

1 Article

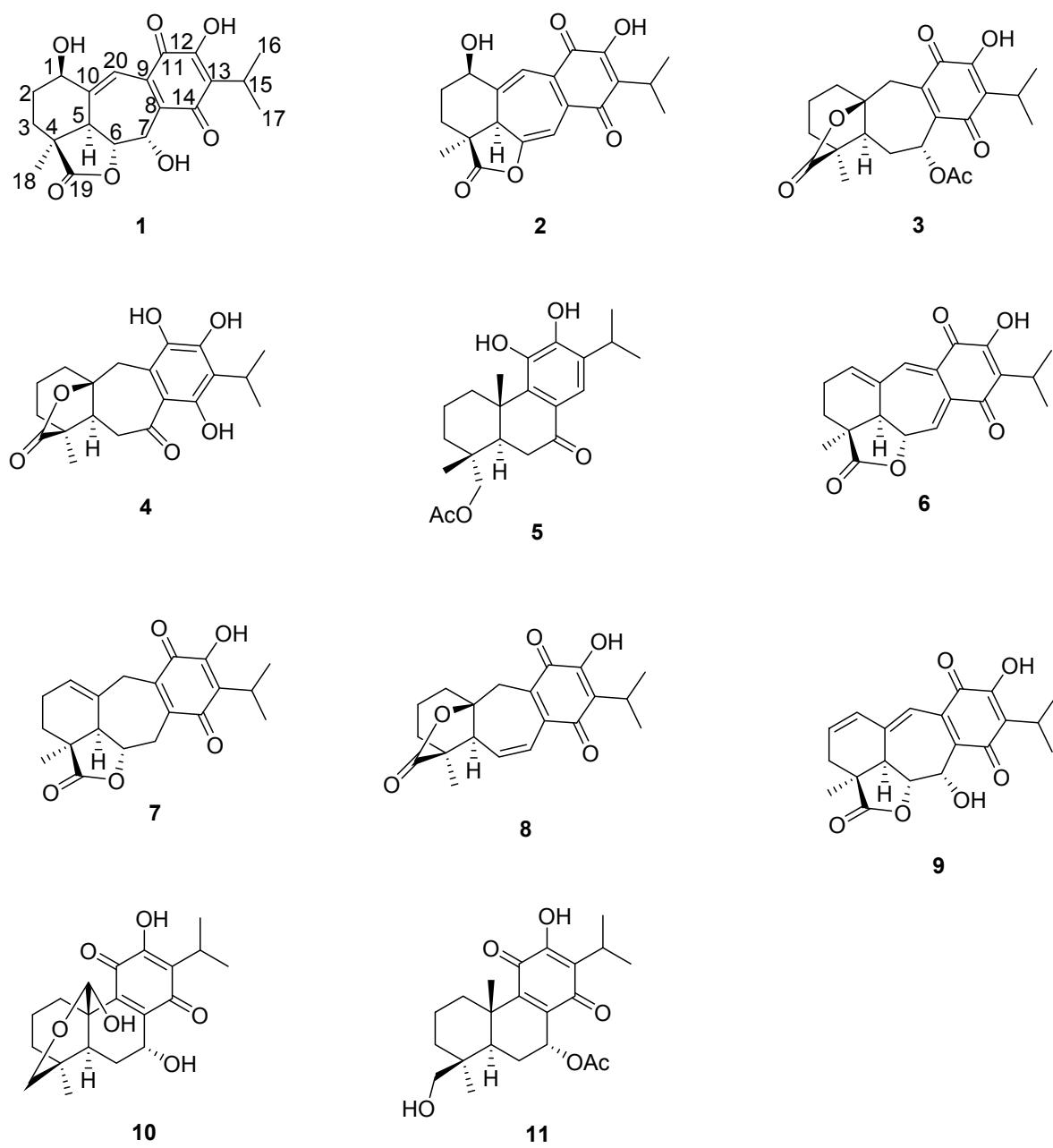
2 **Structure, Absolute Configuration, and antiproliferative**
3 **activity of abietane and icetexane diterpenoids from**
4 ***Salvia ballotiflora***5 **Baldomero Esquivel^{1,*}, Celia Bustos-Brito¹, Mariano Sánchez-Castellanos², Antonio Nieto-**
6 **Camacho¹, Teresa Ramírez-Apan¹, Pedro Joseph-Nathan³, and Leovigildo Quijano^{1,*}**7 ¹ Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria,
8 Mexico City., 04510 México; baldo@unam.mx (B.E.); bustosbritocelia@comunidad.unam.mx (C.B.-B);
9 anieto@unam.mx (A.N.), mtrapan@unam.mx (T.R.-A). quijano@unam.mx (Q.L.).10 ² Facultad de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria,
11 Mexico City., 04510 México; msanchezcastellanos@gmail.com (M. S.-C.).12 ³ Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico
13 Nacional, Apartado 14-740, México, Mexico City, 07000 México; pjoseph@nathan.cinvestav.mx (P.J.-N.).

14 * Correspondence: quijano@unam.mx; Tel.:+52-55-5622-4411

15 **Abstract:** From the aerial parts of *Salvia ballotiflora*, eleven diterpenoids were isolated, among them,
16 four icetexanes, and one abietane (**1–5**), which are first reported. Their structures were established by
17 spectroscopic means, mainly ¹H and ¹³C NMR, including 1D and 2D homo- and hetero-nuclear
18 experiments. Most of the isolated diterpenoids were tested for their antiproliferative, anti-
19 inflammatory, and radical scavenging activities using the sulforhodamine B assay on six cancer cell
20 lines, the TPA induced ear edema test in mice, and the reduction of the DPPH assay, respectively.
21 Some diterpenoids showed anti-proliferative activity, these being icetexanes **6** and **3**, which were the
22 most active with IC₅₀ (μM) = 0.27 ± 0.08 and 1.40 ± 0.03, respectively, for U251 (human glioblastoma)
23 and IC₅₀ (μM) = 0.046 ± 0.05, and 0.82 ± 0.06 for SKLU-1 (human lung adenocarcinoma), when
24 compared with adriamycin (IC₅₀ (μM) = 0.08 ± 0.003, and 0.05 ± 0.003, as the positive control,
25 respectively. Compounds **3** and **10** showed significant reduction of the induced ear edema of 37.4 ±
26 2.8 and 25.4 ± 3.0% (at 1.0 μmol/ear), respectively. Compound **4** was the sole active diterpenoid in the
27 antioxidant assay (IC₅₀ = 98. 4 ± 3.3), using α-tocopherol as positive control, IC₅₀ (μM) = 31.7 ± 1.04.
28 The diterpenoid profile found is of chemotaxonomic relevance and reinforces the evolutionary link
29 of *S. ballotiflora* with other members of the section *Tomentellae*.30 **Keywords:** *Salvia ballotiflora*; icetexane diterpenoids; abietane diterpenoids; antiproliferative
31 activity; anti-inflammatory activity; radical scavenger capacity; DCV analyses
3233 **1. Introduction**34 The genus *Salvia* L. is the largest of the Lamiaceae plants family with over 1000 species
35 widespread throughout the world [1]. Several species have been used as medicinal plants since
36 ancient times, like *Salvia officinalis*, *S. miltiorrhiza* and *S. sclarea*, which are relevant medicinal herbs in
37 the folk medicine of several countries [2]. Flavonoids, sesquiterpenoids, sesterterpenoids, and
38 triterpenoids are common phytochemical constituents of the genus, although the most diversified
39 and representative secondary metabolites are diterpenoids. Labdane, pimarane, kaurane, totarane,
40 clerodane, and abietane diterpenoids have been described for the genus [3–9]. In addition, several
41 rearranged pimarane, abietane, and clerodane diterpenoids have been isolated from *Salvia* species [9–

42 11]. Interesting biological activities such as cytotoxic, antiprotozoal, antioxidant, anti-inflammatory,
43 insect anti-feeding, and psychotropic have also been documented for some of the diterpenoids
44 isolated from these plants [2,12].

45 With more than 300 species, Mexico is one of the most key areas of diversification of the genus
46 [13]. Phytochemical analyses of Mexican *Salviae* led to the isolation of several diterpenoids, many of
47 them with rearranged skeletons mainly of abietane and clerodane origin [9]. Icetexane [9(10→20)-
48 *abeo*-abietane] diterpenoids, one class of rearranged abietanes, have been isolated from several species
49 of other families, although most of the examples came from Lamiaceae [14]. The term icetexane,
50 derives from icetexone (8), the first 9(10→20)-*abeo*-abietane isolated from *Salvia ballotiflora* Benth.
51 (section Tomentellae), together with the abietane diterpenoid conacytene (10), and the claimed *ortho*-
52 quinone tautomer of icetexone named romulogarzone [15]. Previous work on several populations of
53 *Salvia ballotiflora* indicated that this species produced an interesting array of icetexane and abietane
54 diterpenoids. Several members of this type of diterpenoids have been targeted for synthetic work due
55 to their structural features and the biological activity exhibited by some icetexanes [16–20] as anti-
56 proliferative activity, *in vitro*, against some human cancer cell lines [9,11,21]. On this issue, while the
57 aqueous-methanolic extract of *S. ballotiflora* displayed cytotoxicity to Vero cells [22], the icetexane
58 derivatives isolated from the chloroform extract of the same species showed cytotoxic activity, being
59 19-deoxyicetexone [23] the most active compound against the HeLa cervical cancer cell line [21]. In
60 turn, 19-deoxyicetexone, showed anti-diarrheal activity in a rodent model [24], the essential oil of the
61 aerial parts of the plant exhibited insecticide activity against *Spodoptera frugiperda* Walker
62 (Lepidoptera, Noctuidae) [25], and the chloroform extract of the aerial parts showed insecticide and
63 insectstatic activities against the same insect [26].


64 In continuation of our studies on Mexican *Salvia spp.* in search of antiproliferative diterpenoids
65 [11], we analyzed a population of *S. ballotiflora* collected from the municipality of Linares, State of
66 Nuevo Leon (Mexico). Aside from the previously known anastomosine (6) [27], 7,20-
67 dihydroanastomosine (7) [23], icetexone (8) [15], the icetexane diterpenoid 9, isolated from *S.*
68 *candicans* [28], conacytene (10) [15], and 7 α -acetoxy-19-hydroxyroyleanone (11) [29], we isolated four
69 new icetexanes 1–4, and the new abietane 5. The structure and absolute configuration of the new
70 compounds were established mainly by spectroscopic means and when possible, by single crystal x-
71 ray diffraction analysis and vibrational circular dichroism (VCD). Diterpenoids 3, 4, 6–8, and 10 were
72 tested for antiproliferative activity, in addition to antiinflammatory, and antioxidant activities. While
73 3, 4, 6–8 showed interesting antiproliferative activity in the sulforhodamine B assay [30], 3 and 10
74 showed significant reduction of edema in the TPA induced ear edema test in mice [31], and 4 was the
75 sole active diterpenoid in the DPPH antioxidant assay [32] (IC₅₀ 98. 4 ± 3.3 μ M).

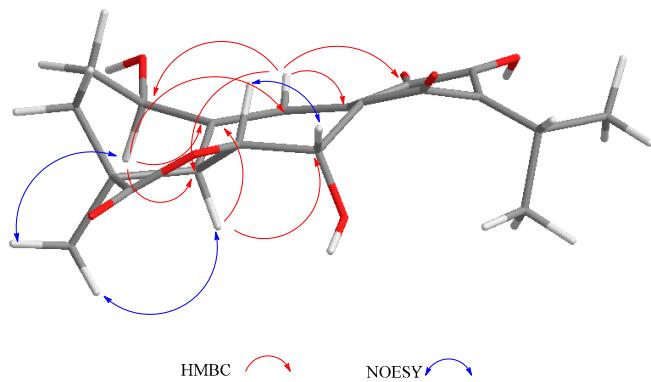
76 2. Results and Discussion

77 2.1. Characterization

78 The aerial parts of *Salvia ballotiflora* afforded, after extensive chromatographic purification,
79 eleven diterpenoids: the icetexanes 1–4, 6–9, and the abietanes 5, 10, 11. While icetexanes 1, 2, 7, and
80 9 are related to anastomosine (6), metabolites 3 and 4 are considered as icetexone (8) derivatives.
81 Diterpenoids 6–11 are known natural products and have been identified by spectroscopic methods,
82 mainly high field (700 MHz) NMR, and comparisons with the literature; icetexone (8), and
83 conacytene (10), were described originally as constituents of the aerial parts of *S. ballotiflora* [15], and

84 from other *Salvia* spp. [28,33]; anastomosine (6) from *S. anastomosans* [27]; 7,20-dihydroanastomosine
 85 (7) from *S. ballotiflora* [23]; compound 9 from *S. candicans* [28]; and 7 α -acetoxy-19-hydroxyroyleanone
 86 (11) from *S. regla* [29]. The complete assignments of the NMR data of 6, 7, 9, and 11 are included in
 87 this paper, since some discrepancies have been found with the literature assignments. It is
 88 noteworthy that although icetexone (8), the first 9(10 \rightarrow 20)-*abeo*-abietane diterpenoid, and conacytione
 89 (10) were originally isolated from *S. ballotiflora* [15] forty-one years ago, and have since then been
 90 obtained from several *Salvia* spp., they lacked complete ^1H and ^{13}C NMR assignments, and absolute
 91 configuration determinations which were recently accomplished by single crystal x-ray and VCD
 92 determinations [34]. Compounds 1–5 are new diterpenoids whose structures were established based
 93 on the following considerations.

Figure 1. Chemical structures of 1–11.


