

1 Article

2

Exploring R&D Influences on Financial Performance

3

for Business Sustainability Considering Dual

4

Profitability Objectives

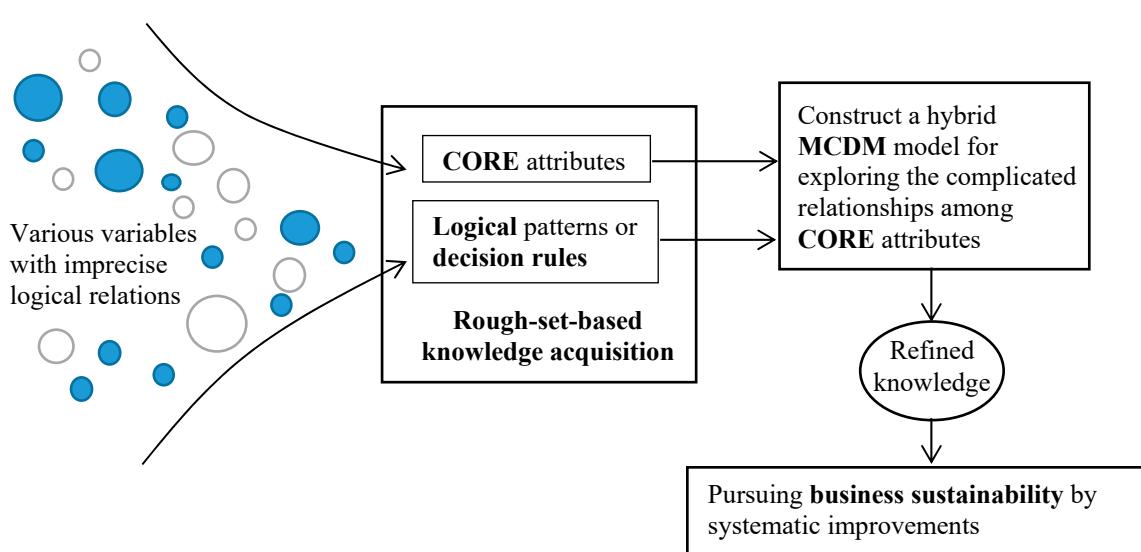
5 **Kao-Yi Shen** ^{1,*}, **Min-Ren Yan** ² and **Gwo-Hshiung Tzeng** ³6 ¹ Dept. of Banking & Finance, Chinese Culture University (SCE)7 ² Dept. of International Business Administration, Chinese Culture University (SCE); mjen@sce.pccu.edu.tw8 ³ Graduate Institute of Urban Planning, National Taipei University; ghtzeng@mail.ntpu.edu.tw

9 * Correspondence: atrategy@gmail.com; Tel.: +886-2-2700-5858 (ext. 8676)

10 **Abstract:** The influence and importance of research and development (R&D) for business
11 sustainability have gained increasing interests, especially in the high-tech sector. However, the
12 efforts of R&D might cause complex and mixed impacts on the financial results considering the
13 associated expenses. Thus, this study aims to examine how R&D efforts may influence business to
14 improve its financial performance considering the dual objectives: the gross and the net
15 profitability. This research integrated a rough-set-based soft computing technique and multiple
16 criteria decision-making (MCDM) methods to explore this complex and yet valuable issue. A group
17 of public listed companies from Taiwan, all in the semiconductor sector, was analyzed as a case
18 study. Initially, more than 30 variables were considered, and the adopted soft computing technique
19 retrieved 14 core attributes—for the dual profitability objectives—to form the evaluation model.
20 The importance of R&D for pursuing superior financial prospects is confirmed, and the empirical
21 case demonstrates how to guide an individual company to plan for improvements to achieve its
22 long-term sustainability by this hybrid approach.

23 **Keywords:** business sustainability; research and development (R&D); multiple criteria
24 decision-making (MCDM); financial objective; variable-consistency dominance-based rough set
25 approach (VC-DRSA); internetwork relationship map (INRM); directional flow graph (DFG)

27 1. Introduction


28 The importance of research and development (R&D) for the high-tech industry has been
29 discussed broadly; moreover, the relationship between R&D efforts and financial prospects has
30 gained surging interests in the recent years. Owing to the intensive competition and rapid advances
31 in the global business environment, high-tech companies have to invest in R&D to maintain or
32 strengthen their market competitiveness. Previous studies [1,2] have argued that R&D could be
33 regarded as a driving force for productivity, and the others have claimed that R&D efforts would
34 help capture market share [3] and contribute to the profitability of firms [4]. Although most of the
35 researchers would agree that R&D activities are the driving force to achieve innovations, the
36 influences of R&D to the financial performance (FP) of high-tech companies are still unclear, which
37 need further investigations.

38 Similar to R&D efforts, it has been argued by certain research [5] that patents may act as an
39 intermediate role to protect innovations, creativities and R&D outcomes, and contribute to the
40 profitability of firms. MacDonald [6] examined the effect of patents on FP and found mixed results,
41 and Artz et al. [7] found a negative relationship between patents and FP. It still lacks consensus or
42 universal pattern on the influence of R&D or patents on FP, because the spending on R&D or patents
43 is not only a plus to value creation but also a deduction item on the income statement. Few studies
44 have attempted to analyze the impact of R&D efforts for improving FP on the gross (before
45 deducting R&D spending) and the net profitability simultaneously. Therefore, the central purpose of
46 this study is to deepen our understanding of the influence of R&D on FP for the two financial

47 prospects: the gross and the net profitability, which are critical to business sustainability in the
 48 long-term. Furthermore, this study manages to support an individual company to improve its FP
 49 considering the complex and imprecise relationships among R&D and certain financial factors in a
 50 real business environment.

51 Among various high-tech sectors, the semiconductor industry is crucial in facilitating new
 52 technologies and product development. Take 3C (i.e., Computers/Communications/Consumer)
 53 products as an example, which depend on integrated circuit (IC) design to enable new
 54 functionalities, and the sizes/costs of new ICs decrease in each generation by the advances in
 55 semiconductor manufacturing techniques. According to a report from the U.S. Department of
 56 Commerce, the sales of Taiwan semiconductor industry totaled about USD 71 Billion in 2015 [8],
 57 which is among the top three leading countries in the world. The semiconductor industry has led the
 58 economic growth and migration in Taiwan since the last decade, and the understanding of how
 59 R&D efforts may influence the FP in this industry is highly valuable in practice [9]. As a result, a real
 60 case of the semiconductor companies from Taiwan is adopted to explore the intricate patterns
 61 between R&D and FP prospects.

62 Given the above research purposes, three major research questions to be addressed are as
 63 follows: (1) What are the contextual relationships of R&D and individual financial indicators on the
 64 FP of the semiconductor industry? (2) What are the relative importance of the critical R&D and
 65 financial variables that may influence the profitability of semiconductor companies? (3) How could a
 66 semiconductor company identify the priority to improve its FP based on the self-defined emphasis
 67 on the gross and the net profitability objectives? In a complex business environment, it often requires
 68 to consider a significant amount of variables (attributes) with interrelated or partially related
 69 relations; conventional statistical methods (e.g., multiple regression) would encounter obstacles to
 70 tackle this kind of complicated problems. Therefore, to answer the research questions as mentioned
 71 above, a hybrid multiple criteria decision-making (MCDM) model/approach is proposed in this
 72 study. Compared with the previous research that mainly relied on statistics to examine the
 73 relationship between R&D and subsequent performance, the present study not only tries to
 74 distinguish the influence of R&D on the gross and the net profitability but also can support and
 75 guide a company to reach its financial target. It is, therefore, the aim of the proposed approach to
 76 find the imprecise knowledge from historical data and support semiconductor businesses to plan for
 77 R&D or financial strategy based on their expected profitability objectives. The overall research
 78 concept is illustrated in **Figure 1**.

92 **Figure 1** Conceptual framework of this research

93 The remainder of this paper is structured as follows. In section 2, it briefly reviews the influence
 94 of R&D on FP and the adopted research methods. Section 3 introduces the proposed hybrid model.
 95 Section 4 examines the proposed approach by analyzing a group of semiconductor companies in
 96 Taiwan as a case study and uses a semiconductor company's actual data to illustrate the idea of

97 improvement planning. In the final section, the concluding remarks are provided, and some
98 limitations of the proposed approach are discussed.

99 **2. Literature Review and Background of Research Methods**

100 In this section, how the R&D efforts might influence high-tech companies is discussed. Besides,
101 the proposed hybrid approach comprises of several MCDM and soft computing techniques;
102 therefore, the background and the financial applications by the adopted methods are briefly
103 reviewed.

