer node,
 357 as the number of nodes increased, the computation time increased, resulting in the message transfer
 358 time, which includes the computation time, becoming longer. Since TEFR sends a message directly to
 359 the most remote node within radio range and the generation of the planar graph is performed in a
 360 distributed manner at the neighbor node, the increase in the number of nodes has little effect on the
 361 transfer time. From the experimental results, we can confirmed that the transfer time of TEFR was
 362 hardly affected by an increase in the number of nodes.

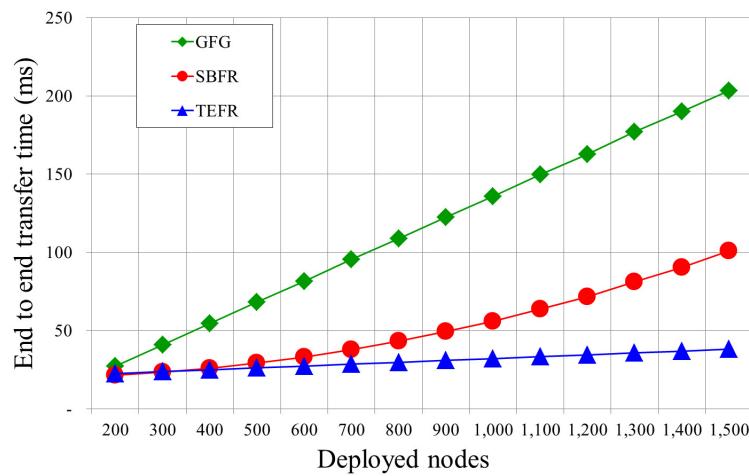
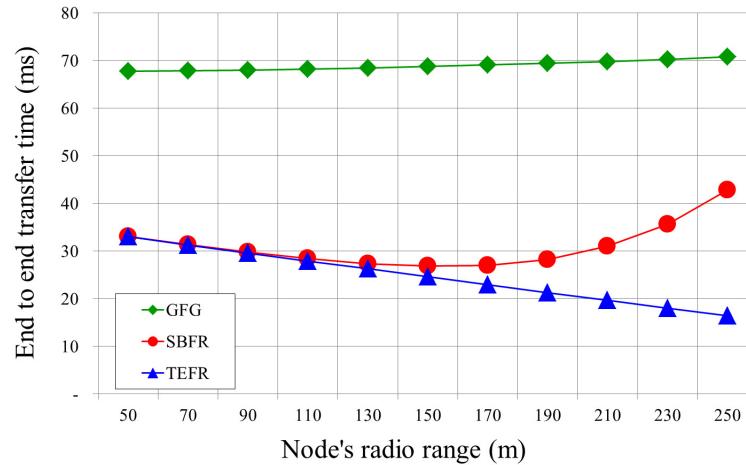
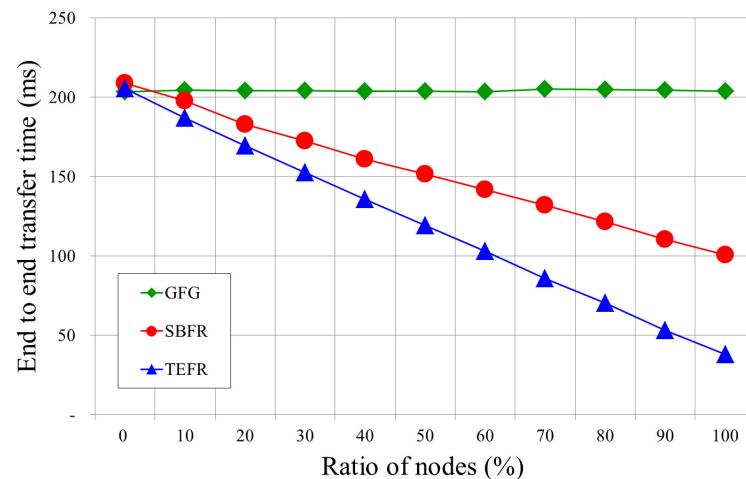



Figure 10. Transfer time according to the number of deployed nodes (Radio range: 100m).