94

95

96 Compound **1** was isolated as a yellow oil which showed IR bands due to hydroxyl groups (3597
97 and 3412 cm^{-1}), γ -lactone (1778 cm^{-1}), quinone carbonyl groups (1654 and 1621 cm^{-1}), and conjugated
98 double bonds (1583 cm^{-1}). The UV spectrum showed bands at 213, 243, and 332 nm indicating the
99 presence of an *ortho*-hydroxy-*p*-benzoquinone moiety [15,28]. In the ^1H NMR spectrum of **1** (Table 1)
100 characteristic signals of an isopropyl group bonded to a quinone system were observed at δ_{H} 3.25
101 (1H, *sept*, J = 7.1 Hz), and δ_{H} 1.26 (6H, *d*, J = 7.1 Hz). These signals were ascribed to H-15 and the C-
102 16/C-17 methyl groups, respectively. The presence of an isopropyl group at the C-13 position is a
103 common feature in all diterpenoids isolated from this population of *S. ballotiflora*. The ^{13}C NMR of **1**
104 (Table 1) is consistent with the presence of the *ortho*-hydroxy-*p*-benzoquinone system and the
105 isopropyl group since the expected signals for these moieties were observed at δ_{C} 132.2 (C-8), 137.7
106 (C-9), 184.3 (C-11), 150.3 (C-12), 126.8 (C-13), 187.3 (C-14), 24.7 (C-15), 19.9 (C-16), and 20.0 (C-17). A
107 signal at δ_{C} 179.8 was ascribed to the carbonyl of a γ -lactone as in anastomosine (**6**) [27]. The hydrogen
108 atom at the lactone closure, i.e., H-6, was observed at δ_{H} 4.29 as a doublet (J = 10.3 and 2.3 Hz),
109 the large value indicated a *pseudo-axial* orientation for H-6. In the COSY spectrum, H-6 correlated to
110 a doublet at δ_{H} 3.41 (J = 10.2) that has been ascribed to H-5, and also with a broad singlet at δ_{H} 5.53
111 (H-7) assigned to the geminal hydrogen atom of a hydroxyl group, which must be attached to C-7.
112 The adjacent quinone ring influences the chemical shift of H-7, thus explaining the lower chemical
113 shift of H-7 in comparison to H-6, which is geminal to the lactone moiety. The H-7 signal collapsed
114 to a doublet (J = 2.2 Hz) upon the addition of D_2O . The coupling constant observed for H-7 was
115 consistent with an α -orientation for the hydroxy group as observed in other icetexanes and abietanes
116 with an oxygenated function at C-7 isolated from *Salvia spp* [29].

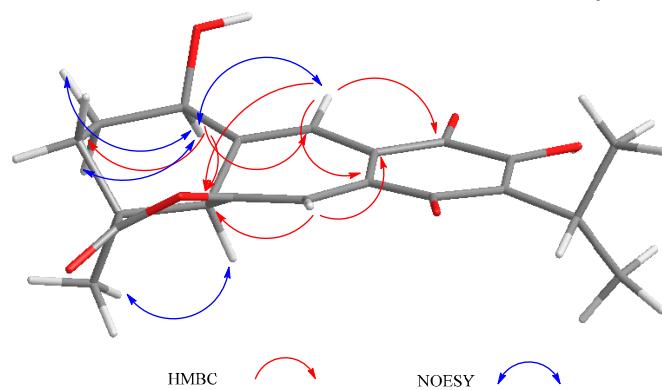
117 Other relevant signals observed in the ^1H NMR spectrum of **1** were a broad triplet at δ_{H} 4.73 (J =
118 7.7 Hz), which was ascribed to a H-1 geminal to an additional hydroxy group, and a triplet at δ_{H} 7.07
119 (J = 2.5 Hz). While the chemical shift of the former suggested that it must be an allylic methyne
120 supporting an oxygenated function, the second must be a vinylic one adjacent to the quinone ring to
121 explain the observed chemical shifts. These facts led us to locate these hydrogen atoms at C-1 and C-
122 20, respectively, as depicted in **1**. A double resonance experiment confirmed the above assumption,
123 since by irradiation at δ_{H} 4.73 (1H, *brt*, J = 7.7 Hz, H-1), two multiplet signals of a methylene group at
124 δ_{H} 1.70 and 2.49 (δ_{C} 29.0) collapsed, thus these signals were ascribed to the C-2 methylene hydrogen
125 atoms. The ^{13}C NMR spectrum was consistent with the previous discussion, since the signals for C-1
126 and C-7 were observed at δ_{C} 68.2 and 65.0, respectively. A non-protonated carbon observed at δ_{C} 153.1
127 and a methine at δ_{C} 112.3 were assigned to C-10 and C-20, respectively. The HMBC spectrum supports
128 the previous assignments since H-1 showed correlation cross peaks with C-10, C-20, and C-5. In
129 addition, H-20 correlated with C-1, C-5, C-6, C-9, and C-11, while H-6 showed cross peaks with C-5,
130 C-7, and C-10; and H-7 correlated with C-6, C-8, and C-9. Other relevant HMBC correlations that
131 confirmed the structure of **1** are shown in Table 1 and Figure 2. A three hydrogen atoms signal at δ_{H}
132 1.47 was also observed in the ^1H NMR spectrum of **1** and was ascribed to the C-18 methyl group. The
133 relative stereochemistry of **1** was established with the aid of the coupling constants and the NOESY
134 spectrum (Figure 2) that showed a correlation between H-6 and H-7, both β -oriented, while H-5
135 which must be *anti*-periplanar to H-6 showed a nOe with methyl hydrogen atoms at C-4, which in
136 turn correlated with H-1, thus indicating that H-5, Me-18, and H-1 had the same orientation. The
137 large coupling constant value of H-1 indicated an *axial* orientation, thus the hydroxy group attached

138 to C-1 must be β -equatorial oriented. Compound **1** is related to anastomosine (**6**), and is a novel
139 icetexane derivative which we named ballotiquinone (**1**).

140
141

Figure 2. Selected correlations for compound **1**.

142

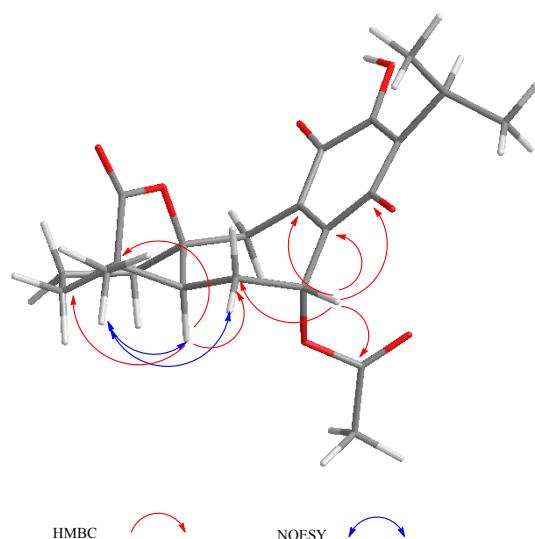

Table 1. NMR data (^1H 700 MHz, ^{13}C 175 MHz, CDCl_3) of **1** and **2**.

1					2			
Position	δ_{C}	Type	δ_{H} (J in Hz)	HMBC	δ_{C}	Type	δ_{H} (J in Hz)	HMBC
1	68.2	CH	4.73, <i>brt</i> (7.7)	3,5,10,20	66.6	CH	4.57, <i>t</i> (2.9)	3,5,20
2a	29.0	CH_2	2.49, <i>ddt</i> (13.3, 10.5, 8.4)	3, 4,10	28.1	CH_2	2.01, <i>dq</i> (14.7, 3.5)	1,4,10
2b			1.69, <i>dtd</i> (13.4, 8.2, 2.4)				1.41, <i>dddd</i> (14.7, 11.9, 5.6, 2.8)	3
3a	26.8	CH_2	1.81, <i>m</i>	1,2, 4, 5,18	25.5	CH_2	2.18, <i>m</i>	1, 2, 4,19
3b							2.16, <i>m</i>	1, 2, 4,19
4	44.4	C			42.7	C		
5	44.1	CH	3.41, <i>d</i> (10.2)	3,4,6,7,10,18, 20	44.8	CH	2.85, <i>brs</i>	1,4,10,9,18, 19,20
6	79.9	CH	4.29, <i>dd</i> (10.3, 2.3)	5,7,10	130.2	C		
7	65.0	CH	5.53, <i>brs</i>	6,8,9	100.5	CH	6.77, <i>d</i> (1.1)	5,6,9,4
8	132.2	C			140.0	C		
9	137.7	C			149.9	C		
10	153.1	C			138.0	C		
11	184.3	C			182.8	C		
12	150.3	C			151.2	C		
13	126.8	C			126.5	C		
14	187.3	C			185.3	C		
15	24.7	CH	3.25, <i>hep</i> (7.1)	12,13,14,16, 17	24.8	CH	3.28, <i>hep</i> (7.1)	12,13,14,16, 17
16, 17	19.9, 20.0	2CH_3	1.26, <i>d</i> (7.1)	13,15	20.0, 20.1	2CH_3	1.27, 1.26, <i>d</i> (7.1)	13,15
18	22.7	CH_3	1.47, <i>s</i>	3,4,5,19	27.5	CH_3	1.44, <i>s</i>	3,4,5,19
19	179.8	C			179.3	C		
20	112.3	CH	7.07, <i>t</i> (2.5)	1,5,6,9,11	122.8	CH	6.91, <i>d</i> (1.82)	1,5,8,9,11
1-OH			1.97, <i>brs</i>					
7-OH			3.11, <i>d</i> (4.33)					
12-OH			7.14, <i>brs</i>	12,13,11				

143

144 The mass spectrum of **2** indicated a molecular formula of $\text{C}_{20}\text{H}_{20}\text{O}_6$ and a high degree of
 145 unsaturation. The ^1H and ^{13}C NMR spectra indicated it was a 6,7-anhydro derivative of ballotquinone
 146 (**1**). In the ^{13}C NMR spectrum of **2** (Table 1), the signals for an *ortho*-hydroxy-*p*-benzoquinone and an
 147 isopropyl group were observed at δ_{C} 140.0 (C-8), 149.9 (C-9), 182.8 (C-11), 151.2 (C-12), 126.5 (C-13),
 148 185.3 (C-14), 24.8 (C-15), 20.0 and 20.1 (C-16 and C-17). A singlet at δ_{C} 179.3 was ascribed to the
 149 carbonyl of a γ -lactone like that found in anastomosine (**6**) and ballotquinone (**1**); however, the

150 hydrogen atom at the ring closure of this lactone (C-6) was not observed in the ^1H NMR spectrum of
 151 **2**. This fact, in addition to the presence of two additional signals for sp^2 carbons in the ^{13}C NMR of **2**
 152 (Table 1) at δ_{C} 130.2 and 100.5 in comparison with those observed in **1**, indicated the presence of a C-
 153 6 = C-7 double bond. The ^1H NMR spectrum showed one hydrogen atom doublet at δ_{H} 6.77 ($J = 1.1$),
 154 which was ascribed to H-7 since in the HSQC spectrum it correlated with a signal at δ_{C} 100.5 (C-7),
 155 and in the HMBC spectrum with a signal at δ_{C} 130.2 (C-6). In agreement with the previous
 156 consideration, in the IR spectrum of **2**, the band for the C-19 carbonyl shifted to 1811 cm^{-1} in agreement
 157 with an enol- γ -lactone [35]. In the ^1H NMR, a broad singlet and a doublet at δ_{H} 2.85 and 6.91 ($J = 1.8$
 158 Hz), respectively, were ascribed to H-5 and H-20, since H-5 showed a correlation with H-20 and with
 159 the signal assigned to H-7 in the COSY spectrum. The B-ring of compound **2** is therefore a
 160 cycloheptatriene system where one double bond is also part of the *ortho*-hydroxy-*p*-benzoquinone,
 161 thus explaining the UV absorptions observed at 213, 243, and 332 nm in agreement with the high
 162 degree of instauration deduced from the mass spectrum. Other relevant signals in the ^1H NMR
 163 spectrum of **2** were due to the hydrogen atoms of the C-18 methyl group at δ_{H} 1.44, and a triplet at δ_{H}
 164 4.57 ($J = 2.9$ Hz) ascribed to the geminal hydrogen atom of an allylic hydroxyl moiety at C-1, as in
 165 compound **1**. Inspection of a Dreiding model and MM2 calculations of compound **2** indicated that
 166 the A-ring could adopt two distorted chair conformations due to the presence of the C-6 = C-7 double
 167 bond. In the more stable conformation, H-1 is α -equatorial, forming a dihedral angle of approximately
 168 60 degrees with the hydrogen atoms of the methylene at C-2, thus accounting for the coupling
 169 constant values observed, and in consequence a β -orientation for the hydroxy group. The relative
 170 stereochemistry of **2** was established with the aid of the coupling constants and the NOESY spectrum
 171 (Figure 3) that showed a correlation between H-5 and the α -methyl at C-4, thus indicating that they
 172 were on the same side of the molecule. In agreement with the proposed α -equatorial orientation for
 173 H-1, the NOESY spectrum correlation cross peaks were observed with H-20 and both C-2 methylene
 174 hydrogen atoms (δ_{H} 2.01 and 1.41). Compound **2** could originate from ballotquinone (**1**) by the loss
 175 of a water molecule from the C-6:C-7 positions and was named 6,7-anhydroballotquinone.
 176 Compounds **1** and **2** are new icetexane derivatives closely related to anastomosine (**6**), 7,20-
 177 dihydroanastomosine (**7**) and compound **9**, which co-exist in this population of *S. ballotiflora*. The yet
 178 unnamed icetexane **9**, known from *S. candicans*, turned out to be 1,2-anhydroballotquinone.



179

180 **Figure 3.** Selected correlations for compound **2**.