104

105 *2.1 R&D influence on high-tech companies*

106 Previous studies argued that R&D is a key factor for high-tech companies to compete and
107 thrive under intensive global competitions [9,10]. Empirical studies on R&D intensive companies
108 and high-tech industry clusters have found higher production economics and added values [11].
109 Nevertheless, empirical evidence was mixed to the relation between R&D efforts and the
110 subsequent FP of firms. For example, R&D intensity and R&D workforce were found to be positive
111 predictors for FP in the semiconductor industry [12]; also, the information technology (i.e., R&D)
112 investments revealed positive influences to the FP of companies in China. However, Artz et al. [1]
113 found a negative relationship between R&D and firm performance. It seems that the influence of
114 R&D or patents varies in different circumstances, as the constraints and strategies of companies are
115 not always the same.

116 Recently, the relationship among financial constraints, R&D efforts, and cash holdings has
117 been noticed [13]. As the marginal value of R&D spending is higher for the financially constrained
118 companies, those constrained companies might be more sensitive to the financial returns brought
119 by R&D investments. Li [14] explored the mixed relationship among financial constraints, R&D
120 investment, and the stock performance (a leading indicator of FP); the positive relation between
121 R&D investment and return were only significant for those constrained companies. Some other
122 researchers [15] claimed that companies mainly rely on internal funding to support R&D activities;
123 the relationship between financing constraints and R&D investments is significant. In this research
124 thread, the present study also hopes to explore the contexts (e.g., the status of capital structure and
125 cash flow) that need to be considered for semiconductor companies while forming their R&D
126 strategies. According to the previous study [16], research on the influence of R&D efforts or patents
127 for the FP of companies, consider multiple financial constraints or criteria are still rare and
128 underexplored. Therefore, this study attempts to propose a hybrid approach—based on the
129 machine learning capability of the soft computing and the decision model formed by domain
130 experts' experience—to explore this important issue.

131

132 *2.2 Rough set and rule-based hybrid decision model for financial applications*

133 Rough set related research have become an emerging field in soft computing [17,18], which has
134 strength in modeling the vagueness and imprecision of data. Although the classical rough set
135 theory (RST) has gained positive outcomes in handling various classification problems, it ignores
136 the so-called "dominance" relationship, which is critical to resolving decision-making problems.
137 Therefore, the famous RST research group IDSS (Laboratory of Intelligent Decision Support
138 Systems) proposed the dominance-based rough set approach (DRSA) [19] and variable consistency
139 DRSA (VC-DRSA) [20] by analyzing the dominance relationship among attributes. One of the
140 advantages of DRSA/VC-DRSA is that it may generate a set of "IF antecedents, THEN consequence"
141 rules, which is easy to be comprehended by DMs, and it has been applied to solve several financial
142 problems in the recent years. Examples are predicting financial distress [21], diagnosing the
143 financial performance of banks [22] and life insurance companies [23], technical analysis for
144 investment [24], and portfolio selection [25].

145 Considering the complexity of R&D efforts on the FP of high-tech companies, it is our hope to
146 explore its influences in a contextual approach; the decision rules obtained by DRSA/VC-DRSA
147 may pave a road to meet this end. Furthermore, decision rules could be integrated with the findings

148 from DEMATEL technique (refer subsections 2.3 and 3.2), which may suggest the directional
149 influences of R&D in each context in the form of directional flow graph (DFG) [26]. The implications
150 from DFG may thus unravel the likely impact of R&D efforts on the financial prospects for the
151 semiconductor industry.

152

153 2.3 *Multiple criteria decision-making (MCDM) methods in finance*

154 Real business problems, such as FP prediction or evaluation for stocks, are often complex,
155 imprecise, and ill-defined [27,28]. It is well recognized that there are often more than one
156 variable/criterion regarding the evaluation or prediction of the target variable; furthermore, the
157 considered criteria are often interrelated, which causes the complexity of modeling in practice.

158

159 The mainstream social science research adopts statistical methods to describe or examine the
160 relations among the independent and explained variables, which is based on some unpractical
161 assumptions—such as the independence of the considered variables and the probabilistic
162 distributions of variables—in statistics [29]. Moreover, statistical outcomes from regressions only
163 represent the average results [30], which are not capable of identifying contextual relationships
164 considering the specific situations/constraints of an individual company. As a result, there is a
165 rising trend in adopting MCDM methods, which has strength in considering all relevant and
166 interrelated criteria, to resolve real-world problems [28,29].

167

168 Although there are several sub-fields in MCDM research, for brevity, only the
169 methods/techniques considered in the proposed approach are discussed in here. First, to explore
170 the plausible influential relationships among all the considered criteria, DEMATEL technique [31,32]
171 is incorporated into the analytic network process (ANP) [33] method in MCDM. The DEMATEL
172 method was proposed to evaluate complicated social problems assuming that all criteria have
173 influences on each other, which has been successfully applied in identifying cause-effect influences
174 for various applications, such as evaluating the improvement strategies of public open space for
175 elderly people [34] and new technology [35]. The integration of DEMATEL and ANP may help
176 adjust the dimensional weights in the classical ANP method, which also simplifies the design of
177 questionnaire for collecting DMs' opinions [36]. Therefore, the DEMATEL-based ANP (DANP)
178 method is adopted in the proposed model to evaluate the importance of R&D and certain financial
179 attributes for modeling.

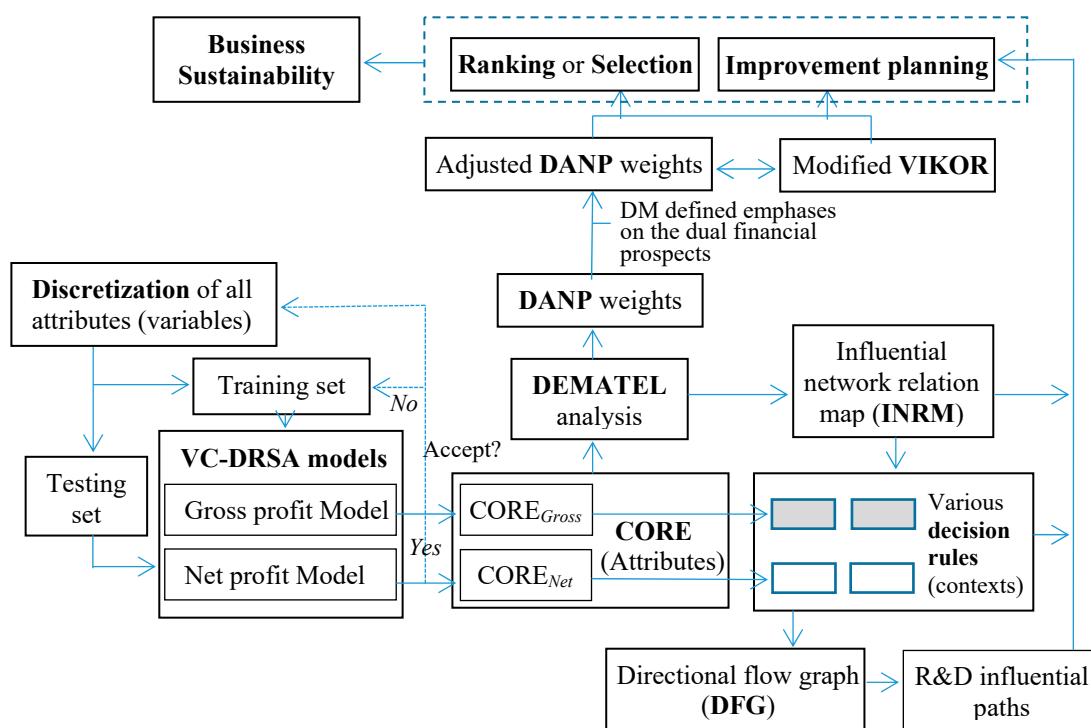
180

181 Second, as the primary goal aims to support improvements in business sustainability, the
182 modified VIKOR is adopted for evaluating and aggregating performance gaps on the considered
183 criteria. Inspired by the idea of the previous works [37]. The classical VIKOR [38] uses an
184 aggregation function to synthesize the performance gaps on all criteria, and form the final ranking
185 outcome. However, it only uses the best/worst value of the evaluated alternatives on each criterion
186 for calculations, which might compel DMs to select a relatively good choice among a group of
187 inferior options. To overcome this limitation, the modified VIKOR was proposed [28,29] by using
188 the ideal/aspired value on each criterion to form an aggregation function, which could identify the
189 priority gaps for a systematic improvement planning. The new approach, based on the modified
190 VIKOR, contributed to a continuous improvement in, which is the essence of sustainability.

191

192 3. Hybrid Model for Exploring R&D Influences and Performance Gaps

193


194

195

196 This Section explains the proposed hybrid approach. The conceptual research flow is illustrated
197 in **Figure 2**, which includes the major soft computing and MCDM methods used in this hybrid
198 system. The details of each method and how to form a hybrid model will be explained in Section 4
199 with an empirical case.