363 Figure 11 shows a graph comparing the transfer time from the source to the destination according
 364 to changes in radio range. With GFG, even if the radio range is widened, it is necessary to sequentially
 365 travel along the nodes connected with short edges regardless of the radio range. Thus, the transfer
 366 time did not decrease even when the radio range was expanded. With SBFR, as the radio range
 367 increases, a message can be directly sent to a node located at a longer distance, thereby reducing
 368 the transfer time. However, as the radio range is widened, the number of nodes within radio range
 369 increases and the construction time of the planar graph increases accordingly. As the radio range
 370 exceeds a certain distance, the wider the radio range, the longer the transfer time. With TEFR, even if
 371 the number of nodes to be planarized increases due to an increment in radio range, the transfer time is
 372 not significantly affected because planarization is distributed to the neighbors of the message transfer
 373 node, and the message can also be sent directly to the node farthest away. As a result, as the radio
 374 range increased, the transfer time decreased.

375 Figure 12 shows the transfer time of each face routing according to the ratio of the node that can
 376 forward a message directly to the remote node in an experiment to consider the power state of the
 377 node. In practice, SBFR does not take into account the power state of the node, but in order to compare
 378 the transfer time in this simulation, it sends a message sequentially when a message transfer node

Figure 11. Transfer time according to radio range (Deployed nodes: 500).

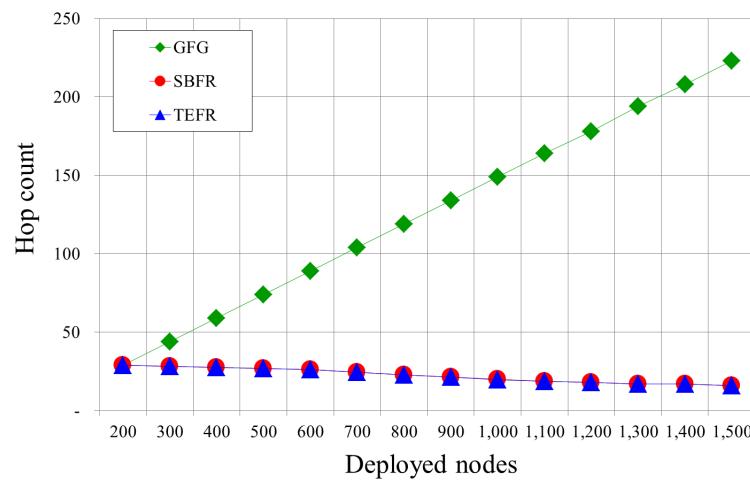
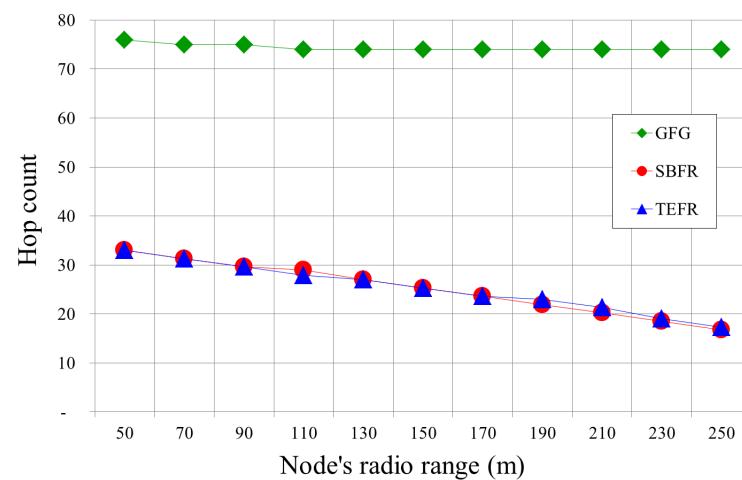
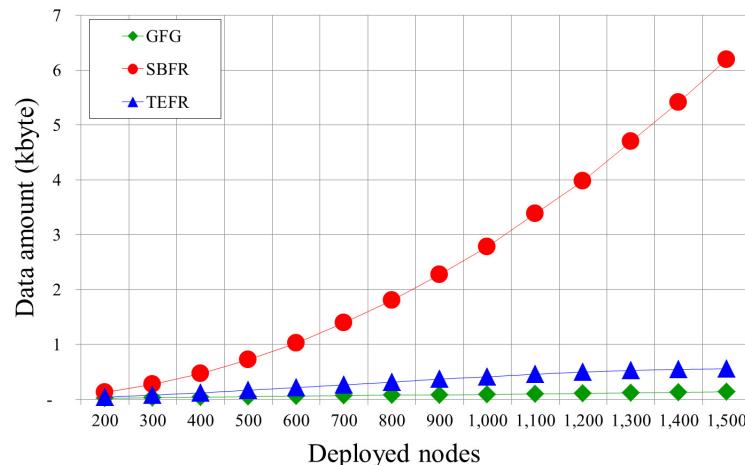