181 Compound **3** was isolated as a yellow powder. The HR-DART-MS indicated a $\text{C}_{22}\text{H}_{26}\text{O}_7$
 182 molecular formula. Its IR spectrum showed bands due to hydroxyl (3414 cm^{-1}), a saturated γ -lactone
 183 (1771 cm^{-1}), ester carbonyl (1744 cm^{-1}), and quinone carbonyl groups (1646 cm^{-1}). The ^{13}C NMR

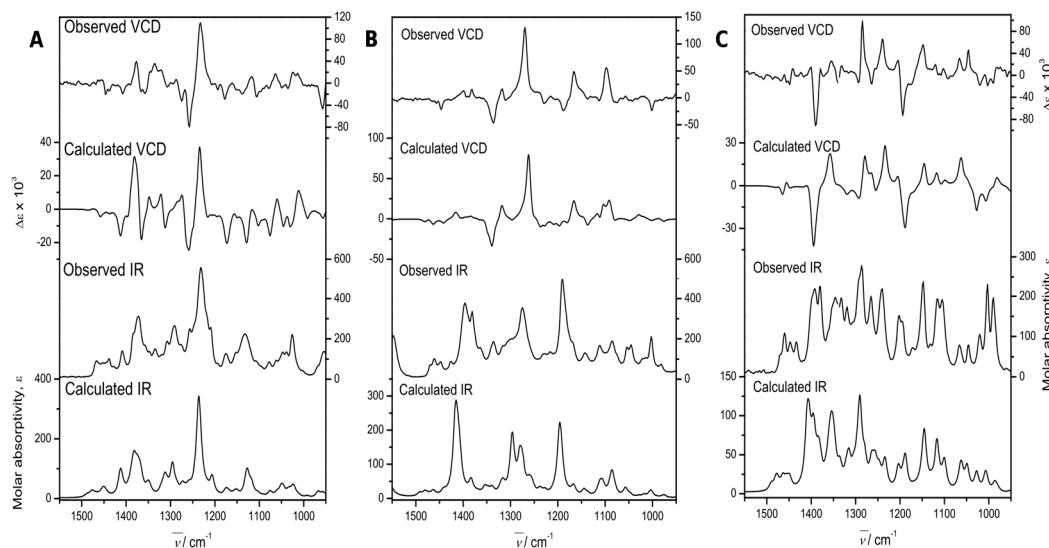
184 spectrum displayed signals for 22 carbons accounting for four methyl groups, five methylene units,
185 three methines, and ten quaternary carbons, which included two quaternary sp^3 , four carbonyls, and
186 four olefinic carbons, according to the HSQC experiment. Signals for the typical isopropyl-*ortho*-
187 hydroxy-*p*-benzoquinone, as in **1** and **2** were observed, as well as signals for an acetate group at δ_c
188 169.6, and 20.7 (Table 2). Other relevant signals in the spectrum were observed at δ_c 179.6 (C), 81.8
189 (C), 17.2 (CH₃), and 30.2 (CH₂). The former was ascribed to the carbonyl of a γ -lactone with a high
190 degree of ring strain as in **1** and **2**; however, the presence of the singlet at δ_c 81.8 and the chemical
191 shift of the methyl at δ_c 17.2, indicated a γ -lactone system related to icetexone (**8**). In agreement with
192 this conclusion, the triplet at δ_c 30.2 was ascribed to the C-20 methylene group, characteristic of an
193 icetexone-type derivative, while the signals at δ_c 179.6, 81.8, and 17.2 were assigned to C-19, C-10,
194 and C-18, respectively. The ¹H NMR spectrum of **3** (Table 2) confirmed the above conclusions since
195 an AB system at δ_h 3.43 and 3.01 (J = 15.7 Hz), ascribed to the hydrogen atoms at C-20, and a singlet
196 at δ_h 1.11, assigned to the hydrogen atoms of the C-18 methyl group, were observed. A singlet at δ_h
197 2.09 due to the presence of an acetate group, whose geminal hydrogen atom was observed at δ_h 6.21
198 as a doublet (J = 7.0 Hz) was also evident. The COSY spectrum of **3** indicated that the acetoxy geminal
199 hydrogen atom was coupled to one methylene hydrogen atom observed at δ_h 2.27 (1H, *ddd*, J = 15.0,
200 7.2, 5.5 Hz, H-6 α) which was coupled to its geminal hydrogen atom at δ_h 1.43 (1H, *brdd*, J = 15.0, 12.0
201 Hz, H-6 β). In turn, the methylene hydrogen atoms were coupled to a double doublet at δ_h 2.37 (1H, J
202 = 12.0, 5.4 Hz, H-5). Since the acetoxy germinal hydrogen atom was shown to be coupled only to one
203 hydrogen atom of the methylene group (δ_h 2.27), we can infer that it must form a 90 degrees dihedral
204 angle with the other methylene hydrogen atom at δ_h 1.43, thus accounting for the observed
205 multiplicity of H-7. The chemical shift of the acetate geminal hydrogen atom and the correlations
206 observed in the COSY spectrum led us to locate the ester group at C-7 with an α -*pseudoaxial*
207 orientation, and to assign the signals at δ_h 2.27 and 1.43 to H-6 α and H-6 β , respectively, and therefore
208 the signal at δ_h 2.37 to H-5, which must be α -*axially* oriented. Inspection of the Dredging molecular
209 model and MM2 calculations confirmed the spatial relation of H-7 with the H-6 β , which formed a 90
210 degrees dihedral angle in the most stable conformation. In the ¹³C NMR spectrum of **3**, the signal for
211 C-7 was observed at δ_c 65.9, and the methylene carbon at δ_h 27.2 was ascribed to C-6. The HMBC
212 spectrum of **3** supported the previous assignments, since correlation cross peaks were observed
213 between H-7 and the signal ascribed to the acetate carbonyl, as well as with C-5, C-6, C-8, C-9, and
214 C-14 (Table 2 and Figure 3). In addition, H-5 showed correlations with C-3, C-4, C-6, and C-19. While
215 both hydrogen atoms at the C-6 position showed correlation cross peaks with C-10 and C-5, the
216 hydrogen atoms of the C-20 methylene correlated with C-5, C-8, C-9, C-10, and C-11. Other relevant
217 HMBC correlations observed for **3** are included in Table 2, and Figure 4.

218

HMBC NOESY

219

Figure 4. Selected correlations for compound 3.


Table 2. NMR data (¹H 700 MHz, ¹³C 175 MHz, CDCl₃) of 3.

3									
Position	δ_c	Type	δ_h (J in Hz)	HMBC	Position	δ_c	Type	δ_h (J in Hz)	HMBC
1a	37.4	CH ₂	1.98, <i>dd</i> (12.6, 4.9)	3,5,10,20	11	183.5	C		
1b			1.77, <i>d</i> (12.0, 5.4)	3,5	12	150.4	C		
2a	20.0	CH ₂	1.84, <i>m</i>	3,4,10	13	125.6	C		
2b			1.65, <i>m</i>	3,4	14	184.3	C		
3a	35.5	CH ₂	1.73, <i>m</i>	1, 5	15	24.7	CH	3.21, <i>hept</i> (7.0)	12,13,14,16,17
3b			1.66, <i>dd</i> (12.9, 6.1)	5	16,17	19.9, 19.8	2CH ₃	1.24, 1.27, <i>d</i> (7.0)	13,15
4	49.6	C			18	17.2	CH ₃	1.11, <i>s</i>	3,4,19
5	51.0	CH	2.37, <i>dd</i> (12.0, 5.4)	3,4,6,19	19	179.6	C		
6a	27.2	CH ₂	2.27, <i>ddd</i> (15.0, 7.2, 5.5)	5,7,810	20a	30.2	CH ₂	3.43, <i>d</i> (15.7)	1,5,8,9,10,11
6b			1.43, <i>brdd</i> (15.0, 12.0)	5,10,8,	20b			3.01, <i>d</i> (15.7)	5,8,9,10,11
7	65.9	CH ₂	6.21, <i>d</i> (7.0)	1',5,6,8,9,14	1'	169.6	C		
8	144.4	C			2'	20.7	CH ₃	2.09, <i>s</i>	1'
9	135.4	C			11-OH				
10	81.8	C			12-OH			7.01, <i>brs</i>	12,13,11

222 The relative configuration of **3** was established with the aid of a NOESY spectrum (Figure 4),
 223 while VCD [36,37] allowed the establishment of the absolute configuration.

224 The Experimental Section details the calculation procedures performed to obtain the theoretical
 225 IR and VCD spectra, while the left portion of Figure 5 shows a comparison of the experimental and
 226 calculated spectra of **3**. These allowed us to determine the absolute configuration. The comparison
 227 parameters, determined using the CompareVOA software [38] are given in Table 3, where it can be
 228 observed that the determination was accomplished with 100% confidence. The thermochemical
 229 parameters associated with the VCD calculations of the conformers contributing to this determination
 230 are summarized in Table 4.

231 Compound **3** is a new icetexane (**8**) derivative herein named *7* α -acetoxy-6,7-dihydroicetexone.

232

233 **Figure 5.** Experimental and DFT calculated, at the B3PW91/DGDZVP level of theory, IR, and VCD
 234 spectra of *7* α -acetoxy-6,7-dihydroicetexone (**3**, A), anastomosine (**6**, B), and 7,20-
 235 dihydroanastomosine (**7**, C).

236

Table 3. Confidence level data for the IR and VCD spectra of **3**, **6** and **7**.

Compound	<i>anH</i> ^a	<i>S_{IR}</i> ^b	<i>S_E</i> ^c	<i>S_{-E}</i> ^d	<i>ESI</i> ^e	<i>C</i> ^f (%)
3	0.973	95.6	79.7	13.1	66.6	100
6	0.975	82.4	87.0	4.2	82.8	100
7	0.974	93.2	84.7	10.9	73.8	100

237 ^a Anharmonicity factor; ^b IR spectral similarity; ^c VCD spectral similarity for the correct enantiomer;

238 ^d VCD spectral similarity for the incorrect enantiomer; ^e Enantiomer similarity index, calculated as
 239 *S_E* - *S_{-E}*; and ^f Confidence level for the stereochemical assignment.

240

241

242

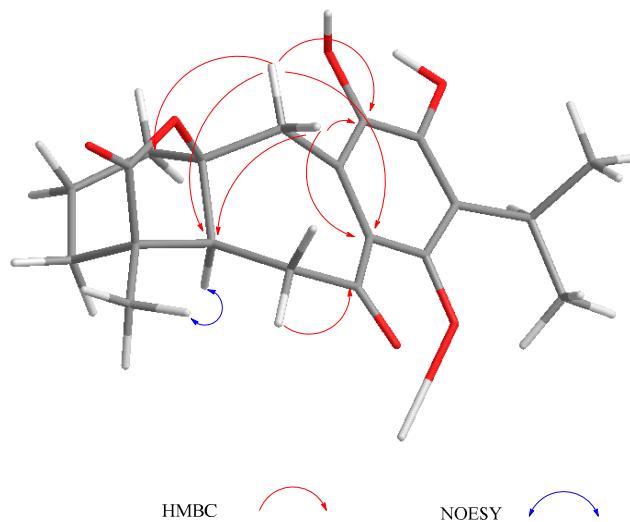
243 **Table 4.** Relative energies and conformational populations of **3**, **6** and **7**.

Conformer	$\Delta E_{\text{MMFF94}}^{\text{a}}$	$\%_{\text{MMFF94}}^{\text{b}}$	$\Delta E_{\text{OPT}}^{\text{c}}$	$\%_{\text{OPT}}$	$\Delta G_{\text{B3PW91}}^{\text{d}}$	$\%_{\text{B3PW91}}$
3a	0.88	16.3	0.00	36.9	0.00	50.8
3b	0.00	72.6	0.08	32.0	0.34	28.4
3c	1.22	9.3	0.37	19.6	0.67	16.5
3d	2.37	1.3	0.84	9.1	1.46	4.3
6a	0.87	18.8	0.00	56.2	0.00	69.2
6b	0.00	81.2	0.15	43.8	0.48	30.8
7a	0.81	20.1	0.00	58.4	0.00	65.5
7b	0.00	79.9	0.20	41.6	0.06	34.5

244 ^aMolecular mechanics energy relative to 33.25, 44.21 and 64.23 kcal/mol for **3**, **6** and **7**, respectively; ^b
 245 Molecular mechanics population in %; ^c Energy of the optimized structures; data are relative to
 246 -866097.07 kcal/mol for **3**, -721603.93 kcal/mol for **6**, and -722370.35 kcal/mol for **7**; ^d Free energy
 247 relative to -7865847.05 kcal/mol for **3**, -721405.65 kcal/mol for **6**, and -722157.46 kcal/mol for **7**.

248 Compound **4** was obtained as a yellow powder and its molecular formula was established as
 249 C₂₀H₂₄O₆ by HR-DART-MS. In the ¹³C NMR spectrum of **4** (Table 5) a signal at δ_{C} 204.7 was observed
 250 indicating the presence of a conjugated ketone carbonyl. Aside from the signals for the γ -lactone (δ_{C}
 251 179.1), the methyl group (δ_{C} 17.4), and the γ -lactone closure i.e. C-10 at δ_{C} 85.2, the characteristics of
 252 an icetexone-type derivative were also observed. In addition, the spectrum showed six non-
 253 protonated sp^2 carbon signals at δ_{C} 113.1, 120.0, 134.9, 150.3, 119.9, and 159.2 indicating that **4** instead
 254 of the *ortho*-hydroxy-*p*-benzoquinone, possessed a fully substituted aromatic ring, where one
 255 substituents was an isopropyl group. In the IR spectrum of **4**, several bands due to hydroxyl groups
 256 were observed at 3602, 3564 and 3514 cm⁻¹ suggesting that other substituents of the aromatic ring
 257 were hydroxy groups. Other relevant bands were those observed at 1771 and 1612 cm⁻¹ ascribed to
 258 the γ -lactone carbonyl and the conjugated ketone deduced from the ¹³C NMR data.

259


Table 5. NMR data (^1H 700 MHz, ^{13}C 175 MHz, CDCl_3) of **4**.