196

197

213
Figure 2 Illustration of the research framework

214

215

3.1 Rough Set Theory and Its extensions for Decision Aids

216

Extended from the classical RSA, VC-DRSA may further consider the dominance relationships in attributes, which can be described by a 4-tuple information system ($IS = (U, A, V, f)$) with a controlled level of consistency among the data set. In an IS , the set U is a finite set of universe, and the set A is a finite set of attributes (i.e., two subsets C and D , where C denotes the condition set, D the decision one; $C \cap D = \emptyset$). V_a is the value domain of an attribute a , where $f: U \times A \rightarrow V$ denotes a mapping function, in which $f(x, a) \in V_a$ for each $a \in A$ and $x \in U$. In the proposed hybrid MCDM model, various financial ratios and R&D indicators of a company at the time $t-1$ are regarded as the condition attributes, and the FP (in the measure of gross or net profitability) at the time t the decision attribute.

225

In the next, \succeq_a denotes a complete outranking relation on set U regarding the attribute a (for each $a \in A$). For any two $x, y \in U$, " $x \succeq_a y$ " denotes that x is at least not worse than y on the attribute a . If \succeq_a represents a complete outranking relationship, then x and y are always comparable with respect to the attribute a . Besides, $Cl = \{Cl_k, k=1, \dots, h\}$, which is defined as a set of h decision classes (DCs) in U . Then, in a preferred order of DCs, if $q \succ k$, which indicates that $Cl_q \succ Cl_k$. Thus, the upward union and downward union of DCs can be defined as: (1) $Cl_k^{\geq} = \bigcup_{s \geq k} Cl_s$ and (2) $Cl_k^{\leq} = \bigcup_{s \leq k} Cl_s$. In the following explanations, only the upward union is illustrated for brevity.

232

The dominance relation Dom_P for $P \subseteq C$ can be defined by the aforementioned upward union. If an object (or alternative) x P -dominates y regarding P , then $x \succeq_{a_i} y$ for all $a_i \in P \subseteq C$, denoted as $x Dom_P y$. For any $x, y \in U$, the dominating and dominated sets regarding P can be

described as $Dom_P^{\uparrow}(x) = \{y \in U : yDom_Px\}$ and $Dom_P^{\downarrow}(x) = \{y \in U : xDom_Py\}$ respectively. The P -lower and P -upper approximations of the upward union Cl_k^{\geq} can be denoted as $\underline{AP}(Cl_k^{\geq})$ and $\overline{AP}(Cl_k^{\geq})$, where $\underline{AP}(Cl_k^{\geq}) = \{x \in U : Dom_P^{\uparrow}(x) \subseteq Cl_k^{\geq}\}$ and $\overline{AP}(Cl_k^{\geq}) = \{x \in U : Dom_P^{\downarrow}(x) \cap Cl_k^{\geq} \neq \emptyset\}$ for $k = 2, \dots, h$. The P -lower and P -upper approximations thus construct the P -boundary region. The P -boundary of Cl_k^{\geq} can be denoted as $Bou_P(Cl_k^{\geq})$ to represent the imprecise or boundary region. To define this boundary region, $Bou_P(Cl_k^{\geq}) = \overline{AP}(Cl_k^{\geq}) - \underline{AP}(Cl_k^{\geq})$ for $t = 2, \dots, h$. The P -lower approximation only includes the consistent objects in DRSA, which denotes the certain knowledge. However, VC-DRSA further allows for a controlled degree of inconsistency to include some additional objects in $\underline{AP}(Cl_k^{\geq})$.

For $Cl_k^{\geq} \subseteq U$ and $v \in U$, the gain-type consistency measurement and a fixed gain threshold can be denoted as θ_X and θ_x , where X denotes Cl_k^{\geq} , and $\neg X \subseteq U$ while $\neg X = U - X$. The $\underline{AP}(Cl_k^{\geq})$ with gain threshold θ_X can then be defined as $\underline{AP}^{\theta_X}(Cl_k^{\geq}) = \{z \in Cl_k^{\geq} : \theta_X(v) \geq \theta_X\}$. The P -attributes-based upper and lower approximations of set X could be used to define the P -boundary of set X as $Bou_P^{\theta_X} = \overline{AP}^{\theta_X}(X) - \underline{AP}^{\theta_X}(X)$, and the detailed discussions of the gain-type consistency measure can be referred to the previous research [20].

In VC-DRSA, $\psi_P^{\theta_X}(X)$ denotes the percentage of all correctly classified objects for $P \subseteq C$ that satisfies consistency threshold θ_X , and each minimal subset P that can meet the requirement $\psi_P^{\theta_X}(X) = \psi_C^{\theta_X}(X)$ is termed as a REDUCT of C . The intersection of all REDUCTs is called a $CORE_X$ of the IS in VC-DRSA, which represents the minimal and indispensable attributes to make VC-DRSA approximations without deteriorating its approximation quality. Those condition attributes in the $CORE$ ($CORE_X$) set will be used for forming a hybrid MCDM model by DEMATEL, DANP, and the modified VIKOR (refer Figure 2). The object that complies with both the antecedents and consequence of a rule is termed as a support for the decision rule. The one with a high number of supports is called a strong rule.

Those DCs in set X , by the approximations of VC-DRSA, may generate a set of decision rules, in the form of "IF antecedent (premise), THEN consequence (decision)." The decision rules obtained from VC-DRSA would convey understandable knowledge considering the impreciseness and controlled level of inconsistency in data [20]. The VC-DRSA algorithm adopted in this work is based on the study [39], which is calculated by sequential covering rule and termed as VC-DomLEM. The required steps for VC-DRSA are as below, and the proposed approach needs to form two VC-DRSA models (take the gross and net profitability goals as the decision attribute separately in two sub-models). The two VC-DRSA models would induce two sets of $CORE$ attributes to be integrated into a hybrid MCDM model.

Step 1: Discretize attributes. Discretized values may denote ideas like "high" and "low" to be close to how DMs process those concepts during reasoning. As a result, the obtained rules will be easier to be comprehended by DMs.

Step 2: Conduct VC-DRSA algorithm on data sets by various consistency thresholds until an acceptable outcome can be reached. Besides, the learned model will be validated by a testing set.

Step 3: Each trained VC-DRSA model would generate a $CORE$ ($CORE_X$) set and a set of certain level of consistency in decision rules. The $CORE$ comprises indispensable attributes for discerning

276 the DCs. In the present study, two CORE sets associated with the gross and the net profit
 277 goals are the expected outputs, which will be used to form a hybrid MCDM model.

278 *3.2. Decision-making trial and evaluation laboratory (DEMATEL) technique*

279 The DEMATEL technique is adopted for two purposes: find cause-effect influence relationships
 280 among the critical dimensions/attributes and use the basic concept of the ANP method to identify
 281 the influential weights by the DEMATEL-based-ANP (called DANP weights).

282 **Step 4:** Collect experts' opinions to form the direct influence relation matrix $\mathbf{B} = [b_{ij}]_{n \times n}$ that they
 283 feel the influence attribute i has on another attribute j , expressed as b_{ij} , and form \mathbf{B} in Eq.
 284 (1). The scale of opinions ranges from 0 (zero influence) to 4 (extremely high influence),
 285 according to the knowledge or experience of experts.

286

$$\mathbf{B} = \begin{bmatrix} b_{11} & \cdots & b_{1j} & \cdots & b_{1n} \\ \vdots & & \vdots & & \vdots \\ b_{i1} & \cdots & b_{ij} & \cdots & b_{in} \\ \vdots & & \vdots & & \vdots \\ b_{n1} & & b_{nj} & & b_{nn} \end{bmatrix}_{n \times n} \quad (1)$$

287 As the proposed approach considers both financial objectives, the union set of the two
 288 VC-DRSA models' CORE attributes from **Step 3** is used for the DEMATEL analysis, and the number
 289 of attributes in this union set equals n in Eq. (1) for $1 \leq i \leq n$ and $1 \leq j \leq n$.

290 **Step 5:** Normalize \mathbf{B} to obtain the direct influence relation matrix \mathbf{D} . The matrix $\mathbf{D} = [d_{ij}]_{n \times n}$ can be
 291 obtained by Eqs. (2)-(3), and a constant ϕ could be found to normalize \mathbf{B} .

292

$$\mathbf{D} = \phi \mathbf{B} \quad (2)$$

293

$$\phi = \min \left\{ \frac{1}{\max_i \sum_{j=1}^n b_{ij}}, \frac{1}{\max_j \sum_{i=1}^n b_{ij}} \right\}, \quad i, j \in \{1, \dots, n\} \quad (3)$$

294 **Step 6:** Using \mathbf{D} to get the total influence relation matrix \mathbf{T} . As the indirect effects of the influence
 295 decrease as the power of \mathbf{D} increases, the total influence relation matrix \mathbf{T} can be redescribed
 296 as Eq. (4). Therefore, the total influence relation matrix \mathbf{T} can be obtained from direct influence
 297 relation matrix \mathbf{D} .