379 has less power than the threshold. Since GFG transfers a message sequentially along a face boundary,
 380 the transfer times are similar regardless of the proportion of nodes performing direct transmission.
 381 However, in SBFR and TEFR, the number of nodes forwarding a message to the remote node also
 382 increases as the ratio of nodes capable of direct transmission increases, resulting in a decrease in
 383 end-to-end transfer time. The ratio of nodes is 0% when all of the deployed nodes send messages
 384 sequentially along the face boundary, and when the ratio of nodes is 100%, all nodes are able to forward
 385 messages directly to the remote node. TEFR shows performance similar to GFG or SBFR when the
 386 nodes send messages sequentially. In addition, as the number of nodes capable of direct transmission
 387 increases, it performs better than GFG and SBFR due to the increased ratio of forwarding a message
 388 directly to the remote node and the faster computation time for routing than SBFR.

Figure 12. Transfer time according to ratio of nodes capable of direct transmission (Radio range: 100m, Deployed nodes: 1500).


389 Figure 13 is a graph of the total number of hops from the source to the destination by the number
 390 of deployed nodes. With GFG, as the number of deployed nodes increases, the edges on the planar
 391 graph become shorter. Therefore, the number of hops to journey from the source to the destination
 392 increases. Since SBFR and TEFR send a message directly to the most remote node within radio range,
 393 the number of hops rarely changes even if the number of nodes increases in the same radio range.

394 SBFR and TEFR show similar hop counts because the number of hops is not related to computation
 395 time when constructing a planar graph.


Figure 13. Hop counts according to the number of deployed nodes (Radio range: 100m).

396 Figure 14 compares the number of hops with a change in radio range. With GFG, even if the node
 397 that the message can be directly forwarded to is further away due to the increased radio range, since
 398 long edges are removed in planarization and a message is forwarded along short edges, the radio
 399 range expansion does not affect the number of hops. In SBFR and TEFR, as the radio range increases,
 400 the number of hops decreases because they can transfer a message directly to a node that is further
 401 away, which was confirmed by the simulation results.

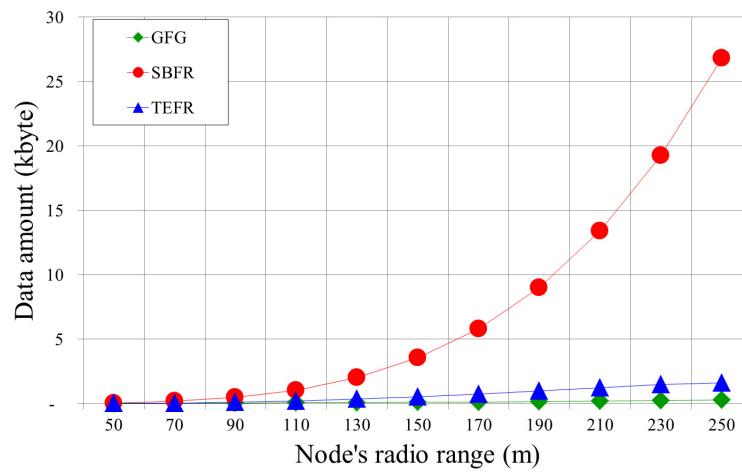


Figure 14. Hop counts according to radio range (Deployed nodes: 500).

402 Figure 15 depicts a comparison of the amount of location information to be transmitted as the
 403 number of nodes increases within the same radio range. Because GFG receives and uses only the
 404 position information of the message transfer node's neighbors, as the number of deployed nodes
 405 increases, the number of neighboring nodes increases, and so the amount of the location information
 406 to be transmitted gradually increases. With SBFR, since the location information on all nodes within
 407 2-hop range must be transmitted to the message transfer node, the amount of location information to
 408 be transmitted sharply increases as the number of nodes increases. In other words, when the average
 409 number of neighboring nodes in radio range is n , the message transfer node receives the position

Figure 15. The quantity of transferred location information according to the number of nodes (Radio range: 100m).