4				
Position	δ_{C}	Type	δ_{H} (J in Hz)	HMBC
1a	35.9	CH_2	2.07, <i>dd</i> (13.4, 5.6)	1,2,4,5,18
1b			1.71, <i>ddd</i> (13.4, 10.8, 7.6)	1,2,4,5,19
2a	19.5	CH_2	1.82, <i>m</i>	1,3,4
2b				
3a	32.7	CH_2	1.76, <i>m</i>	2,3,5,20
3b			1.53, <i>ddd</i> (12.8, 12.6, 7.6)	2,5
4	47.7	C		
5	50.9	CH	2.00, <i>dd</i> (12.0, 2.0)	1,3,4,6,7,19
6a	40.6	CH_2	2.84, <i>dd</i> (17.4, 12.0)	4,5,7,10
6b			2.80, <i>dd</i> (17.4, 2.0)	4,5,7,8,10
7	204.8	C		
8	113.1	C		
9	120.0	C		
10	85.2	C		
11	134.9	C		
12	150.3	C		
13	119.9	C		
14	159.2	C		
15	24.8	CH	3.46, <i>hep</i> (7.0)	12,13,14,16,17
16, 17	20.47, 20.51	CH_3	1.37, 1.36, <i>d</i> (7.0)	13,15
18	17.1	CH_3	1.18, <i>s</i>	3,4,5,19
19	179.1	CH_3		
20a	33.6	CH_2	3.59, <i>d</i> (13.9)	1,5,8,9,10,11
20b			2.95, <i>d</i> (13.9)	1,8,9,10,11
1'				
2'				
11-OH			6.13, <i>s</i>	9,11,12,13
12-OH			4.86, <i>s</i>	9,11,12,13
14-OH			13.00, <i>s</i>	8,9,12,13,14,7

260

261

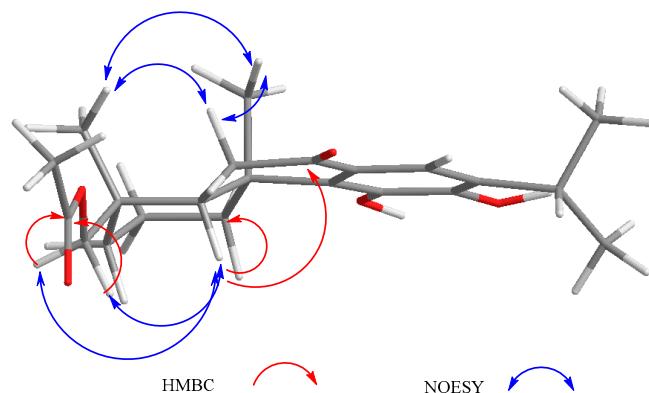

In the ^1H NMR spectrum of **4**, the signals for an AB system at δ_{H} 3.59 and 2.95 ($J = 13.9$ Hz) were assigned to the C-20 methylene group hydrogen atoms characteristic of this type of icetexane diterpenoids [28]. An ABX system at δ_{H} 2.84 (1H, *dd*, $J = 17.4, 12.0$ Hz), 2.80 (1H, *dd*, $J = 17.4, 2.0$ Hz), and 2.00 (1H, *dd*, $J = 12.0, 2.0$ Hz), was also observed. The magnitude of the geminal coupling constant of the AB methylene signals at δ_{H} 2.84 and 2.80 ($J = 17.4$ Hz) indicated its vicinity to a carbonyl group and was therefore ascribed to C-6, which in turn meant that C-7 must be a carbonyl group. The presence of a singlet at δ_{H} 13.0 corresponded to a hydrogen bonded hydroxy group (-C14-O -- H -- O=C7), confirming the above assumption. The signal at δ_{H} 2.00 (1H, *dd*, $J = 12.0, 2.0$ Hz) was attributed to H-5, which must be α -axially oriented. The HMBC spectrum of **4** agreed with the previous discussion since the expected correlation cross peaks were observed (Table 5). The relative stereochemistry of **4** was established with the aid of coupling constant values and based on the nOe observed in the NOESY spectrum (Figure 6). This is the first isolation of **4** as a natural product, although its derived diacetyl and triacetyl analogues have been isolated from *S. candicans* [28]. Compound **4** is also an icetexone-type derivative and is therefore named 6,7,11,14-tetrahydro-7-oxo-icetexone.

Figure 6. Selected correlations for compound **4**.

Compound 5 was also isolated as a yellow powder. Its IR spectrum exhibited bands at 3599 and 3534 cm^{-1} for hydroxy groups, and at 1730 and 1672 cm^{-1} for an ester, and a conjugated ketone carbonyl group, respectively. The HR-DART-MS established the molecular formula $\text{C}_{22}\text{H}_{30}\text{O}_5$ for this product. The ^{13}C NMR spectrum of 5 (Table 6) confirmed the presence of twenty-two carbons grouped, according to the HSQC spectrum, into five methyl groups, five methylene moieties, three methines (including an aromatic one), and nine non-protonated carbons (two sp^3 , two carbonyl groups, and five aromatic signals). The ^1H NMR spectrum showed the presence of only one aromatic hydrogen atom singlet at δ 7.64, which correlated with the carbon signal at δ_c 118.1, indicating that ring C was a penta-substituted aromatic ring, one of the substituents being an isopropyl group. The chemical shifts of the non-protonated aromatic carbon atoms (δ_c 125.4, 138.3, 141.3, 146.2, and 131.8), suggested the presence of two hydroxyl groups as substituents, very likely at C-11 and 12, as in 4. Two carbonyl signals at δ_c 198.2 and 171.3 were assigned to a conjugated ketone, and an ester,

291 respectively, as indicated by the IR spectrum. The carbon chemical shifts of the ketone carbonyl group
292 at δ_c 198.1 was similar to that reported for 10-hydroxysugiol (demethylcryptojaponol), an abietane
293 diterpenoid originally isolated from *S. phlomoides* Asso [39] and other plant sources [40]. The ester
294 group was identified as an acetate, since in the 1H NMR spectrum of **5**, a three hydrogen atoms singlet
295 was observed at δ_H 2.02, and located at C-18. Accordingly, the AB signals at δ_H 3.73 and 3.84 ($J = 11.3$
296 Hz), –ascribed to geminal hydrogen atoms of the acetoxy group (Table 6)– showed correlation cross
297 peaks with the carbonyl signal at δ_c 171.1 in the HMBC spectrum. Other relevant signals in the 1H
298 NMR spectrum of **5** (Table 6) were those due to the isopropyl group attached to the aromatic ring
299 and two methyl groups at δ_H 1.43 and 0.99, which were ascribed to the C-20 and C-19 methyl
300 hydrogen atoms, respectively. A double doublet at δ_H 2.22 (1H, $J = 11.9, 5.5$ Hz) was ascribed to H-5,
301 which must be α -axially oriented as are all diterpenoids isolated from this population of *S. ballotiflora*.
302 The relative stereochemistry of **5** was established based on the coupling constant values observed in
303 the 1H NMR (Table 6) and the NOESY spectra (Figure 7). The C-18 methylene moiety supporting the
304 acetoxy group, must be α -equatorial oriented since a nOe was observed between H-18 and H-5, H-6 α
305 and the C-19 methyl hydrogen atoms, which in turn showed intense correlation cross peaks with the
306 C-20 methyl group, H-2 β and H-6 β . Furthermore, the C-20 methyl hydrogen atoms showed nOe
307 with H-2 β , H-6 β and H-1 β . Thus, it follows that **5** is a new abietane derivative named 18-acetoxy-11-
308 hydroxysugiol.

309

310 **Figure 7.** Selected correlations for compound **5**.

311

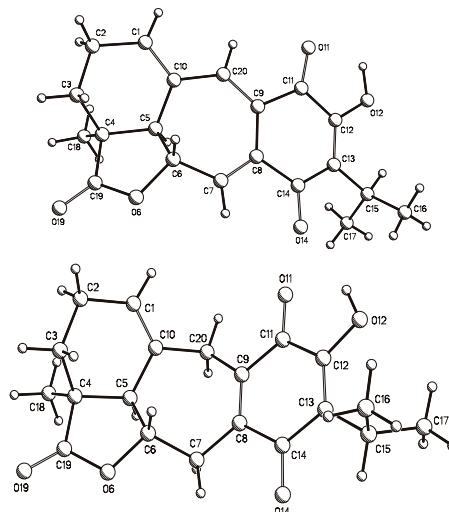
312

313

Table 6. NMR data (^1H 700 MHz, ^{13}C 175 MHz, CDCl_3) of **5**.

5				
Position	δ_{C}	Type	δ_{H} (J in Hz)	HMBC
1a	36.2	CH_2	3.17, <i>dd</i> (13.2, 2.8)	1,3,5
1b			1.55, <i>dd</i> (13.6, 3.7)	2,20
2a	18.4	CH_2	1.82, <i>dddd</i> (17.3, 13.7, 8.7, 3.7)	4,10
2b			1.68, <i>ddt</i> (14.2, 7.2, 3.6)	4,10
3a	35.1	CH_2	1.50, <i>td</i> (13.6, 3.7)	19
3b			1.41, <i>dt</i> (14.0, 2.7)	1,5
4	36.9	C		
5	44.2	CH	2.22, <i>dd</i> (11.9, 5.5)	1,7,10,18,19
6a	35.4	CH_2	2.58, <i>d</i> (17.0)	4,5,8,10
6b			2.55, <i>d</i> (17.0)	4,5,8,10
7	198.2	C		
8	125.4	C		
9	138.3	C		
10	40.1	C		
11	141.3	C		
12	146.2	C		
13	131.8	C		
14	118.1	CH	7.64, <i>s</i>	
15	27.5	CH	3.01, <i>hep</i> (6.9)	12,13,14,16,17
16, 17	22.5, 22.6	CH_3	1.30, 1.28, <i>d</i> (6.86)	13,15
18	17.7	CH_3	0.99, <i>s</i>	3,4,5,19
19a	72.0	C	3.84, <i>d</i> (11.3)	3,5,18,1'
19b			3.73, <i>d</i> (11.3)	3,5,18,1'
20a	19.2	CH_3	1.43, <i>s</i>	1,5,9,10
20b				
11-OH			5.70, <i>s</i>	11
12-OH			5.61, <i>s</i>	11,12
1'	171.3	C		
2'	21.1	CH_3	2.02, <i>s</i>	1',19

314


315 Anastomosine (**6**), an icetexane diterpenoid isolated from *S. anastomosans* [27] is also known from
 316 *S. candicans* [28] and from a population of *S. ballotiflora* collected from a different geographical region
 317 of Mexico [23]. Analysis of the ^1H , ^{13}C , HSQC, HMBC, and NOESY NMR spectra measured for the
 318 present work led to the complete and unambiguous assignment of all hydrogen and carbon atoms.
 319 Several discrepancies with the previous ^{13}C NMR data were found and therefore all data are included
 320 in the experimental section. In our hands, crystals suitable for x-ray diffraction analysis were

321 obtained, and therefore in the first instance, the structure was verified by this independent
 322 methodology, which also allowed us to determine the molecular absolute configuration.

323 A crystal of **6** was mounted on a glass fiber for data collection using graphite monochromated
 324 Cu $K\alpha$ radiation at room temperature in the $\omega/2\theta$ scan mode. The orange crystal measuring $0.34 \times$
 325 0.26×0.15 mm, $C_{20}H_{20}O_5$, $M = 340.36$ turned out to be orthorhombic, space group $P2_12_12_1$, $Z = 4$, $\rho =$
 326 1.361 mg/mm 3 . A total of 40440 reflections were collected, which after data reduction left 3178
 327 observed reflections. The structure was solved by direct methods using the SHELXS-97 program
 328 included in the WinGX v1.70.01 crystallographic software package. For structural refinement, the
 329 non-hydrogen atoms were treated anisotropically, and the hydrogen atoms, included in the structure
 330 factor calculations, were refined isotropically. The final R indices were $R_1 = 3.9\%$ and $wR_2 = 10.3\%$,
 331 A PLUTO plot of the molecular structure is shown in Figure 8. The absolute configuration followed
 332 from the use of the Olex2 v1.1.5 software [41], which allowed us to calculate the Flack [42] (x) and
 333 Hooft (y) parameters [43, 44]. These parameters were $x = 0.1(2)$ and $y = 0.09(5)$, while for the inverted
 334 structure they were $x = 0.9(2)$ and $y = 0.91(5)$.

335

336

337

338 **Figure 8.** PLUTO plots of the single crystal x-ray diffraction structures of anastomosine (**6**, top) and
 339 of 7,20-dihydroanastomosine (**7**, bottom).

340 Independently, the absolute configuration was determined by VCD. In this case, the central
 341 portion of Figure 5 compared the experimental and DFT B3PW91/DGDZVP calculated IR and VCD
 342 spectra of **6**. The comparison parameters, determined using the CompareVOA software [38], are
 343 shown in Table 6 where it can be observed that the determination was accomplished with 100%
 344 confidence. In turn, the thermochemical parameters associated with the VCD calculations of those
 345 conformers contributing to the final calculations are summarized in Table 4.

346 The presence of anastomosine (**6**) in *S. anastomosans*, *S. candicans*, and *S. ballotiflora* is important
 347 from a chemotaxonomic point of view since these three species are classified in section Tomentellae.
 348 Phylogenetic analyses of some New World salvias of subgenus Calospahce have indicated the
 349 existence of different clades inside section Tomentellae and reinforce the evolutionary proximity
 350 between *S. candicans* and *S. ballotiflora* [45]. This conclusion is also supported by the presence of
 351 diterpenoids **9** and **4** in both species. The inclusion of *S. anastomosans* in the section Tomentellae is

352 also supported by the presence of the anastomosine-type diterpenoids **1**, **2**, **7**, and **9** in *S. ballotiflora*,
353 unfortunately no gene sequence data is available for *S. anastomosans* to reinforce the evolutionary
354 proximity indicated by the diterpenoid content.

355 Compound **7** (7,20-dihydroanastomosine), was previously isolated from a different population
356 of *S. ballotiflora* [23]; however, the absolute configuration of this icetexane diterpenoid has not been
357 established, and as in the case of anastomosine (**6**), we found some mistakes in the reported ^{13}C NMR
358 spectrum. The assignment, based on high field (700 MHz) NMR analysis in this work, are included
359 in the experimental section.

360 Crystallization of **7** also afforded suitable crystals for x-ray diffraction analysis. A yellow crystal
361 measuring $0.25 \times 0.16 \times 0.09$ mm, $\text{C}_{20}\text{H}_{22}\text{O}_5$, $M = 342.38$ turned out to be monoclinic, space group $\text{P}2_1$,
362 $a = 10.1571(6)$ Å, $b = 7.7387(4)$ Å, $c = 10.6394(6)$ Å, $\beta = 95.401(3)$ deg, $V = 832.57(8)$ Å 3 , $Z = 2$, $\rho = 1.366$
363 mg/mm 3 . This allowed the collection of a total of 7988 reflections, which after data reduction left 2552
364 observed reflections. The structure was solved, as in the previous case, to afford final R indices $R_1 =$
365 3.1% and $wR_2 = 7.1\%$, and again the absolute configuration followed from the Flack (x) and Hooft (y)
366 parameters which were $x = 0.07(18)$ and $y = 0.13(9)$, and for the inverted structure were $x = 0.90(17)$
367 and $y = 0.87(9)$. In turn, a PLUTO plot of the molecular structure is shown in Figure 8.