298

$$\mathbf{T} = \mathbf{D} + \mathbf{D}^2 + \dots + \mathbf{D}^w = \mathbf{D}(\mathbf{I} - \mathbf{D}^w)(\mathbf{I} - \mathbf{D})^{-1}, \text{ and}$$

299

$$\mathbf{T} = [t_{ij}]_{n \times n} = \mathbf{D}(\mathbf{I} - \mathbf{D})^{-1} \text{ while } \lim_{w \rightarrow \infty} \mathbf{D}^w = [0]_{n \times n} \quad (4)$$

300 **Step 7:** Identify the cause-effect relationship of attributes by analyzing \mathbf{T} . The sum of each row and
 301 sum of each column in \mathbf{T} may be indicated as r_i^A ($r_i^A = \sum_{j=1}^n t_{ij}$, for $j \in 1, \dots, n$) and s_j^A
 302 ($s_j^A = \sum_{i=1}^n t_{ij}$, for $j \in 1, \dots, n$). Because the number of rows and columns both equal to n (\mathbf{T} is a
 303 square matrix), the operations of $r_i^A + s_j^A$ (for $i = 1, \dots, n$) would denote the central influence
 304 degree of the i th criterion/attribute; in addition, the operations of $r_i^A - s_i^A$ (for $i = 1, \dots, n$) may
 305 divide criteria (attributes) into two group. If $r_i^A - s_i^A > 0$, the i th criterion belongs to the source
 306 group that has influence to the others; otherwise, the effect group. The cause-effect influence
 307 analysis by DEMATEL may be combined with VC-DRSA decision rules to indicate R&D

308 influential paths, termed as the direction flow graph (DFG). A case of how to develop a DFG
 309 will be demonstrated in the next section.

310 *3.3 Hybrid DANP model for dual financial objectives*

311 The total influence relation matrix \mathbf{T} from **Step 6** is normalized to be \mathbf{T}_A^α as Eq. (5) for forming
 312 a hybrid DANP model, assuming that there are m dimensions and n criteria in \mathbf{T}_A^α .

$$313 \quad \mathbf{T}_A^\alpha = \begin{bmatrix} \mathbf{T}_A^{\alpha 11} & \cdots & \mathbf{T}_A^{\alpha 1j} & \cdots & \mathbf{T}_A^{\alpha 1m} \\ \vdots & & \vdots & & \vdots \\ \mathbf{T}_A^{\alpha i1} & \cdots & \mathbf{T}_A^{\alpha ij} & \cdots & \mathbf{T}_A^{\alpha im} \\ \vdots & & \vdots & & \vdots \\ \mathbf{T}_A^{\alpha m1} & \cdots & \mathbf{T}_A^{\alpha mj} & \cdots & \mathbf{T}_A^{\alpha mm} \end{bmatrix}_{n \times n, \sum_{j=1}^m m_j = n} \quad (5)$$

314 **Step 8:** Find the initial super-matrix for a DANP model. After the normalization of \mathbf{T} , the initial
 315 super-matrix \mathbf{W} can be obtained by transposing \mathbf{T}_A^α , denoted as \mathbf{W} (i.e., $\mathbf{W} = (\mathbf{T}_A^\alpha)'$).
 316 Furthermore, to adjust the equal-weight assumption among dimensions in the classical ANP
 317 method, the dimensional influence relation matrix \mathbf{T}_D is normalized to become \mathbf{T}_D^α as in
 318 Eqs. (6)-(7).

$$319 \quad \mathbf{T}_D = \begin{bmatrix} t_D^{11} & \cdots & t_D^{1j} & \cdots & t_D^{1m} \\ \vdots & & \vdots & & \vdots \\ t_D^{i1} & \cdots & t_D^{ij} & \cdots & t_D^{im} \\ \vdots & & \vdots & & \vdots \\ t_D^{m1} & \cdots & t_D^{mj} & \cdots & t_D^{mm} \end{bmatrix}_{m \times m} \quad (6)$$

$$320 \quad \mathbf{T}_D^\alpha = \begin{bmatrix} t_D^{11} / d_1 & \cdots & t_D^{1j} / d_1 & \cdots & t_D^{1m} / d_1 \\ \vdots & & \vdots & & \vdots \\ t_D^{i1} / d_i & \cdots & t_D^{ij} / d_i & \cdots & t_D^{im} / d_i \\ \vdots & & \vdots & & \vdots \\ t_D^{m1} / d_m & \cdots & t_D^{mj} / d_m & \cdots & t_D^{mm} / d_m \end{bmatrix} = \begin{bmatrix} \mathbf{T}_D^{\alpha 11} & \cdots & \mathbf{T}_D^{\alpha 1j} & \cdots & \mathbf{T}_D^{\alpha 1m} \\ \vdots & & \vdots & & \vdots \\ \mathbf{T}_D^{\alpha i1} & \cdots & \mathbf{T}_D^{\alpha ij} & \cdots & \mathbf{T}_D^{\alpha im} \\ \vdots & & \vdots & & \vdots \\ \mathbf{T}_D^{\alpha m1} & \cdots & \mathbf{T}_D^{\alpha mj} & \cdots & \mathbf{T}_D^{\alpha mm} \end{bmatrix}_{m \times m} \quad (7)$$

321 **Step 9:** Calculate the raw influential weights of a DANP model. The adjusted super-matrix should
 322 multiply the normalized dimensional influence relation matrix \mathbf{T}_D^α by the un-weighted
 323 super-matrix \mathbf{W} , and the limiting super-matrix can be derived from multiplying by itself
 324 multiple times until the weights become converged as a weighted super-matrix (i.e.,
 325 $\mathbf{W}^N = \mathbf{T}_D^\alpha \mathbf{W}$). The raw influential weight w_i of each criterion ($i = 1, 2, \dots, n$) can thus be
 326 calculated by $\lim_{z \rightarrow \infty} (\mathbf{W}^N)^z$ (i.e., the raw influential weights $\mathbf{w} = (w_1, \dots, w_i, \dots, w_n)$).

327 **Step 10:** Adjust the influential weight of each criterion (attribute) based on a DM's emphasis on the
 328 dual financial objectives. Since the attributes in the DANP model come from the union of the
 329 two CORE sets (i.e., CORE_{Gross} and CORE_{Net}), some attributes would only appear in one of the
 330 CORE set, and some others would be in both of the CORE sets. Therefore, the influential raw
 331 weight of the i th attribute from DANP weights could be further adjusted as w_{Adj_i} for
 332 $i = 1, 2, \dots, n$ in Eq. (8).

333

$$w_{Adj_i} = \lambda \times w_i^{Gross} + (1-\lambda) \times w_i^{Net} = w_i^{raw} \quad (8)$$

334 In Eq. (7), λ denotes a DM's emphasis on the gross profit objective, and $(1-\lambda)$ denotes the
 335 emphasis on the net profit objective. If the i th attribute was only included in $CORE_{Gross}$, then w_i^{Gross}
 336 equals the influential raw weight of w_i (i.e., w_i^{raw}) in **Step 9**, and $w_i^{net} = 0$. If the i th attribute was
 337 included in both $CORE_{Gross}$ and $CORE_{Net}$, then $w_i^{raw} = \lambda \times w_i^{Gross} + (1-\lambda) \times w_i^{Net} = w_{Adj_i}$, termed as
 338 λ -adjustment. Thus, the adjusted influential weight of each attribute can be normalized (sum up to
 339 one) as the adjusted DANP weight (i.e., w_{adj}^N) considering the dual financial objectives.

340 3.4 Improvement planning by the Modified VIKOR

341 By **Step 10**, the required influential weight of each attribute (after adjustment) based on a DM's
 342 self-defined emphasis on the dual financial objectives can be obtained. In the next, the modified
 343 VIKOR method not only can rank objects (or called alternatives) but also has strength in supporting
 344 companies for improvement planning—by identifying its priority gaps—towards excellence. The
 345 original idea of VIKOR begins with an L_k^H -metric as Eq. (9), in which, m objectives can be expressed
 346 as O_1, O_2, \dots, O_m ; the performance score on the i th attribute is denoted as p_{ki} for the object k , and
 347 $w_{Adj_i}^N$ is the adjusted (after normalization) influential weight of the i th attribute for object k ($i =$
 348 $1, 2, \dots, n$).

$$349 L_k^H = \left\{ \sum_{i=1}^n \left[w_{Adj_i}^N \left(|p_i^* - p_{ki}| \right) / (p_i^* - p_i^-) \right]^H \right\}^{1/H}, \quad 1 \leq H \leq \infty; i = 1, \dots, n \quad (9)$$

350 Then, while $H = 1$ and $H = \infty$, the indices S_k and R_k for object k can be calculated as Eq.
 351 (10) and Eq. (11).