Figure 16. The quantity of transferred location information according to the radio range (Deployed nodes: 500).

information on $n + n^2$ nodes since it receives the location information on n immediate neighboring nodes and n neighboring nodes for each of them. With TEFR, since the position information on its neighbors and their planar graph nodes is transmitted to the message transfer node, the amount of position information increases further as the number of nodes increases compared to GFG. However, unlike SBFR, the amount of location information does not increase rapidly because only the information of the nodes after planarization is transmitted. As the number of deployed nodes increases, the number of removed nodes in planarization also increases. Therefore, the amount of location information does not increase sharply even if the number of nodes to be deployed increases.

Figure 16 shows changes in the amount of location information as radio range increases. With GFG, as the radio range increases, the number of neighbor increases and the amount of location information to be transferred increases accordingly. With SBFR, as the radio range increases, more neighboring nodes transmit position information because of the much larger number of nodes in 2-hop range. Thus, as the radio range is expanded, the amount of the location information to be transmitted increases rapidly. With TEFR, even if the radio range increases, since only the location information on

424 some neighbor nodes of the planar graph after the planarization is transmitted to the message transfer
425 node, the amount of the location information is not increased by as much as with SBFR.

426 The experimental results show that the proposed face routing did not increase the transfer time,
427 unlike with GFG and SBFR, even when the number of nodes increased, and the transfer time lessened
428 as the radio range increased. A message was able to be sent to the destination within a certain number
429 of hops regardless of the number of deployed nodes as long as the network was the same size. As the
430 radio range became wider, the hop count was gradually reduced because a message can be directly
431 forwarded to a node located at a longer distance away. In comparison with face routing using local
432 information, more position information needs to be transmitted because the planar graph information
433 of the neighbor is additionally used. However, since the neighbors of the message transfer node only
434 transmit information on some nodes after planarization, it uses less location information than face
435 routing using 2-hop node information.

436 Through our experimental results, we can see that the proposed face routing was able to forward
437 a message at a faster and more constant rate in a high density WSN than the existing face routing
438 methods, and it was able to forward messages to the destination within a certain number of hops.
439 Furthermore, as the radio range was enlarged, the transfer time was reduced because the messages were
440 forwarded by traveling via a smaller number of nodes from the source to the destination. Therefore,
441 transfer efficiency can be further improved by adjusting the radio range when applying the proposed
442 face routing in practice.

443 6. Conclusions

444 In this paper, we propose a new face routing to improve transfer efficiency by forwarding a
445 message directly to the most distant hop node on a routing path within radio range using the planar
446 graphs of neighbors. Since traditional face routing transfers a message using a planar graph to prevent
447 a loop, a problem with decreased efficiency occurs as a result of forwarding a message sequentially
448 along a face boundary composed of short edges although it can be delivered directly. In order to solve
449 this problem, face routing which forwards a message directly to the most remote node within radio
450 range using all of the node information within 2-hop range has been proposed, but this makes message
451 transfer nodes receive too much location information and requires a great deal of computation for
452 network graph generation and planarization. In a high density network, it causes another problem in
453 that the processing time increases rapidly and a huge load is concentrated on the message transfer
454 nodes.

455 The proposed face routing distributes loads and reduces message transfer time by using the
456 planar graph information of the message transfer node's neighbors. It distributes the construction
457 and planarization process of the network graph to the neighbors and reduces the amount of position
458 information to be transmitted through sending only the information concerning the planar graph
459 nodes. Furthermore, it minimizes traffic and computation time for routing by transmitting the location
460 information of changed nodes irrespective of topological changes and only when the planar graph is
461 changed. These characteristics make it suitable for use in high density WSNs. Through performance
462 evaluation, we confirmed that the proposed scheme improved transfer efficiency compared to the
463 existing face routing methods. In future research, we would like to study a method involving
464 end-to-end message forwarding within a limited timeframe regardless of the density of the deployed
465 nodes and how to efficiently forward a message in the real environment where the link is unreliable.

466 **Acknowledgments:** This research was supported by Basic Science Research Program through the National
467 Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT(NRF-2015R1A2A2A01006442).