368 Independently, the absolute configuration of **7** was also determined by VCD. This molecule was
369 also quite rigid like **6**. Thus, the sole bond for conformational freedom is that holding the isopropyl
370 group, which generated the two conformers used for the final spectra comparison process. The
371 comparison parameters shown in Table 6 were determined as per the previous cases, and allowed us
372 to secure the absolute configuration in agreement with the drawn molecular formula. In turn, the
373 thermochemical parameters are also summarized in Table 3.

374 The complete NMR assignments of the abietane 7α -acetoxy-19-hydroxyroleanone (**11**),
375 previously isolated from *S. regla* [29], are included in the experimental section since, as in the case of
376 **6** and **7**, some discrepancies with earlier assignations were found.

377 Since icetexanes **3**, **6**, **7**, and **8**, and abietane **10**, were isolated in this work from *S. ballotiflora*, and
378 showed an α -axially oriented H-5, we assumed (based on biogenetic grounds) that the diterpenoids
379 **1**, **2**, **4**, **5**, and **11** possessed the same absolute configuration at C-5.

380 2.2. Biological activity

381 2.2.1. Antiproliferative Activity Some abietane diterpenoids from *Salvia* species have shown to
382 possess cytotoxic activity comprising several biochemical targets [46,47]. The same biological activity
383 was also recently described for icetexane-derivatives isolated from *Premna* and *Amentotaxus* species
384 [48–50]. Furthermore, 19-deoxyisoicetexone isolated from *S. ballotiflora*, exhibited similar activity
385 when compared to cisplatin on HeLa cells with $\text{IC}_{50}(\mu\text{M}) = 9.36$ [21]. These facts prompted us to assay
386 diterpenoids **3**, **4**, **6–8**, and **10** for antiproliferative activity using six human cancer cell lines (U251,
387 PC-3, K562, HCT-15, MCF-7, and SKLU-1), and a primary culture of healthy gingival human
388 fibroblasts (FGH) at 1.0, or 50.0 μM (when cytotoxicity at 50.0 μM , resulted too high). Adriamycin at
389 0.5 μM , was used as the positive control. Results are summarized in Figure S48. While anastomosine
390 (**6**) showed to be very toxic to U251 and SKLU-1 cell lines at 1.0 μM and moderately toxic to MCF-7
391 and FGH; 7,20-dihydroanastomosine (**7**) exhibit only a moderate toxicity to K562 and MCF-7 at 50.0
392 μM being non-toxic to FGH. In the overall the antiproliferative activity determined for **7** is lower than

that observed for **6**. Icetexone (**8**) exhibited significant antiproliferative activity against K562 and MCF-7 at 50 μ M but lacked of toxicity to FGH, and was only moderately active against all other tested cancer cell lines. Furthermore, 7 α -acetoxy-6,7-dihydroicetexone (**3**) resulted non-toxic to MCF-7 and FGH, and moderately active against U-251 and SKLU-1. The aromatic diterpenoid **4** proved to be very toxic to the complete panel, while conacytone (**10**) showed no toxicity in this assay. Based on the above primary screening results, the IC₅₀ (μ M) was obtained for **3**, **6**, **7**, and **8** (Table 8). Anastomosine (**6**) and 7 α -acetoxy-6,7-dihydroicetexone (**3**) were the most active molecules in the sulforhodamine B assay with IC₅₀ (μ M) = 0.27 \pm 0.08 and 1.4 \pm 0.03, respectively, for U251 (human glioblastoma) and IC₅₀ (μ M) = 0.46 \pm 0.05 and 0.82 \pm 0.06 for SKLU-1(human lung adenocarcinoma). The IC₅₀ values indicated that **3** and **6** approach adriamycin in potency While anastomosine (**6**) showed to be very toxic to U251 and SKLU-1 cell lines at 1.0 μ M and moderately toxic to MCF-7 and FGH: 7,20-dihydroanastomosine (**7**) exhibit only a moderate toxicity to K562 and MCF-7 at 50.0 μ M being non-toxic to FGH. In the overall the antiproliferative activity determined for **7** is lower than that observed for **6**. Icetexone (**8**) exhibited significant antiproliferative activity against K562 and MCF-7 at 50 μ M but lacked of toxicity to FGH, and was only moderately active against all other tested cancer cell lines. Furthermore, 7 α -acetoxy-6,7-dihydroicetexone (**3**) resulted non-toxic to MCF-7 and FGH, and moderately active against U-251 and SKLU-1. The aromatic diterpenoid **4** proved to be very toxic to the complete panel, while conacytone (**10**) showed no toxicity in this assay. Based on the above primary screening results, the IC₅₀ (μ M) was obtained for **3**, **6**, **7**, and **8** (Table 7). Anastomosine (**6**) and 7 α -acetoxy-6,7-dihydroicetexone (**3**) were the most active molecules in the sulforhodamine B assay with IC₅₀ (μ M) = 0.27 \pm 0.08 and 1.4 \pm 0.03, respectively, for U251 (human glioblastoma) and IC₅₀ (μ M) = 0.46 \pm 0.05 and 0.82 \pm 0.06 for SKLU-1(human lung adenocarcinoma). The IC₅₀ values indicated that **3** and **6** approach adriamycin in potency, however the calculated selectivity index [51] using COS-7 as normal cell line indicated low selectivity. The IC₅₀ (μ M) obtained for icetexanes **7** (K562 = 31.2 \pm 1.1, MCF-7 = 33.24 \pm 1.2), and **8** (K562 = 17.0 \pm 1.4, MCF-7 = 28.7 \pm 1.6) were too high respect to adriamycin (K562 = 0.20 \pm 0.02, MCF-7 = 0.23 \pm 0.02) to be considered for further experimentation. Although there were no obvious structure-activity relationships to establish with these results, **3** and **6** deserve further studies aimed to obtain a better understanding of their antiproliferative activity.

Table 7. IC₅₀ (μ M) values of antiproliferative activity for compounds **3**, **6**, **7**, and **8**.

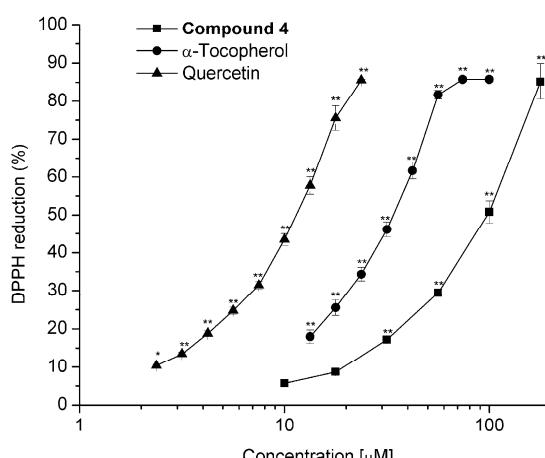
Compound	IC ₅₀ (μ M) (SI)				
	U251	SKLU-1	COS-7	K562	MCF-7
3	1.4 \pm 0.03 (1.2)	0.82 \pm 0.06 (2.0)	1.62 \pm 0.1	Nd	Nd
6	0.27 \pm 0.08 (2.3)	0.46 \pm 0.05 (1.3)	0.61 \pm 0.007	Nd	Nd
7	Nd	Nd	nd	31.2 \pm 1.1	33.24 \pm 1.2
8	Nd	Nd	nd	17.0 \pm 1.4	28.7 \pm 1.6
Adriamycin	0.08 \pm 0.003 (3.1)	0.05 \pm 0.003 (5.0)	0.25 \pm 0.009	0.20 \pm 0.02	0.23 \pm 0.02

Results represent the mean \pm SD of at least three different experiments; Nd = Not determined U251= human glioblastoma; SKLU-1 = human lung adenocarcinoma; K562 = human chronic myelogenous leukemia; MCF-7 = human mammary adenocarcinoma; COS-7 normal monkey kidney; SI = selectivity index calculated as the quotient of IC₅₀ of COS-7/ IC₅₀ of cancer cell lines. For compound **3** and **6** IC₅₀

426 was determined at four concentrations in a range of 1.0 to 0.18 μ M; 75.0 to 12.5 μ M for **7**, and 50.0 to
427 6.25 μ M for **8**.

428 2.2.2. TPA-Induced Edema Model

429 Since labadane, abietane and clerodane diterpenes has showed significant anti-inflammatory
430 activity [50, 52, 53], compounds **3**, **6**, **7**, and **10** were evaluated on the TPA model of induced acute
431 inflammation [31]. In a primary screening at 1 mg ear⁻¹ (Table 8) compounds **6** and **7** were non-active,
432 whereas **3** ($37.4 \pm 2.8\%$), and **10** ($25.4 \pm 3.0\%$) displayed significant reduction of edema when compared
433 with the control group. Nevertheless, compound **3** and **10** were less active than indomethacine (78.8
434 $\pm 7.7\%$) and celecoxib ($54.3 \pm 10.3\%$), which were used as reference compounds. The inhibition of the
435 edema exerted by indomethacine was approximately 2-fold and 3-fold higher than compound **3** and
436 **10** respectively. On the other hand, celecoxib was 1.5-fold higher than compound **3** and 2-fold higher
437 than compound **10**.


438 **Table 8.** Inhibitory effect of compounds **3**, **6**, **7**, and **10** on the TPA-induced inflammation in a mouse
439 model

Compound	Edema (mg)	Inhibition of edema (%)
Control (TPA)	15.77 \pm 0.78	
3	9.87 \pm 0.44**	37.42 \pm 2.77**
6	15.97 \pm 0.61	NA
7	15.50 \pm 0.76	NA
10	11.77 \pm 0.47**	25.37 \pm 2.98**
Indometacin	2.88 \pm 0.73 **	78.76 \pm 7.68 **
Celecoxib	6.94 \pm 1.56*	54.34 \pm 10.28

440 Effects on ear edema of female mice CD-1; Doses (1.0 μ mol ear⁻¹); each value represents the mean of
441 3 – 7 animals \pm SEM; The results were analyzed with the Dunnett test; The value $p \leq 0.05$ (*) and $p \leq$
442 0.01 (**) were considered as significant difference with respect to the control group. NA = Non active.

443 2.2.3. Scavenging Activity on Free Radical 2,2-Diphenyl-1-Picrylhydrazyl (DPPH)

444 Diterpenoids **3**, **4**, **6–8**, and **10** were tested for their radical scavenger activity using the DPPH test
445 [32]. Since compounds **3**, **6–8**, and **10** showed a low inhibitory effect at 100 μ M (6.1, 8.2, 6.6, 3.7, and
446 4.8% respectively), IC₅₀ was not determined. Compound **4** was the sole active diterpenoid at 100 μ M
447 (64.5%), exhibiting a IC₅₀ = 98.4 ± 3.5 μ M; however, compound **4** was approximately three and ten
448 times less active than α -tocopherol (IC₅₀ = 31.7 ± 1.0 μ M) and quercetin (IC₅₀ = 10.9 ± 0.5 μ M),
449 respectively (Figure 9). It has been shown that the molecules with *ortho* dihydroxyl groups exhibit
450 strong antioxidant activity. The antioxidant effect of carnosic acid [54], and ferruginol [55] and their
451 derivatives has been shown, and like compound **4**, they are aromatic abietane-type diterpenes.

452

453 **Figure 9.** Doses-response curve for determining the IC₅₀ value for scavenging activity on free radical
 454 2,2-diphenyl-1-picrylhydrazyl (DPPH) of compound 4 compared with standards α-tocopherol and
 455 quercetin. Values represent the mean of at least three independent experiments ± SEM, *p ≤ 0.05, **p
 456 ≤ 0.01 significantly different when compared with the control group (two-way ANOVA followed by
 457 the Dunnett post-test).

458 3. Materials and Methods

459 3.1. General Experimental Procedures

460 The melting points (uncorrected) were determined on a Fisher-Jhons apparatus. The optical
 461 rotations were measured on a Perkin-Elmer 323 polarimeter. The UV spectra were recorded on a
 462 Shimadzu UV 160U spectrophotometer. VCD data were acquired on a BioTools dualPEM ChiralIR
 463 FT-VCD spectrophotometer (Jupiter, FL). The IR spectra were obtained on a Bruker Tensor 27
 464 spectrometer; 1D and 2D NMR experiments were performed on a Bruker Advance III HD
 465 spectrometer at 700 MHz for ¹H and 175 MHz for ¹³C. Chemical shifts were referred to CDCl₃ (δ_H =
 466 7.26, δ_C = 77.16). The HR-DART-MS data were performed on a Jeol, AccuTOF JMS-T100LC mass
 467 spectrometer; silica gel 230–400 mesh (Macherey-Nagel), Sephadex LH-20 (Pharmacia Biotech), and
 468 octadecyl-functionalized silica gel (Sigma-Aldrich) were used for column chromatography. The x-ray
 469 data were collected on an Agilent Xcalibur Atlas Gemini diffractometer.

470 3.2. Plant Material

471 *Salvia ballotiflora* was collected from the Municipality of Linares, State of Nuevo León, Mexico in
 472 June 2016. Latitude = 24.811642°, Longitude = -99.585642°, 390 m.a.s.l. Plant material was identified
 473 by Dr. Martha Martínez-Gordillo, and a voucher specimen (FCME 161792) was deposited at the
 474 Herbarium (FCME) of the Faculty of Science, UNAM. *Salvia ballotiflora* Benth [46] is the current
 475 accepted name of this plant previously being *S. bellotaeflora* [47] and *S. ballotaeiflora* Benth [15].