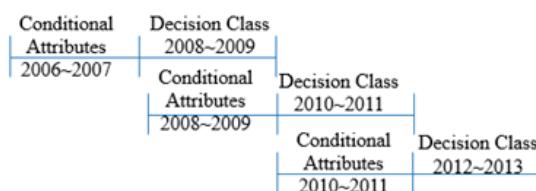
$$352 S_k = L_k^{H=1} = \sum_{i=1}^n \left[w_{Adj_i}^N \left(|p_j^* - p_{kj}| \right) / (|p_j^* - p_j^-|) \right] \quad (10)$$

$$353 R_k = L_k^{H=\infty} = \max_i \left\{ w_{Adj_i}^N \left(|p_i^* - p_{ki}| \right) / (|p_i^* - p_i^-|) \mid i = 1, 2, \dots, n \right\} \quad (11)$$

354 The modified VIKOR enhances the settings of the classical VIKOR (in the classical approach,
 355 $p_i^* = \max_k p_{ki}$ and $p_i^- = \min_k p_{ki}$); in the modified VIKOR, p_i^{aspire} (replace p_i^*) denotes the
 356 best/ideal value on the i th attribute and p_i^{worst} (replace p_i^-) the worst value on the i th attribute
 357 [29]. For example, if the score on each attribute for all the objects were collected from
 358 questionnaires, and it ranged from 0 to 10 (Worst performance $\leftarrow 0, 1, 2, \dots, 5, \dots, 9, 10 \rightarrow$ Best
 359 performance), then the aspired level and the worst value can be set as $p_i^{aspire} = 10$ and $p_i^{worst} = 0$
 360 for each attribute. This modified approach may indicate an object's performance gap—use the
 361 aspired level as its target—on each attribute.

362 In Eqs. (10) and (11), if p_i^* was replaced by p_i^{aspire} and p_i^- was replaced by p_i^{worst} , the
 363 obtained S_k and R_k can be synthesized as a new ranking index Q_k based on the weighted
 364 average opinions (i.e., weight = v) and the individual regret (i.e., weight = $1-v$) in Eq. (12) to modify
 365 the classical VIKOR method.

$$366 Q_k = v \times S_k + (1-v) \times R_k \quad (12)$$


367 **Step 11:** Obtain each object's performance scores on the attributes that are under evaluation, and
 368 calculate the performance gap for each object on each attribute for identifying the priority gap.
 369 The obtained priority gap can be applied as a guidance for a systematic improvement.

370 **4. Empirical Case Analysis and Discussions**

371 Considering the complicated relationship between R&D and future FP, an understandable
 372 guidance for companies to improve its performance would provide high business value in practice.
 373 Therefore, this study adopted the semiconductor industry in Taiwan as a case study, to illustrate
 374 how to form a hybrid decision model to reach this goal.

375 *4.1 Data for VC-DRSA model*

376 For the availability and the consistency of data sources, this study adopted all the
 377 semiconductor companies listed on the Taiwan stock market to retrieve the patterns of FP changes,
 378 considering the effect of R&D. The covered period spanned from 2006 to 2013. Since the effect of
 379 R&D would take time to reveal its influence, a 2-year moving time window was used for setting the
 380 condition attributes and the corresponding decision attribute (as different DCs) in the VC-DRSA
 381 model. Take the data laid down in the first period, for example, the averaged results of condition
 382 attributes (includes financial and R&D attributes) in 2006 and 2007 were matched with the
 383 associated average results in 2008 and 2009 of decision attribute (FP measurement). The remaining
 384 two data sets in the following periods were organized in the same approach, and **Figure 3**
 385 illustrates the framework of the 2-year moving average time windows from 2006 to 2013 (three sets
 386 of data); there were total 105 objects (observations) collected during this period.

387

388 **Figure 3** Moving time window of the research model

389 **Table 1.** Condition and decision attributes for VC-DRSA

Decision attributes		Symbols	Definitions
Financial Objectives	Gross profit Net profit	<i>GrossProfit</i> <i>NetProfit</i>	(revenue- cost)/total revenue (revenue- cost-expense)/total revenue
Dimensions	Condition Attributes	Symbols	Brief explanations
Capital Structure			
Debt to total asset	<i>Debt</i>	Higher debt to asset ratio often increases the financial risk	
Long-term capital to total asset	<i>LongCap</i>	Higher long-term capital ratio is beneficial for a company's financial stability	
Payback Capability			
Liquidity ratio	<i>Liquidity</i>	Higher liquidity implies better payback capability	
Quick ratio	<i>Quick</i>	Similar effect as the liquidity ratio	
Interest coverage ratio	<i>IntCov</i>	Higher interest coverage ratio decrease the financial risk	
Operational Efficiency			
Accounts receivable	<i>AR_turnover</i>	Higher <i>AR_turnover</i> implies superior efficiency	
Days for collecting AR	<i>AR_days</i>	Shorter <i>AR_days</i> implies superior efficiency	
Inventory turnover	<i>InvTurnover</i>	Higher <i>InvTurnover</i> implies superior efficiency	
Average days sales of inventory	<i>DAYs</i>	Shorter <i>DAYs</i> implies superior efficiency	
Fixed asset turnover	<i>FAssetTurn</i>	Higher <i>FAssetTurn</i> implies superior efficiency	
Asset turnover	<i>AssetTurnover</i>	Similar effect as <i>FAssetTurn</i>	
Cash Flow			
Operating cash-flow ratio	<i>CashFlow</i>	<i>CashFlow</i> is a measure of how well current liabilities are covered by the cash flow generated from operations	
Cash-flow adequacy ratio	<i>CashFlow_adq</i>	It measures how well a company can cover its payments of long-term debt by the cash flow generated from	

	Cash-flow reinvestment ratio	<i>CashFlow_rei_nv</i>	operations
R&D	R&D expense ratio Patent number	<i>RD_exp</i> <i>Patent</i>	It measures the amount of cash flow that a company is routinely investing back into itself It measures a firm's R&D expenses to its annual revenue Annual patent number

390 The condition attributes comprised of two parts: the financial and the R&D ones. There were
 391 total 16 condition attributes included for modeling: 14 commonly used financial ratios (from four
 392 dimensions, categorized by the authority of stock market in Taiwan) and two R&D attributes. Since
 393 two financial objectives will lead to two different VC-DRSA models, the initially involved number of
 394 attributes exceed 30. The adopted attributes and the corresponding symbols are summarized in
 395 **Table 1**.

396 The data for all the financial attributes and one R&D attribute (i.e., R&D expenditure ratio)
 397 were collected from Taiwan Economic Journal (TEJ) database [40]; the remaining R&D
 398 attribute—*Patent* (acquired number of patents in a year)—was retrieved from the Ministry of
 399 Science and Technology in Taiwan, where only the patents issued by the United States Patent and
 400 Trademark Office were counted). The decision attribute was defined by using the gross or the net
 401 profit ratio in the subsequent time frame, to explore the associated antecedents/premises of Good
 402 FP prospect under each kind of financial objective (in two VC-DRSA models).

403 *4.2 VC-DRSA for identifying CORE attributes and decision rules*

404 As the effect of R&D on the gross and the net profitability would not be the same, VC-DRSA
 405 algorithm was conducted under these two profitability objectives separately. Data pre-processing
 406 was conducted, for DMs to get intuitive understandings from the obtained decision rules. Two
 407 commonly applied methods were used: the one-third and the normal-distribution based
 408 discretization methods. The one-third method discretized the decision attribute in three states by
 409 ranking it from high to low in each time frame, and the top 1/3, the middle 1/3, and the bottom 1/3
 410 alternatives were classified as Good, Neutral, and Bad. For comparison, the other discretization
 411 method based on normal-distribution was also conducted. And the objects above $\bar{x} + (0.25 \times SD)$,
 412 the objects between $\bar{x} \pm (0.25 \times SD)$, and the objects below $\bar{x} - (0.25 \times SD)$ were classified as the
 413 aforementioned three states. Similarly, the condition attributes were also discretized in three states
 414 (i.e., high (H), middle (M), and low (L)) in each time frame by the aforementioned two
 415 discretization methods.