468 **Author Contributions:** Eun-Seok Cho and Yongbin Yim conceived the idea of the overall experimental strategy.
469 Eun-Seok Cho carried out the simulations and wrote the paper. Yongbin Yim supported writing and revising the
470 article. Sang-Ha Kim provided valuable feedback and supervised the work.

471 **Conflicts of Interest:** The authors declare no conflict of interest.

472 References

473 1. Santos, R.; Edwards, A.; Verduzco, A. A geographic routing algorithm for wireless sensor networks. *IEEE Proceedings of the Electronics, Robotics and Automotive Mechanics Conference*. **2006**, *64*-69.

474 2. Ruhrup, S. Theory and practice of geographic routing. *Ad Hoc and Sensor Wireless Networks: Architectures, Algorithms and Protocols*. **2009**, *69*.

475 3. Al-Karaki, J.N.; Kamal, A.E. Routing techniques in wireless sensor networks: A survey. *IEEE Wireless communications*. **2004**, *11*, 6-28.

476 4. Seada, K.; Helmy, A. Geographic protocols in sensor networks. *ASP Encyclopedia of Sensors*. **2004**.

477 5. Stojmenovic, I. Position-based routing in ad hoc networks. *IEEE Communications Magazine*. **2002**, *40*, 128-134.

478 6. Chen, D.; Varshney, P.K. A survey of void handling techniques for geographic routing in wireless networks. *IEEE Communications Surveys & Tutorials*. **2007**, *9*, 50-67.

479 7. Gabriel, K.R.; Sokal, R.R. A new statistical approach to geographic variation analysis. *Systematic Biology*. **1969**, *18*, 259-278.

480 8. Toussaint, G.T. The relative neighbourhood graph of a finite planar set. *Pattern recognition*. **1980**, *12*, 261-268.

481 9. Karp, B.; Kung, H.-T. GPSR: Greedy perimeter stateless routing for wireless networks. *ACM Proceedings of the 6th annual international conference on Mobile computing and networking*. **2000**, 243-254.

482 10. Datta, S.; Stojmenovic, I.; Wu, J. Internal node and shortcut based routing with guaranteed delivery in wireless networks. *Cluster computing*. **2002**, *5*, 169-178.

483 11. Bose, P.; Morin, P.; Stojmenovic, I.; Urrutia, J. Routing with guaranteed delivery in ad hoc wireless networks. *Wireless networks*. **2001**, *7*, 609-616.

484 12. Kranakis, E.; Singh, H.; Urrutia, J. Compass routing on geometric networks. *Proc. 11 th Canadian Conference on Computational Geometry*. **1999**.

485 13. Kuhn, F.; Wattenhofer, R.; Zhang, Y.; Zollinger, A. Geometric ad-hoc routing: Of theory and practice. *ACM Proceedings of the twenty-second annual symposium on Principles of distributed computing*. **2003**, 63-72.

486 14. Kuhn, F.; Wattenhofer, R.; Zollinger, A. Worst-case optimal and average-case efficient geometric ad-hoc routing. *Proceedings of the 4th ACM international symposium on Mobile ad hoc networking & computing*. **2003**, 267-278.

487 15. Leong, B.; Mitra, S.; Liskov, B. Path vector face routing: Geographic routing with local face information. *IEEE ICNP 2005 Network Protocols*. **2005**.

488 16. Lin, C.-H.; Yuan, S.-A.; Chiu, S.-W.; Tsai, M.-J. Progressface: An algorithm to improve routing efficiency of gprs-like routing protocols in wireless ad hoc networks. *IEEE Transactions on Computers*. **2010**, *59*, 822-834.

489 17. Clouser, T.; Miyashita, M.; Nesterenko, M. Concurrent face traversal for efficient geometric routing. *Journal of Parallel and Distributed Computing*. **2012**, *72*, 627-636.

490 18. Deng, J.; Han, Y.S.; Chen, P.-N.; Varshney, P.K. Optimum transmission range for wireless ad hoc networks. *IEEE WCNC 2004*. **2004**, 1024-1029.

491 19. Bovy, C.; Mertodimedjo, H.; Hooghiemstra, G.; Uijterwaal, H.; Van Mieghem, P. Analysis of end-to-end delay measurements in Internet. *Proc. of the Passive and Active Measurement Workshop-PAM*. **2002**.

492 20. Scalable Network Technologies, Qualnet, <http://www.scalable-networks.com>