476 3.3. Extraction, Isolation and Characterization

477 The dried and powdered aerial parts of *S. ballotiflora* (800 g) were extracted exhaustively by
 478 percolation in sequence with petrol and CH₂Cl₂. The CH₂Cl₂ extract was concentrated to yield 10 g of
 479 residue. The crude extract was subjected to CC on silica gel using gradient elution with petrol : EtOAc
 480 (100:0–0:100) to obtain 101 eluates, 250 mL each, which were combined in twelve major fractions (A–
 481 L) by TLC evaluation. Compounds 7,20-dihydroanastomosine (7) (50 mg), and icetexone (8) (18 mg),

482 crystallized from fractions A, and B, respectively. Fraction C (450 mg) was purified by CC on silica
483 gel, eluting with petrol:EtOAc (2:1) as the mobile phase, to yield anastomosine (6) (125 mg) and
484 conacytone (10) (320 mg). Fraction D (350 mg) was subjected to CC on silica gel using gradient elution
485 with CH_2Cl_2 : acetone (100:0–100) to obtain 48 eluates, 100 mL each, which were combined in five
486 major fractions (DA-DE) by TLC evaluation. Fraction DE (35 mg) was purified by TLC on silica gel,
487 eluting with CH_2Cl_2 :acetone (19:1) as the mobile phase to give 3 (11 mg). Fraction E (56 mg) was
488 subjected to TLC using EtOAc:petrol:MeOH:H₂O (60:33:5:2) as the mobile phase to give 2 (2.4 mg).
489 Fraction F (500 mg) was subjected to successive CC and TLC to give 4 (7.3 mg), 5 (6.4 mg) and 11 (8.2
490 mg). Fraction I (2.10 g) was rechromatographed eluting with petrol:EtOAc (100:0–100) to obtain 68
491 eluates, 150 mL each, which were combined in eight major fractions (IA–IH). Fraction IE was
492 subjected to TLC on ODS, using MeOH:H₂O (2:1) to yield 9 (3.2 mg). Fraction K (25 mg) was subjected
493 to TLC using EtOAc:petrol:MeOH:H₂O (60:33:5:2) as the mobile phase to give 1 (3.0 mg).

494 **Ballotquinone (1):** Yellow oil; $[\alpha]^{25\text{D}} +108.8$ (c 0.0017, CHCl_3); UV (MeOH) λ_{max} (log ϵ) 206 (2.93),
495 237 (2.88), 325 (2.54) nm; IR (CDCl_3) ν_{max} 3597, 3412, 2931, 2875, 1778, 1654, 1621, 1583, 1458, 1380 cm^{-1} ;
496 ¹H and ¹³C NMR, see Table 1; HR-DART-MS *m/z* [M – H₂O]⁺ 357.13138 (calculated for $\text{C}_{20}\text{H}_{21}\text{O}_6$,
497 357.13381).

498 **6,7-Anhydroballotquinone (2):** Yellow oil; $[\alpha]^{25\text{D}} +265.5$ (c 0.0022, CHCl_3); UV (MeOH) λ_{max} (log
499 ϵ) 213 (4.16), 243 (4.07), 332 (3.77) nm; IR (CDCl_3) ν_{max} 3601, 3396, 2930, 2875, 1811, 1639, 1621, 1458,
500 1364 cm^{-1} ; ¹H and ¹³C NMR, see Table 1; HR-DART-MS *m/z* [M]⁺ 357.13265 (calculated for $\text{C}_{20}\text{H}_{21}\text{O}_6$,
501 357.13381).

502 **7 α -Acetoxy-6,7-dihydroicetexone (3):** Yellow powder; mp 110–115 °C; $[\alpha]^{25\text{D}} -41.11$ (c 0.0018,
503 CHCl_3); UV (MeOH) λ_{max} (log ϵ) 205 (4.10), 275 (3.93) nm; IR (CDCl_3) ν_{max} 3412, 2941, 2879, 1770, 1645,
504 1373 cm^{-1} ; ¹H and ¹³C NMR, see Table 2; HR-DART-MS *m/z* [M]⁺ 403.17557 (calculated for $\text{C}_{22}\text{H}_{27}\text{O}_7$,
505 403.17568).

506 **6,7,11,14-Tetrahydro-7-oxoicetexone (4):** Yellow powder; mp 130–135 °C; $[\alpha]^{25\text{D}} -72.0$ (c 0.0015,
507 CHCl_3); UV (MeOH) λ_{max} (log ϵ) 206 (2.90), 295 (2.60), 355 (2.33), 421 (1.67) nm; IR (CDCl_3) ν_{max} 3602,
508 3564, 3514, 2930, 2960, 2877, 1771, 1612, 1450, 1352 cm^{-1} ; ¹H and ¹³C NMR, see Table 5; HR-DART-MS
509 *m/z* [M]⁺ 361.16436 (calculated for $\text{C}_{20}\text{H}_{25}\text{O}_6$, 361.16511).

510 **18-Acetoxy-11-hydroxysugiol (5):** Yellow powder; mp 90–95 °C; $[\alpha]^{25\text{D}} +25.2$ (c 0.0015, CHCl_3);
511 UV (MeOH) λ_{max} (log ϵ) 213 (4.01), 235 (3.85), 289 (3.73), 421 (1.67) nm; IR (KBr) ν_{max} 3599, 3534, 3514,
512 2932, 2873, 1730, 1672, 1612, 1468, 1369 cm^{-1} ; ¹H and ¹³C NMR, see Table 6; HR-DART-MS *m/z* [M]⁺
513 375.21725 (calculated for $\text{C}_{22}\text{H}_{31}\text{O}_5$, 375.21715).

514 **Anastomosine (6):** Orange crystals; mp 220–224 °C; $[\alpha]^{25\text{D}} +119.1$ (c 0.0021, CHCl_3); ¹H NMR
515 (CDCl_3 , 700 MHz) δ 7.76 (1H, *s*, 12-OH), 7.755 (1H, *s*, H-20), 7.51 (1H, *d*, *J* = 2.8, H-7), 6.66 (1H, *brd*, *J* =
516 5.6, H-1), 4.75 (1H, *dd*, *J* = 10.5, 2.8, H-6), 3.37 (1H, *hep*, *J* = 6.7, H-15), 2.59 (1H, *brd*, *J* = 10.3, H-5), 2.50
517 (1H, *m*, H-2a), 2.48 (1H, *m*, H-2b), 1.84 (1H, *dd*, *J* = 12.9, 3.8, H-3a), 1.52 (1H, *td*, *J* = 12.6, 5.5, H-3b), 1.34
518 (3H, *s*, CH_3 -18), 1.26, 1.27 (3H, *d*, *J* = 6.7, CH_3 -16, 17); ¹³C NMR (CDCl_3 , 175 MHz) δ 183.0 (C, C-14),
519 181.5 (C, C-11), 180.0 (C, C-19), 155.2 (C, C-12), 143.3 (CH, C-1), 141.7 (CH, C-20), 140.5 (CH, C-7),
520 133.7 (C, C-10), 132.0 (C, C-13), 129.1 (C, C-8), 124.2 (C, C-9), 78.7 (CH, C-6), 47.7 (CH, C-5), 41.6 (C,
521 C-4), 25.4 (CH, C-15), 25.0 (CH_2 , C-3), 23.1 (CH_2 , C-2), 21.3 (CH_3 , C-18), 19.7, 19.5 (CH_3 , C-16, C-17);
522 (HR-DART-MS *m/z* [M]⁺ 341.13955 (calculated for $\text{C}_{20}\text{H}_{21}\text{O}_5$, 341.13890).

523 7,20-Dihydroanastomosine (**7**): Yellow crystals; mp 223–227 °C (reported, 217–220 °C); ^1H NMR
524 data were identical to those published [23]. ^{13}C NMR (CDCl_3 , 175 MHz) δ 185.3 (C, C-14), 183.4 (C, C-
525 11), 180.3 (C, C-19), 150.2 (C, C-12), 142.5 (C, C-9), 139.8 (C, C-8), 128.3 (C, C-10), 125.7 (C, C-13), 123.9
526 (CH, C-1), 78.6 (CH, C-6), 57.6 (CH, C-5), 42.0 (C, C-4), 33.2 (CH_2 , C-20), 31.0 (CH_2 , C-7), 24.9 (CH, C-
527 15), 24.6 (CH_2 , C-3), 21.5 (CH_2 , C-2), 20.3 (CH_3 , C-18), 20.02, 19.99 (CH_3 , C-16, C-17); HR-DART-MS
528 m/z [M]⁺ 343.15359 (calculated for $\text{C}_{20}\text{H}_{23}\text{O}_5$, 343.15455).

529 1,2-Anhydroballotiquinone **9**: Orange powder; mp 95–98°C; $[\alpha]^{25}_{\text{D}} +665$ (c 0.001, CDCl_3); UV
530 (MeOH), and ^1H NMR data were essentially the same as reported[28]; ^{13}C NMR (CDCl_3 , 175 MHz) δ
531 188.2 (C, C-14), 184.1 (C, C-11), 179.2 (C, C-19), 150.3 (C, C-12), 140.1 (C, C-10), 139.0 (C, C-9), 132.6
532 (C, C-8), 131.4 (CH, C-2), 128.4 (CH, C-1), 127.5 (C, C-13), 117.4 (CH, C-20), 81.0 (CH, C-6), 74.5 (CH,
533 C-7), 44.9 (CH, C-5), 40.3 (C, C-4), 30.8 (CH_2 , C-3), 24.7 (CH, C-15), 23.4 (CH_3 , C-18), 20.0, 19.9 (CH_3 ,
534 C-16, C-17); HR-DART-MS m/z [M]⁺ 357.13261 (calculated for $\text{C}_{20}\text{H}_{21}\text{O}_6$, 357.13381).

535 7 α -Acetoxy-19-hydroxyroyleanone (**11**): Yellow powder; mp 277–282 °C; $[\alpha]^{25}_{\text{D}} +0.9$ (c 0.0011,
536 MeOH); ^1H NMR (CDCl_3 , 700 MHz) δ 7.13 (1H, s, 12-OH), 5.91 (1H, *brd*, J = 2.1, H-7), 3.71 (1H, *d*, J =
537 10.9, H-20a), 3.57 (1H, *d*, J = 10.9, H-20b), 3.15 (1H, *hep*, J = 7.0, H-15), 2.75 (1H, *d*, J = 13.1, H-1a), 2.07
538 (1H, *brd*, J = 14.8, H-6a), 2.04 (3H, *s*, H2'), 1.79 (1H, *brd*, J = 13.7, H-3a), 1.73 (1H, *m*, H-2a), 1.69 (1H, *m*,
539 H-6b), 1.62 (1H, *d*, J = 13.4, H-5), 1.58 (1H, *m*, H-2b), 1.26, (1H, *m*, H-1b), 1.25 (3H, *s*, CH_3 -20), 1.22, 1.18
540 (3H, *d*, J = 7.0, CH_3 -16, 17), 1.01 (1H, *td*, J = 13.5, 3.8, H-3b), 0.97 (3H, *s*, CH_3 -18); ^{13}C NMR (CDCl_3 , 175
541 MHz) δ 185.5 (C, C-14), 183.8 (C, C-11), 169.5 (C, C-1'), 150.9(C, C-12), 149.8 (C, C-9), 139.5 (C, C-8),
542 124.9 (C, C-13), 66.0 (CH_2 , C-19), 64.6 (CH, C-7), 46.7 (CH, C-5), 39.0 (C, C-10), 38.3 (C, C-4), 36.1 (CH_2 ,
543 C-1), 35.5 (CH_2 , C-3), 27.0 (CH_3 , C-18), 25.3 (CH_2 , C-6), 24.3 (CH, C-15), 21.3 (CH_3 -C-2'), 19.8, 19.9
544 (CH_3 , C-16, C-17), 18.9 (CH_3 , C-20), 18.7 (CH_2 , C-2); (HR-DART-MS m/z [M]⁺ 391.21198 (calculated for
545 $\text{C}_{21}\text{H}_{22}\text{O}_6$, 391.21209).

546 3.4. Single Crystal X-Ray Diffraction Analysis

547 Crystals of anastasomosine (**6**) and of 7,20-dihydroanastasomosine (**7**) were mounted on glass
548 fibers for data collection using $\text{Cu K}\alpha$ graphite monochromated radiation (λ = 1.54184 Å) at 293(2) K
549 in the $\omega/2\theta$ scan mode. In the case of **6**, an orange crystal measuring 0.34 × 0.26 × 0.15 mm, $\text{C}_{20}\text{H}_{20}\text{O}_5$,
550 M = 340.36 turned out to be orthorhombic, space group $P2_12_12_1$, a = 7.558(2) Å, b = 10.421(3) Å, c =
551 21.093(5) Å, V = 1661.4(7) Å³, Z = 4, ρ = 1.361 mg/mm³, μ = 0.802 mm⁻¹, total reflections 40 440, unique
552 reflections 3341(R_{int} 0.046), observed reflections 3178. In the case of **7**, a yellow crystal measuring 0.25
553 × 0.16 × 0.09 mm, $\text{C}_{20}\text{H}_{22}\text{O}_5$, M = 342.38 turned out to be monoclinic, space group $P2_1$, a = 10.1571(6) Å,
554 b = 7.7387(4) Å, c = 10.6394(6) Å, β = 95.401(3) deg, V = 832.57(8) Å³, Z = 2, ρ = 1.366 mg/mm³, μ = 0.801
555 mm⁻¹, total reflections 7988, unique reflections 2708 (R_{int} 0.032), observed reflections 2552. Each
556 structure was solved by direct methods using the SHELXS-97 program included in the WinGX
557 v1.70.01 crystallographic software package. For structural refinement, the non-hydrogen atoms were
558 treated anisotropically, and the hydrogen atoms, included in the structure factor calculations, were
559 refined isotropically. The final R indices for **6** were [$I > 2\sigma(I)$] R_1 = 3.9% and wR_2 = 10.3%, largest
560 difference peak and hole, 0.307 and -0.195 e.Å³, and those for **7** were [$I > 2\sigma(I)$] R_1 = 3.1% and wR_2 =
561 7.1%, largest difference peak and hole, 0.164 and -0.161 e.Å³. The Olex2 v1.1.5 software [41] allowed
562 the calculation of the Flack [42] (x) and Hooft (y) parameters [43,44]. In the case of **6**, these parameters
563 were x = 0.1(2) and y = 0.09(5), which for the inverted structure were x = 0.9(2) and y = 0.91(5); while

564 for **7** they were $x = 0.07(18)$ and $y = 0.13(9)$, which again for the inverted structure were $x = 0.90(17)$
565 and $y = 0.87(9)$. Crystallographic data (excluding structure factors) were deposited at the Cambridge
566 Crystallographic Data Centre (CCDC) under the reference numbers CCDC 1570292 and CCDC
567 1570293, for **6** and **7**, respectively, and copies of the data can be obtained free of charge on application
568 to the CCDC, 12 Union Road, Cambridge CB2 IEZ, UK. Fax: +44-(0)1223-336033 or e-mail:
569 deposit@ccdc.cam.ac.uk. The CCDC deposition numbers are and PLUTO representations of both X-
570 ray structures are shown in Figure 8.