416 **Table 2.** Classification accuracy of various classifiers (Gross profit objective) (unit: %)

	VC-DRSA (CL=1.00)	VC-DRSA (CL=0.95)	VC-DRSA (CL=0.90)	VC-DRSA (CL=0.85)	SVM (RBF-kernel)	DT
Times	*1-3 rd *Norm 1-3 rd Norm					
1	72.38 63.81 69.52 69.62 64.76 63.81 67.62 63.81 61.33 61.65 61.63 62.24					
2	68.57 65.71 71.43 66.67 67.62 65.71 66.67 63.81 61.47 60.24 64.13 61.47					
3	69.52 65.71 72.38 69.52 65.71 63.81 68.57 65.71 64.62 59.17 63.81 60.24					
4	69.52 66.67 73.33 67.62 66.67 64.76 63.81 64.62 62.02 57.39 60.24 61.63					
5	67.62 67.62 70.48 68.57 66.67 64.62 67.62 63.81 61.24 62.02 62.16 59.38					
Average	69.52 65.90 71.43 68.40 66.29 64.54 66.86 64.35 62.14 60.09 62.39 60.99					
SD	1.78 1.41 1.51 1.26 1.09 0.79 1.83 0.84 1.42 1.89 1.60 1.16					

417 *Note: “1-3rd” and “Norm” denote the one-third and the normal-distribution based discretization methods.

418 *Note: CL denotes consistency level in VC-DRSA model.

419 The jMAF [39] was adopted as the VC-DRSA classifier; the other two classifiers—decision tree
 420 (DT) and support vector machine (SVM)—were also conducted for comparison, by using the

421 DTREG [41]. A 5-fold cross-validation was repeated five times for each classifier, and VC-DRSA
 422 was examined by setting several consistency levels (CLs). Classification accuracy (CA) was used to
 423 indicate the approximation accuracy of these experiments, which calculated the correctly classified
 424 objects divided by all objects in the training set. The results of CA in various classifiers are
 425 summarized in **Table 2** (the gross profit objective) and **Table 3** (the net profit goal); in those two
 426 tables, VC-DRSA (CL = 0.95, with one-third discretization) all revealed the highest CA in average
 427 with acceptable results. Thus, the VC-DRSA (CL = 0.95) classifier was adopted to induce the CORE
 428 attributes and decision rules for each type of FP objective.

429 **Table 3.** Classification accuracy of various classifiers (Net profit objective) (unit: %)

	VC-DRSA (CL=1.00)	VC-DRSA (CL=0.95)	VC-DRSA (CL=0.90)	VC-DRSA (CL=0.85)	SVM (RBF-kernel)	DT
Times	*1-3 rd *Norm	1-3 rd Norm				
1	74.29	70.48	75.24	71.43	68.57	70.48
2	73.33	69.52	77.14	70.48	71.43	68.57
3	70.48	69.52	77.14	73.33	71.43	69.52
4	73.33	67.62	75.24	73.33	72.38	67.62
5	74.29	70.48	79.05	71.43	73.33	69.52
Average	73.14	69.52	76.76	72.00	72.00	68.76
SD	1.56	1.17	1.59	1.27	0.85	0.79
	1.09	2.47	1.61	1.29	1.38	2.33

430 *Note: "1-3rd" and "Norm" denote the one-third and the normal-distribution-based discretization methods.

431 *Note: CL denotes consistency level in VC-DRSA model.

432

433 In **Table 2** and **Table 3**, SD denotes standard deviation. The co-shared attributes and the
 434 distinct attributes of each type of FP objective are summarized in **Table 4**; the union of the two
 435 CORE sets comprises of 14 attributes, those attributes were further analyzed by the DEMATEL
 436 technique. Also, the strong decision rules (i.e., with high supports) associated with the two types of
 437 profitability prospects are shown in **Table 5**.

438

439

Table 4. CORE attributes by the two types of FP objectives

FP objectives	CORE attributes	Numbers
Gross profit	<i>LongCap, Liquidity, AR_days, AssetTurnover, CF, CF_reinv, RD_exp</i>	7
Net profit	<i>Debt, LongCap, Quick, IntCov, Inventory, FAssetTurn, AssetTurnover, CF, CF_adq, CF_reinv, RD_exp, Patents</i>	12

440 Note: The union of the two sets of CORE attributes comprised of 14 attributes.

441

442

Table 5. Strong decision rules of the two types of FP objectives (DC \geq Good)

FP objectives	Decision rules	Supports
Gross profit	<i>LongCap\geq M & AssetTurnover\geq M & RD_exp\geq H</i>	16
	<i>LongCap\geq H & RD_exp\geq H</i>	14
Net profit	<i>CF\geq H & CF_adq\geq H & CF_reinv\geq H</i>	7
	<i>Liquidity\geq H & CF_reinv\geq H & RD_exp\geq H</i>	6

443 In **Table 5**, the top two strong decision rules of each model (i.e., the gross or net profit
 444 objective) are shown with the number of supports. It can be observed that the *RD_exp* attribute
 445 appeared in both models, which suggests the importance of R&D investment in reaching better
 446 financial prospects.

447

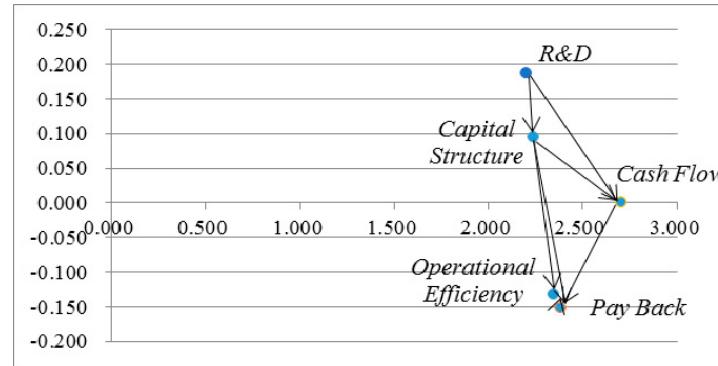
448 4.3 Adjusted DANP (DEMATEL-based ANP) influential weights

449 In the previous subsection, **Table 4** indicates the CORE attributes from the two types of
 450 objectives (i.e., gross and net profitability). CORE attributes denote the minimal and indispensable
 451 attributes for a VC-DRSA model to classify objects without decreasing its approximation accuracy.
 452 Therefore, the union of the two sets of CORE attributes in **Table 4** were further analysed by DANP,
 453 combined into a single decision model by λ -adjustment (**Step 10**), for obtaining the DANP
 454 influential weights.

455 The opinions for the calculations of DANP were collected from domain experts (eight experts)
 456 in the financial or information technology industry; all of them have working experience in these
 457 domains for more than 15 years, and three of the experts are working in semiconductor companies.
 458 Their job titles include Chief Financial Officer (CFO), Director of R&D, Manager, Senior Analyst,
 459 Senior Consultant, and Fund Manager. The calculation details of DEMATEL and DANP can be
 460 found in **Appendix A**. The analysis from DEMATEL may divide dimensions/attribute into a cause
 461 group, and an effect group, the directional influences among dimensions (INRM) are shown in
 462 **Figure 4**. The influences among dimensions and attributes are shown in **Table 6** and **Table 7** (from
 463 **Table A.4** in **Appendix A**).

464 **Table 6.** Directional influences among dimensions (DEMATEL analysis)

Dimensions	r_i^p	s_i^p	$r_i^p - d_i^p$	$r_i^p + s_i^p$
<i>Capital Structure (D₁)</i>	1.168	1.073	0.095	2.242
<i>Pay Back (D₂)</i>	1.116	1.267	-0.151	2.383
<i>Operational Efficiency (D₃)</i>	1.108	1.240	-0.132	2.349
<i>Cash Flow (D₄)</i>	1.353	1.353	0.001	2.706
<i>R&D (D₅)</i>	1.195	1.007	0.188	2.202


465 The raw weights of DANP are listed in **Table 8**; besides, DM may adjust the final weights based
 466 on his emphasis on the gross and the net profit objectives. In this case, the relative emphasis on the
 467 gross and the net profit objectives was assumed to be 0.4 and 0.6 (i.e., put 40% weight on the gross
 468 and 60% on the net profit objectives) respectively; the adjusted weights from DANP are also shown
 469 in **Table 8**.

470 **Table 7.** Directional influences among condition attributes (by DEMATEL)

Attributes	r_i^A	s_i^A	$r_i^A - s_i^A$	$r_i^A + s_i^A$
<i>Debt (A₁)</i>	3.120	2.801	0.318	3.438
<i>LongCap (A₂)</i>	3.542	3.223	0.319	3.861
<i>Liquidity (A₃)</i>	3.548	3.851	-0.302	3.246
<i>Quick (A₄)</i>	3.301	3.333	-0.033	3.268
<i>IntCov (A₅)</i>	2.711	3.419	-0.707	2.004
<i>AR_days (A₆)</i>	3.652	2.881	0.771	4.423
<i>Inventory (A₇)</i>	3.679	3.532	0.147	3.826
<i>FixAssetTurn (A₈)</i>	2.325	3.185	-0.859	1.466
<i>AssetTurnover (A₉)</i>	3.052	4.186	-1.133	1.919
<i>CF (A₁₀)</i>	4.138	4.228	-0.090	4.048
<i>CF_adq (A₁₁)</i>	3.320	3.421	-0.101	3.219
<i>CF_reinv (A₁₂)</i>	4.041	3.683	0.358	4.399
<i>RD_exp (A₁₃)</i>	4.282	3.857	0.424	4.706
<i>Patent (A₁₄)</i>	2.625	1.737	0.888	3.514

471 **Figure 4** (INRM) only indicates the directional influence among the five dimensions; the
 472 influence within each dimension (i.e., directional influence among attributes in each dimension)
 473 could be referred to $r_i^A - s_i^A$ in **Table 7**. This figure shows R&D dimension has the highest influence
 474 on the other aspects, which affirms the importance of R&D efforts for the semiconductor industry.

475

476

477 **Figure 4** Internetwork relationship map (INRM) of dimensions

478

Table 8. Raw and adjusted weights of attributes by DANP

Attributes	Raw weights	λ -adjustment (λ -adj)	Raw weight \times λ -adj	Adjusted weights*
<i>Debt (A₁)</i>	0.09	0.6	0.05	0.07
<i>LongCap (A₂)</i>	0.10	(0.4+0.6)*	0.10	0.13
<i>Liquidity (A₃)</i>	0.08	0.4	0.03	0.04
<i>Quick (A₄)</i>	0.07	0.6	0.04	0.05
<i>IntCov (A₅)</i>	0.07	0.6	0.04	0.05
<i>AR_days (A₆)</i>	0.05	0.4	0.02	0.03
<i>Inventory (A₇)</i>	0.06	0.6	0.04	0.05
<i>FixAssetTurn (A₈)</i>	0.05	0.6	0.03	0.04
<i>AssetTurnover (A₉)</i>	0.07	(0.4+0.6)	0.07	0.09
<i>CF (A₁₀)</i>	0.09	(0.4+0.6)	0.09	0.11
<i>CF_adq (A₁₁)</i>	0.07	0.6	0.04	0.05
<i>CF_reinv (A₁₂)</i>	0.08	(0.4+0.6)	0.08	0.10
<i>RD_exp (A₁₃)</i>	0.12	(0.4+0.6)	0.12	0.15
<i>Patent (A₁₄)</i>	0.06	0.6	0.04	0.05

479

*Note: Adjusted weights are the normalized results w_{Adj}^N .

480

*Note: The attribute *LongCap (A₂)* was included in both sets of the CORE attributes; its emphasis is (0.4+0.6).

481

4.4 Synthesized performance gaps by modified VIKOR

482

483 To illustrate the proposed approach for guiding improvements, the data (the averaged
 484 financial and R&D indicators in 2011 and 2012) from four semiconductor companies were adopted,
 485 namely: (A) Siliconware Precision Industries (code: 2325); (B) VIA Technologies (code: 2388); (C)
 486 MediaTek (code: 2454); (D) ADATA Technology (code: 3260). All of the training data were used to
 487 transform the four companies' raw indicators (e.g., *Liquidity*) into performance scores, range from 0
 (the worst) to 10 (the best).

488 A percentile transformation method was conducted; for example, if a company's *CF* (cash
 489 flow) ratio ranked among the top 10% of the 35 companies, then the company's performance score
 490 on the *CF* attribute would be nine. By setting $v = 0.8$ and 0.5 (refer subsection 3.4), the modified
 491 VIKOR and the simple additive weighting (SAW) methods all revealed the same ranking result:
 492 $C \succ A \succ D \succ B$, which was consistent with their averaged FP in 2013 and 2014 ($0.4 \times$ Gross profit
 493 ratio + $0.6 \times$ Net profit ratio). The ranking result, by the two aggregation methods (SAW and
 494 modified VIKOR), is shown in **Table 9**. If we extend the time-period to 2016, the four years'
 495 averaged FP result with the same weighing on the gross and net profit (i.e., $0.4 \times$ Gross profit ratio +
 496 $0.6 \times$ Net profit ratio), the top two are still the same, but the last two reverse (i.e., $C \succ A \succ B \succ D$).
 497 The actual averaged gross and net profit ratios in different period for each company are organized
 498 in **Table 10**. Although some minor inconsistency exists in the longer term (2013~2016), the model
 499 has shown its effectiveness for decision aids.

500 **Table 9.** Ranking results of the empirical case by the modified VIKOR and SAW

Criteria	$w_{Adj_i}^N$	Companies (performance scores)				Companies (performance gaps)						
		A	B	C	D	A	B	C	D			
<i>Debt (A₁)</i>	0.07	6	6	8	2	0.4	0.4	0.2	0.8			
<i>LongCap (A₂)</i>	0.13	3	6	9	7	0.7	0.4	0.1	0.3			
<i>Liquidity (A₃)</i>	0.04	5	7	8	5	0.5	0.3	0.2	0.5			
<i>Quick (A₄)</i>	0.05	6	8	9	4	0.4	0.2	0.1	0.6			
<i>IntCov (A₅)</i>	0.05	7	1	9	4	0.3	0.9	0.1	0.6			
<i>AR_days (A₆)</i>	0.03	4	8	8	8	0.6	0.2	0.2	0.2			
<i>Inventory (A₇)</i>	0.05	9	3	4	8	0.1	0.7	0.6	0.2			
<i>FixAssetTurn (A₈)</i>	0.04	4	5	9	9	0.6	0.5	0.1	0.1			
<i>AssetTurnover (A₉)</i>	0.09	6	2	5	9	0.4	0.8	0.5	0.1			
<i>CF (A₁₀)</i>	0.11	9	0	8	4	0.1	1.0	0.2	0.6			
<i>CF_adq (A₁₁)</i>	0.05	7	1	9	3	0.3	0.9	0.1	0.7			
<i>CF_reinv (A₁₂)</i>	0.10	6	0	3	7	0.4	1.0	0.7	0.3			
<i>RD_exp (A₁₃)</i>	0.15	5	10	9	2	0.5	0.0	0.1	0.8			
<i>Patent (A₁₄)</i>	0.05	8	0	9	0	0.2	1.0	0.1	1.0			
		SAW*	6.02	4.25	7.63	5.05	VIKOR					
		(Rank)	(2)	(4)	(1)	(3)	S_i	0.41	0.59	0.25	0.51	
							R_i	0.7	1	0.7	1	
							Q_i	$v=0.8$	0.47	0.67	0.34	0.60
							(Rank)	(2)	(4)	(1)	(3)	
							Q_i	$v=0.5$	0.55	0.79	0.47	0.70
							(Rank)	(2)	(4)	(1)	(3)	

501 *Note: In SAW method, the higher synthesized score the better the ranking result.
 502
 503**Table 10.** Averaged FP of the four companies in different time periods (Unit: %)

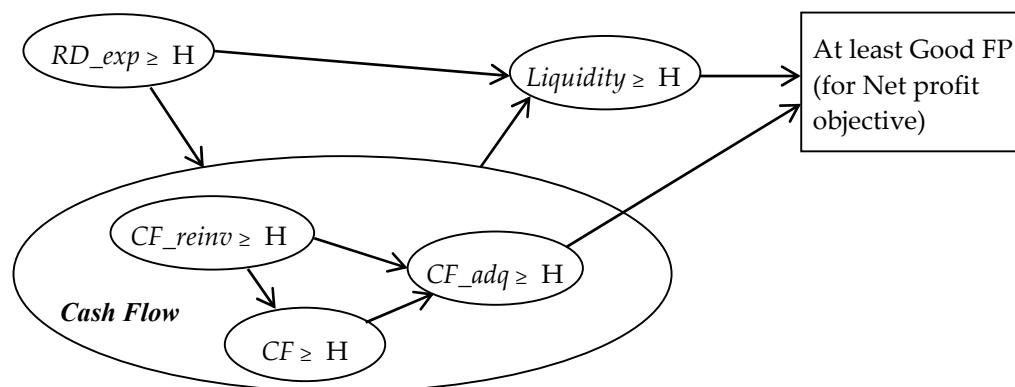
	A	B	C	D
*AvgGross 2013~2014	23.04	29.24	46.36	9.20
AvgNet 2013~2014	11.32	-22.76	20.99	4.36
(0.4G,0.6N) 2013~2014	16.01*	-1.96	31.14	6.29
(Rank)	(2)	(4)	(1)	(3)
AvgGross 2013~2016	27.32	28.72	42.90	9.67

AvgNet 2013~2016	11.22	-5.86	15.70	3.53
(0.4G,0.6N) 2013~2016	16.22	7.97	26.58	5.98
(Rank)	(2)	(3)	(1)	(4)

504 *Note: AvgGross 2013~2014 denotes the averaged gross profit of a company during 2013 to 2014.

505 *Note: For example, (0.4G,0.6N) 2013~2014 for A is calculated by: $16.01 = (0.4 \times 23.04) + (0.6 \times 11.32)$.