571 *3.5. VCD Measurements*

572 Samples of 7.2 mg of **3**, of 7.5 mg of **6**, and of 3.8 mg of **7**, dissolved in 150 μ L of 100% atom-D
573 CDCl_3 were placed in cells with BaF_2 windows and a path length of 0.1 mm for data acquisition at a
574 resolution of 4 cm^{-1} over 6 h. A baseline correction was performed by subtracting the spectrum of the
575 solvent acquired under identical instrumental conditions. The stability of the samples was monitored
576 in each case by 300 MHz ^1H NMR measurements performed immediately before and after the VCD
577 determinations.

578 *3.6. Vibrational Circular Dichroism Calculations*

579 Molecular models of **3**, **6** and **7** were constructed in the Spartan 04 software followed by
580 molecular mechanics searching all conformers contained in an initial 10 kcal/mol range. This
581 provided 27, four, and seven conformers for **3**, **6**, and **7**, respectively. Those conformers within the
582 first 5 kcal/mol, over the most stable conformer, were selected for DFT geometry optimization using
583 the B3PW91/DGDZVP level of theory. This procedure provided nine conformers for **3**, and two
584 conformers each for **6** and **7**, representing 99.9% of the conformational population. The six conformers
585 of **3**, and two conformers each for **6** and **7**, showed energy values in a 3 kcal/mol interval, which
586 represented more than 99.8% of the conformational population, and were submitted to calculate of
587 vibrational frequencies, dipole transition moment, and rotational strengths. Table 3 shows the free
588 energy values and conformational populations calculated using the $\Delta G = -RT \ln K$ equation for the
589 most stable conformers. The final IR and VCD Boltzman weighted spectra were computed
590 considering the matrix element value as a Lorentzian band with a half-width of 6 cm^{-1} for the
591 conformers shown in Table 3.

592 Table 3 shows the confidence level data for the comparison of the experimental and calculated
593 spectra (Figure 5). Values greater than 82% for the IR spectra were obtained, while the enantiomer
594 similarity index (S_E) for the VCD spectra was 89 for **3**, and higher than 84 for **6** and **7**. These values
595 were obtained with a 100% confidence level.

596 *3.7. Cytotoxicity assay*

597 The natural products were screened in vitro against the following human cancer cell lines:
598 human mammary adenocarcinoma (MCF-7), human chronic myelogenous leukemia (K562), human
599 glioblastoma (U251), human lung adenocarcinoma (SKLU-1), human colon cancer (HCT-15), human
600 prostate cancer (PC-3), healthy gingival human fibroblasts (FGH) and normal monkey kidney cell
601 lines which were supplied by the National Cancer Institute (USA), and ATTC. The human tumor
602 cytotoxicity was determined using the protein-binding dye sulforhodamine B (SRB) in a microculture

603 assay to measure cell growth, as described in the protocol established by the NCI [30]. The cell lines
604 were cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum, 2 mM L-glutamine,
605 10 000 units/mL penicillin G sodium, 10 000 μ g/mL streptomycin sulfate and 25 μ g/mL amphotericin
606 B (Gibco), and 1% non-essential amino acids (Gibco). They were maintained at 37 °C in humidified
607 atmosphere with 5% CO₂. The viability of the cells used in the experiments exceeded 95% as
608 determined with trypan blue.

609 Cytotoxicity after treatment of the tumors cells and normal cells with the test compounds were
610 determined using the protein-binding dye sulforhodamine B (SRB) in a microculture assay to
611 measure cell growth [30]. The cells were removed from the tissue culture flasks by treatment with
612 trypsin, and diluted with fresh media. Of these cell suspensions, 100 μ L containing 5000–10,000 cells
613 per well, were pipetted into 96 well microtiter plates (Costar) and the material was incubated at 37
614 °C for 24 h in a 5% CO₂ atmosphere. Subsequently, 100 μ L of a solution of the compound obtained by
615 diluting the stocks were added to each well. The cultures were exposed to the compound at 50 μ M
616 concentrations for 48 h. After the incubation period, cells were fixed to the plastic substratum by the
617 addition of 50 μ L of cold 50% aqueous trichloroacetic acid. The plates were incubated at 4 °C for 1 h,
618 washed with tap water, and air-dried. The trichloroacetic-acid-fixed cells were stained by the
619 addition of 0.4% SRB. The free SRB solution was then removed by washing with 1% aqueous acetic
620 acid. The plates were air-dried, and the bound dye was dissolved by the addition of 10 mM
621 unbuffered Tris base (100 μ L). The plates were placed on a shaker for 10 min, and the absorption was
622 determined at 515 nm using an ELISA plate reader (Bio-Tex Instruments).

623 3.8. TPA-Induced Edema Model

624 Male CD-1 mice weighing 25–30 g were maintained under standard laboratory conditions in the
625 animal house (temperature 24 ± 2 °C) in a 12/12 h light–dark cycle, fed a laboratory diet and water ad
626 libitum, following the Mexican official norm NOM-062-Z00-1999.

627 The TPA-induced ear edema assay in mice was performed as reported in reference [31]. A
628 solution of TPA (2.5 μ g) in ethanol (10 μ L) was applied topically to both faces (5 μ L each ear) of the
629 right ear of the mice, 10 min after solutions of the test substances in their respective solvents were
630 applied (10 μ L each face). The left ear received ethanol (10 μ L) first, and 20 μ L of the respective
631 solvent subsequently. The mice were killed with CO₂ four hours later. A 7 mm diameter plug was
632 removed from each ear. The swelling was assessed as the difference in weight between the left and
633 the right ear. Control animals received the correspondent solvent in each case. Edema inhibition (EI
634 %) was calculated by the equation EI % = 100 - (B × 100/A), where A is the edema induced by TPA
635 alone and B is the edema induced by TPA plus sample. Indomethacin and celecoxib were used as
636 reference compounds.

637 3.9. Scavenging Activity on Free Radical 2,2-Diphenyl-1-Picrylhydrazyl (DPPH)

638 Free radical scavenging activity was measured using an adapted method of Mellors and Tappel
639 [32]. The test was carried out in 96-well microplates. A 50 μ L aliquot of the solution of the test
640 compound was mixed with 150 μ L of an ethanol solution of DPPH (final concentration 100 μ M). The
641 mixture was incubated at 37 °C for 30 min, and the absorbance was then measured at 515 nm using

642 a BioTek microplate reader SYNERGY HT. The % inhibition was determined by comparison with a
643 100 μ M DPPH ethanol blank solution.

644 4. Conclusions

645 From the leaves of *Salvia ballotiflora* Benth eleven diterpenoids were isolated and identified by
646 spectroscopic means. Among them, four icetexanes (**1–4**) and one abietane (**5**) were reported for the
647 first time. The absolute configuration of compounds **3**, **6**, and **7** was determined by x-ray diffraction
648 analysis and VCD. The complete and unambiguous assignments of the ^1H and ^{13}C NMR data of the
649 previously reported diterpenes **6**, **7**, and **11** were included in this paper, since some discrepancies
650 with the original data were found. Some of the isolated diterpenoids were tested for antiproliferative,
651 anti-inflammatory and radical scavenging activities using standard protocols. Compounds **3** and **6**
652 showed the highest anti-proliferative activity of the assessed compounds when evaluated using the
653 sulforhodamine B assay with IC_{50} (μM) = 0.27 ± 0.08 and 1.4 ± 0.03 , respectively, for U251 (human
654 glioblastoma) and IC_{50} (μM) = 0.46 ± 0.05 and 0.82 ± 0.06 for SKLU-1(human lung adenocarcinoma).
655 Although the IC_{50} values indicated that **3** and **6** approached adriamycin in potency, the selectivity
656 indexes (SI) calculated for them indicated low selectivity. On the other hand, compounds **3** and **10**
657 displayed a significative difference against the control group in the primary screening using the TPA-
658 induced edema model. Compound **4** was the only antioxidant compound in the DPPH model with
659 IC_{50} (μM) = 98.4 ± 3.5 μM .

660 The diterpenoid content found in *Salvia ballotiflora* reported in this work is important from a
661 chemotaxonomic point of view since it reinforces the evolutionary proximity between *S.*
662 *anastomosans*, *S. candicans*, and *S. ballotiflora* established by phylogenetic analysis given that they share
663 several compounds with abietane and icetexane frameworks and supports the inclusion of the three
664 species in section Tomentellae.

665 **Supplementary Materials:** The following are available online at www.mdpi.com/link, Figure S1-S35, RMN ^1H ,
666 ^{13}C , COSY, HSQC, HMBC, NOESY, HR-DART-MS for compounds **1–5**, S36-S47 RMN ^1H , ^{13}C , HSQC for
667 compounds **6**, **7**, **9**, and **11**.

668 **Acknowledgments:** The authors acknowledge H. Rios, I. Chávez, B. Quiroz, E. Huerta, A. Peña, R. Patiño, L.
669 Velasco, C. García, and J. Pérez for collecting NMR, UV, IR and MS data. The authors are indebted to Dr. Martha
670 Martínez-Gordillo (Herbarium of the Faculty of Sciences of UNAM) for plant identification and to Ms. Sc.
671 Alejandro Hernández-Herrera for plant collection. This study made use of UNAM's NMR lab: LURMN at IQ-
672 UNAM, which is funded by CONACYT Mexico (Project: 0224747), and Posgrado en Ciencias Químicas, UNAM.

673 **Author Contributions:** Baldomero Esquivel, Celia Bustos-Brito, and Leovigildo Quijano, participated in the
674 isolation and structure elucidation, preparation and revision of the manuscript. Pedro Joseph-Nathan
675 participated in the collection, and analyses of X ray data and revision of the manuscript. Pedro Joseph-Nathan
676 and Mariano Sanchez-Castellanos participated in the DCV calculations and data interpretation. Teresa Ramirez-
677 Apan participated in the performance of cytotoxicity assays. Antonio Nieto participated in the performance of
678 TPA-induced edema model and DPPH tests. All co-authors participated equally and substantially to the paper.

679 **Conflicts of Interest:** The authors declare no conflict of interest.

680 References

- 681 1. Yi-Bing, W.; Zhi-Yu, N.; Qing-Wen, S; Mei, D.; Hiromasa, K.; Yu-Cheng, G; Bin, C. Constituents from *Salvia*
682 species and their biological activities. *Chem. Rev.* **2012**, *112*, 5967-6026, DOI: 10.1021/cr200058f.
- 683 2. Jassbi, A. R.; Zare, S.; Firuzi, O.; Xiao, J. Bioactive phytochemicals from shoots and roots of *Salvia* species.
684 *Phytochem. Rev.* **2016**, *15*, 829-867, 10.1007/s11101-015-9427-z.

685 3. Rodriguez-Hahn, L.; Esquivel, B.; Sanchez, A. A.; Sanchez, C.; Cardenas, J.; Ramamoorthy, T. P. New
686 diterpenes from Mexican *Salvia* species. *Rev. Latinoamer. Quim.* **1987**, *18*, 104-109.

687 4. Rodriguez-Hahn, L.; Esquivel, B.; Sanchez, A. A.; Sanchez, C.; Cardenas, J.; Ramamoorthy, T. P. Abietane
688 diterpenes from Mexican *Salvia* species. *Rev. Latinoamer. Quim.* **1989**, *20*, 105-110.

689 5. Rodriguez-Hahn, L.; Esquivel, B.; Cardenas, J. New diterpenoid skeletons of clerodanic origin from
690 Mexican *Salvia* species. *Trends Org Chem* **1992**, *3*, 99-111.

691 6. Rodriguez-Hahn, L.; Esquivel, B.; Cardenas, J. Clerodane diterpenes in Labiatae. In: *Progress in the Chemistry*
692 of *Organic Natural Products*; Herz, W.; Kirby, G. W.; Moore, R. E.; Steglich, W.; Tamm, Ch. Eds.; Springer:
693 Viena, Viena, **1994**, *63*, pp.107-196. ISSN: 978-3-7091-9281-8.

694 7. Rodriguez-Hahn, L.; Esquivel, B.; Cardenas, J. Neo-clerodane diterpenoids from American *Salvia* species.
695 In *Recent Advances in Phytochemistry*. Arnason, J. T.; Mata, R.; Romeo, J. T. Eds. Springer Springer: Boston;
696 US, **1995**, *29*, 311-332, ISSN: 978-1-4899-1778-2.

697 8. Esquivel, B.; Calderon, J. S.; Sanchez, A. A.; Ramamoorthy, T. P.; Flores, E. A.; Dominguez, R. M. Recent
698 advances in phytochemistry and biological activity of Mexican Labiatae. *Rev. Latinoamer. Quim.* **1996**, *24*,
699 44-64.

700 9. Esquivel, B. Rearranged clerodane and abietane derived diterpenoids from American *Salvia* species. *Nat
701 Prod Commun* **2008**, *3* 989-1002.

702 10. Esquivel, B.; Calderón, J. S.; Arano, M. G.; Hernández, P. M.; Sánchez, A. A. Diterpenoids from the roots
703 of Mexican *Salvia* species. Phytogeographical and evolutionary significance. *Rev. Latinoamer. Quim.* **2005**,
704 33, 82-89.

705 11. Esquivel, B.; Sánchez, A. A.; Vergara, F.; Matus, W.; Hernandez-Ortega, S.; Ramírez- Apan, M. T. Abietane
706 diterpenoids from the roots of some Mexican *Salvia* species (Labiatae). Chemical diversity,
707 phytogeographical significance and cytotoxic activity. *Chem Biodivers.* **2005**, *2*, 738-747, DOI:
708 10.1002/cbdv.200590051.

709 12. Riley, A. P.; Groer, C. E.; Young, D.; Edwald, A. W.; Kivell, B. M.; Prisinzano, T. E. Synthesis and κ -Opioid
710 receptor activity of furan-substituted Salvinorin A analogues. *J. Med. Chem.* **2014**, *57*, 10464-10475. DOI:
711 10.1021/jm501521d.

712 13. Bedolla-García, B. J.; Zamudio, S. Four new species of *Salvia* (Lamiaceae) from central Mexico. *Phytotaxa*.
713 **2017**, *217*, 35-52. DOI: 10.11646/phytotaxa.217.1.3.

714 14. Simmons, E. M.; Sarpong, R. Structure, biosynthetic relationships and chemical synthesis of the icetexane
715 diterpenoids. *Nat. Prod. Rep.* **2009**, *26*, 1195-1217, DOI: 10.1039/B908984E.

716 15. Domínguez, X. A.; González, F. H. Aragón, R.; Gutiérrez, M.; Marroquín, J. S.; Watson, W. Mexican
717 medicinal plants XXIX three new diterpene quinones from *Salvia Ballotaeflora*. *Planta Med.* **1976**, 237-241,
718 DOI: 10.1055/s-0028-1097724.

719 16. Majetich, G.; Grove, J. L. Total Synthesis of (+)-19-Deoxyicetexone, (-)-Icetexone, and (+)-5-Epi-icetexone.
720 *Org. Lett.* **2009**, *11*, 2904-2907, DOI: 10.1021/ol9009128.

721 17. Cortez, F.; Lapointe, D.; Hamlin, A. M.; Simmons, E. M. Synthetic studies on the icetexones: enantioselective
722 formal syntheses of icetexone and epi-icetexone. *Tetrahedron* **2013**, *69*, 5665-5676,
723 DOI:10.1016/j.tet.2013.04.049.

724 18. Carita, A.; Burtoloso, A. C. B. An epoxide ring-opening approach for a short and stereoselective synthesis
725 of icetexane diterpenoids. *Tetrahedron Lett.* **2010**, *51*, 686-688, DOI:10.1016/j.tetlet.2009.11.108.

726 19. Thommen, C.; Neuburger, M.; Gademann, K. Collective syntheses of icetexane Natural Products based on
727 biogenetic hypotheses. *Chem. Eur. J.* **2017**, *23*, 120-127, DOI:10.1002/chem.201603932.

728 20. Simmons E. M.; Sarpong, R. Ga(III)-Catalyzed cycloisomerization strategy for the synthesis of icetexane
729 diterpenoids: Total synthesis of (\pm) -Salviasperanol. *Org. Lett.* **2006**, *8*, 2883-2886, DOI: 10.1021/ol061037c.

730 21. Campos-Xolalpa, N.; Alonso-Castro, A.J.; Sánchez-Mendoza, E.; Zavala-Sánchez, M.A.; Pérez-Gutiérrez, S.
731 Cytotoxic activity of the chloroform extract and four diterpenes isolated from *Salvia ballotiflora*. *Brazilian
732 Journal of Pharmacognosy*. **2017**, *27*, 302-305, DOI:10.1016/j.bjp.2017.01.007.

733 22. Silva-Mares, D.; Torres-Lopez, E.; Rivas-Estilla, A. M.; Cordero-Perez, P.; Waksman-Minsky, N.; Rivas-
734 Galindo, V. M. Plants from northeast Mexico with anti-HSV activity. *Nat Prod Commun* **2013**, *8*, 297-298.

735 23. Esquivel, B.; Calderón, J. S. Flores, E.; Sánchez, A-A, Rivera, R. R. Abietane and icetexane diterpenoids from
736 *Salvia ballotaeflora* and *Salvia axillaris*. *Phytochemistry* **1997**, *46*, 531-534, DOI:10.1016/S0031-9422(97)00310-5.

737 24. Pérez-Gutiérrez, S.; Zaval-Mendoza, D.; Hernández-Munive, A.; Mendoza-Martínez, A.; Pérez-González,
738 C.; Sánchez-Mendoza, E. Antidiarrheal activity of 19-Deoxycetexone isolated from *Salvia ballotiflora* Benth
739 in mice and rats. *Molecules* **2013**, *18*, 8895-8905, DOI:10.3390/molecules18088895.

740 25. Cárdenas-Ortega, N. C.; González-Chávez, M. M. Figueroa-Brito, R.; Flores-Macías, A.; Romo-Asunción,
741 D.; Martínez-González, D. E.; Pérez-Moreno, V.; Ramos-López, M. Composition of the essential oil of *Salvia*
742 *ballotiflora* (Lamiaceae) and its insecticidal activity. *Molecules* **2015**, *20*, 8048-8059,
743 DOI:10.3390/molecules20058048.

744 26. León-Herrera, L.R.; Ramos-López, M.A.; Mondragón-Olguín, V.M.; Romero-Gómez, S.; Campos Guillen,
745 J.; Lucas-Deecke, G. Chloroformic extract of *Salvia ballotiflora*, an alternative for integrated management of
746 corn armyworm *Spodoptera frugiperda* J. E. Smith, 1797 (Lepidoptera: Noctuidae). *Entomología Mexicana*,
747 **2016**, *3*, 401-406.

748 27. Sánchez, C.; Cárdenas, J.; Rodríguez-Hahn, A.; Ramamoorthy, T. P. Abietane diterpenoids of *Salvia*
749 *anastomosans*. *Phytochemistry* **1989**, *28*, 1681-1684, DOI: 10.1016/S0031-9422(00)97824-5.

750 28. Cárdenas, J.; Rodríguez-Hahn, L. Abietane and icetexane diterpenoids from *Salvia candicans*. *Phytochemistry*
751 **1995**, *38*, 199-204, DOI:10.1016/0031-9422(94)00569-F.

752 29. Hernández, M.; Esquivel, B.; Cárdenas, J.; Rodríguez-Hahn, L. Ramamoorthy, T. P. Diterpenoid abietane
753 quinones isolated from *Salvia regla*. *Phytochemistry* **1987**, *26*, 3297-3299, DOI:10.1016/S0031-9422(00)82491-7.

754 30. Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.;
755 Vaigro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. Feasibility of a high-flux anticancer
756 drug screen using a diverse panel of cultured human tumor cell lines. *J. Natl. Cancer. Inst.* **1991**, *83*, 757-766,
757 DOI: 10.1093/jnci/83.11.757.

758 31. Carlson, R.P.; O'Neill-Davis, L.; Chang, J.; Lewis, A.J. Modulation of mouse ear edema by cyclooxygenase
759 and lipoxygenase inhibitors and other pharmacologic agents. *Agent actions* **1985**, *17*, 197-204. DOI:
760 10.1007/BF01966592.

761 32. Mellors, A. and Tappel, A.L. The inhibition of mitochondrial peroxidation by ubiquinone and ubiquinol. *J. Biol. Chem.* **1966**, *241*, 4353-4356.

762 33. Esquivel, B.; Calderon, J. S.; Flores, E.; Chavez, C.; Juarez, M. Abietane and icetexane diterpenoids from
763 *Salvia pubescens*. *Nat. Prod. Lett.* **1997**, *10*, 87-93, DOI:10.1080/10575639708043720

764 34. Esquivel, B.; Burgueño-Tapia, E.; Bustos-Brito, C.; Pérez-Hernández, N.; Quijano, L.; Joseph-Nathan, P.
765 Absolute configuration of the diterpenoids icetexone and conacytone from *Salvia ballotaeiflora*. *Chirality*, **2017**
766 (under review).

767 35. Jones, R. N.; Angell, C. L.; Ito, T.; Smith, R. J. D. The carbonyl stretching bands in the infrared spectra of
768 insaturated lactones. *Can. J. Chem.* **1959**, *37*, 2007-2022. DOI:10.1139/v59-293.

769 36. Joseph-Nathan P, Gordillo-Román B. Vibrational circular dichroism absolute configuration determination
770 of natural products. In: *Progress in the Chemistry of Organic Natural Products*; Kinghorn AD, Falk H,
771 Kobayashi J. Eds.; Springer International Publishing: Switzerland, **2015**; 100, pp. 311-451, SBN: 978-3-319-
772 05275-5.

773 37. Tapia, E; Joseph-Nathan, P. Vibrational circular dichroism: Recent advances for the assignment of the
774 absolute configuration of natural products. *Nat Prod Commun* **2015**, *10*, 1785-1795, PMID: 26669125.

775 38. Debie, E.; De Gussem, E.; Dukor, R. K; Herrebout, W.; Nafie, L. A.; Bultinck, P. A confidence level algorithm
776 for the determination of absolute configuration using vibrational circular dichroism or Raman optical
777 activity. *ChemPhysChem*, **2011**, *12*, 1542-1549, DOI: 10.1002/cphc.201100050.

778 39. Hueso-Rodríguez, J. A.; Jimeno, M. L.; Rodríguez, B.; Savona, G.; Bruno, M. Abietane diterpenoids from
779 the root of *Salvia phlomoides*. *Phytochemistry* **1983**, *22*, 2005-2009, DOI: 10.1016/0031-9422(83)80033-8.

780 40. Horvath, T.; Linden, A.; Yoshizaki, F.; Eugster, C. H.; Rüedi, P. Abietanes and a Novel 20-Norabietanoid
781 from *Plectranthus cyaneus*. *Helv. Chim. Acta* **2004**, *87*, 2346-2353. DOI:10.1002/hlca.200490210.

782 41. Dolomanov, O.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A complete structure
783 solution, refinement and analysis program. *J Appl Cryst* **2009**, *42*, 339-341, DOI: 10.1107/S0021889808042726.

784 42. Parsons, S.; Flack, H. D.; Wagner, T. Use of intensity quotients and differences in absolute structure
785 refinement. *Acta Crystallogr.* **2013**, *B69*, 249-259, DOI: 10.1107/S2052519213010014.

786 43. Hooft, R. W. W.; Straver, L. H.; Spek, A. L. Using the t-distribution to improve the absolute structure
787 assignment with likelihood calculations. *J. Appl. Cryst.* **2010**, *43*, 665-668, DOI:10.1107/S0021889810018601.

788

789 44. Hooft, R. W. W.; Straver, L. H.; Spek, A. L. Determination of absolute structure using Bayesian statistics on
790 Bijvoet differences. *J Appl Cryst.* **2008**, *41*, 96–103, DOI.org/10.1107/S0021889807059870.

791 45. Jens, A. A.; Walker, J. B.; Kim, S-C. Phylogeny of new world *Salvia* subgenus Calosphace (Lamiaceae) based
792 on cpDNA (psb A-trn H) and nrDNA (ITS) sequence data. *J. Plant. Res.* **2013**, *123*, 483–496. DOI
793 10.1007/s10265-012-0543-1.

794 46. Akaberi, M.; Mehri, S.; Iranshahi, M. Multiple pro-apoptotic targets of abietane diterpenoids from *Salvia*
795 species. *Fitoterapia* **2015**, *100*, 118–132, DOI: 10.1016/j.fitote.2014.11.008

796 47. Guerrero, I. C.; Andrés, L. S.; León, L. G.; Machín, R. P.; Padrón, J. M.; Luis, J. G.; Delgadillo, J. Abietane
797 diterpenoids from *Salvia pachyphylla* and *S. clevelandii* with cytotoxic activity against human cancer cell
798 lines. *J. Nat. Prod.* **2006**, *69*, 1803–1805, DOI: 10.1021/np060279i

799 48. Suresh, G.; Suresh Babu, K.; Rama Subba Rao, V.; Suri Appa Rao, M.; Lakshma Nayak, V.; Ramakrishna, S.
800 Novel cytotoxic icetexane diterpenes from *Premna latifolia* Roxb. *Tetrahedron Letters* **2011**, *52*, 1273–1276,
801 DOI: 10.1016/j.tetlet.2011.01.025.

802 49. Naidu, V. G. M.; Hymavathi, A.; Suresh Babu, K.; Bhavana, D.; Anudeep, K.; Chenna, K. R. S.;
803 Madhusudana, K.; Vishnu, V. M. V. P. S.; Prasad, K.; Madhusudana, R. J.; Ramakrishna, S. Antioxidant,
804 hepatoprotective and cytotoxic effects of icetexanes isolated from stem-bark of *Premna tomentosa*.
805 *Phytomedicine*, **2014**, *21*, 497–505, DOI: 10.1016/j.phymed.2013.09.025.

806 50. Hui-Ling, C.; Kai-Wei, L.; Kim-Hong, G.; Jih-Pyang, W.; Shen-Jeu, W.; Chun-Nan, L. New diterpenoids and
807 cytotoxic and anti-inflammatory diterpenoids from *Amentotaxus formosana*. *Fitoterapia* **2011**, *82*, 219–224,
808 DOI: 10.1016/j.fitote.2010.10.002.

809 51. Badisa, R. B.; Mina, D.A.; Latinwo, L. M.; Soliman, K. F. A. Selective Anticancer Activity of Neurotoxin 1-
810 Methyl-4- Phenylpyridinium on Non-Small Cell Lung Adenocarcinoma A549 Cells. *Anticancer Res.* **2014**,
811 *34*, 5447–5452.

812 52. Gonzalez, M. A. Aromatic abietane diterpenoids: their biological activity and synthesis. *Nat. Prod. Rep.*
813 **2015**, *32*, 684–704, DOI: 10.1039/c4np00110a.

814 53. Salae, A.-W.; Rodjun, A.; C. Karalai, Ponglimanont, C.; Chantrapromma, S.; Kanjana-Opas, A.; Tewtrakul,
815 S.; Fun, H.-K. Potential anti-inflammatory diterpenes from *Premna obtusifolia*, *Tetrahedron* **2012**, *68*, 819–
816 829, DOI: 10.1016/j.tet.2011.11.058.

817 54. Escuder, B.; Torres, R.; Lissi, E.; Labbé, C.; Faine, F. Antioxidant capacity of abietanes from *Sphacele Salviae*.
818 *Nat. prod. Let.* **2002**, *16*, 277–281.

819 55. Saijo, H.; Kofujita, H.; Takahashi, K.; Ashitani, T. Antioxidant activity and mechanism of the abietane-type
820 diterpene ferrugiol. *Nat. Prod. Res.* **2015**, *29*, 1739–1743. DOI: 10.1080/14786419.2014.997233

821 56. Martínez-Gordillo, M.; Fragoso-Martínez, I.; García-Peña, M. R.; Montiel, O. Géneros de Lamiaceae de
822 México, diversidad y endemismo. *Revista Mexicana de Biodiversidad*. **2013**, *84*, 30–86. DOI: 10.7550/rmb.30158.

823 57. Domínguez, X. A.; González, H. Extractives from *Salvia bellotaeflora*. *Phytochemistry* **1972**, *11*, 2641–2641,
824 DOI:10.1016/S0031-9422(00)88573-8.

825 **Sample Availability:** Conacytone (10).