506 This study attempts to explore the complex/imprecise relationships among R&D, financial
507 attributes, and the FP objectives of semiconductor companies. Also, a hybrid MCDM model was
508 proposed to evaluate a company's performance gaps—based on DMs' emphasis on the dual
509 profitability objectives respectively—for improvement planning. Take company A for example, and
510 we may learn that its priority performance gaps would be different while the emphasis on the gross
511 and the net profit objectives varied (refer Table 11)..


512 **Table 11.** Gaps of A while 40% on Gross and 60% on Net profit measures (0.4G,0.6N)

Attributes	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_{10}	A_{11}	A_{12}	A_{13}	A_{14}
Gaps of A	0.40	0.70	0.50	0.40	0.30	0.60	0.10	0.60	0.40	0.10	0.30	0.40	0.50	0.20
$w_{Adj_i}^N$	0.07	0.13	0.04	0.05	0.05	0.03	0.05	0.04	0.09	0.11	0.05	0.10	0.15	0.05
*Weighted Gap (%)	2.80	9.10	2.00	2.00	1.50	1.80	0.50	2.40	3.60	1.10	1.50	4.00	7.50	1.00
(Priority)												(3)	(2)	

513 *Note: This weighted gaps of company A were calculated to indicate its improvement priority.

514 In Table 11, if company A puts 0.4 (i.e., 40%) emphasis on the gross profit and 0.6 (i.e., 60%)
515 emphasis on the net profit (i.e., put more emphasis on the net profit), the top three priority attributes
516 for it to improve would be: A_2 (*LongCap*, the top priority), A_{13} (*RD_exp*, the second priority), and A_{12}
517 (*CF_reinv*, the third priority). It is obvious that if company A puts different emphasis on the two
518 profit objectives (e.g., put 100% emphasis on the net profit objective), the adjusted and normalized
519 weights would form a different weighting system (refer Step 10). As a result, the proposed hybrid
520 MCDM model can support a company—based on its emphasis on the two FP objectives—to identify
521 its improvement priority, which is the major novelty and contribution of the study.

522 Furthermore, incorporated with the previous findings (i.e., DEMATEL analysis and INRM),
523 semiconductor companies may identify the cause-effect relationships of dimensions/attributes,
524 along with the contexts of strong decision rules, to gain more insights by the combined DFG. Take
525 the two strong decision rules in Table 5—associated with the net profit objective—for example, it
526 may be integrated with the INRM to generate a DFG, which may indicate the influential paths of
527 R&D that may lead to “at least Good FP” in the next period. The DFG is shown in Figure 5.

528 **Figure 5** Direction flow graph (DFG) based on the strong rules for net profit objective

529 According to **Figure 5**, semiconductor companies may learn that R&D efforts should have a
530 positive influence on the *Cash Flow* dimension, and thus lead to higher liquidity to reaching superior
531 net profitability in the future. The combination of VC-DRSA decision rules with the INRM may
532 generate various influential patterns, which could guide semiconductor companies to examine the
533 likely effects of their R&D investments for the net profit objective.

534 **5. Concluding Remarks**

535 This study has explored the influences of R&D to reach the dual financial objectives of
536 semiconductor companies to achieve business sustainability. The historical patterns revealed certain
537 decision rules and the CORE attributes. A hybrid MCDM model further incorporated domain
538 experts' experience for three purposes: (1) Obtain the influential weight of each attribute for
539 achieving ideal financial objectives; (2) Support a semiconductor company to identify its priority
540 performance gaps for improvements; (3) Explore the influence patterns of R&D from the historical
541 patterns in the form of decision rules and DFGs. The results indicate the existence of certain
542 consistent patterns, which associate the influence of R&D with several financial attributes to the dual
543 profitability objectives. Besides, four listed semiconductor companies' R&D and financial data were
544 examined, and the ranking results of their FP are consistent with the four companies' actual FP from
545 2013 to 2014, which suggests the effectiveness of the proposed approach.

546 Compared with previous research, the importance of R&D expenses is highlighted in this
547 study; however, the proposed approach further identifies the plausible R&D influential paths that
548 may lead to the dual profitability objectives. In other words, semiconductor companies may learn
549 that R&D investments are crucial to the FP, but not all R&D efforts may lead to satisfactory
550 outcomes. Take **Figure 5** for example, to reach good FP on the net profitability, R&D expenses
551 should have positive influence to the cash flow dimension, and increase the liquidity of a company's
552 short-term assets. Based on the findings above, semiconductor companies should examine its R&D
553 projects, to see if its R&D investments may cause the plausible effects to match those influential
554 patterns (i.e., decision rules or DFGs). This finding underscores the linkage between R&D efforts and
555 the associated cash flow from operations, which should be aware by semiconductor companies.
556 Furthermore, the case of company A (in Section 4) shows how the hybrid model may identify a
557 company's priority gaps, and contributes to improvement planning based on its emphasis on the
558 dual objectives. The findings above and implications are the two primary contributions of the
559 present study.

560 Although this hybrid MCDM approach has shown its capability in identifying R&D influences
561 to the dual profitability objectives, the model still has several limitations. First, owing to the limited
562 sample size, the collected knowledge—regarding the effect of each CORE attribute on the other
563 ones—did not consider the differences in the sub-sectors (e.g., IC design, foundry, and packaging)
564 among the semiconductor industry. Second, this study mainly includes the financial and R&D
565 factors for analysis, and future research may incorporate more dimensions (e.g., marketing or
566 human resources) to enrich their findings. Despite the limitations, this study contributes to support
567 semiconductor companies to improve their FP, which thus facilitates the understanding of the
568 complex R&D influences in a real business environment.

569

570 **Acknowledgments:** This study received financial subsidies from two grants; both came from the Ministry of
571 Science and Technology (MOST) of Taiwan; the first one is under the grant numbers
572 MOST-104-2410-H-305-052-MY3, and the second one is MOST-105-2410-H-034-019-MY2. The authors are
573 grateful for those funding supports.

574 **Author Contributions:** K.Y. Shen mainly proposed and devised the hybrid MCDM model, and he prepared
575 for the financial data collection, experiments, and writing of this study. M.Y. Yan collected the patent
576 information of those semiconductor companies, and he involved in the research design as well as the writing
577 of partial literature review. G.H. Tzeng examined the research framework and experiments of this study; he
578 also guided the design of improvement planning mechanism of this work.

579 **Conflicts of Interest:** All the authors declare no conflict of interest in this paper. The funding supports do not
 580 influence the analysis and conclusions obtained in this study.

581

582 **Appendix A (Calculation details of DEMTEL and DANP)**

583 Refer to **Step 4 to Step 9** in Subsections 3.2, 3.3 and Eq. (1)-(7) for obtaining **Table A.1** to **Table**
 584 **A.7**. Multiply the initial weighted super-matrix (**Table A.7**) with itself several times (refer **Step 9**)
 585 until the stable raw weights were found.

586

Table A.1 Initial average matrix *B*

	<i>A₁</i>	<i>A₂</i>	<i>A₃</i>	<i>A₄</i>	<i>A₅</i>	<i>A₆</i>	<i>A₇</i>	<i>A₈</i>	<i>A₉</i>	<i>A₁₀</i>	<i>A₁₁</i>	<i>A₁₂</i>	<i>A₁₃</i>	<i>A₁₄</i>	Sum
<i>A₁</i>	0.00	3.00	2.00	2.13	2.88	2.13	3.00	1.13	1.88	1.25	1.13	2.00	1.25	0.63	24.38
<i>A₂</i>	3.88	0.00	1.25	1.25	3.00	1.13	1.25	1.13	2.88	3.00	2.00	2.13	3.63	1.13	27.63
<i>A₃</i>	2.25	1.13	0.00	2.88	1.00	1.13	2.13	3.00	3.50	3.38	2.00	2.00	2.88	0.50	27.75
<i>A₄</i>	1.13	1.38	2.75	0.00	1.13	1.25	1.13	1.38	3.00	3.38	2.13	2.88	2.88	0.75	25.13
<i>A₅</i>	2.00	1.13	2.00	2.00	0.00	1.25	2.00	2.00	1.88	1.13	1.25	1.13	2.88	0.38	21.00
<i>A₆</i>	2.00	2.00	3.75	2.88	2.00	0.00	3.75	2.00	2.88	2.88	1.25	1.38	1.25	0.75	28.75
<i>A₇</i>	1.25	1.13	3.00	1.13	2.88	3.50	0.00	2.00	2.75	3.50	2.88	3.13	1.13	0.50	28.75
<i>A₈</i>	1.25	2.00	2.00	1.13	1.25	1.13	2.00	0.00	2.75	1.13	1.00	1.25	0.63	0.63	18.13
<i>A₉</i>	1.25	2.00	2.00	1.88	1.25	2.00	2.13	2.00	0.00	2.75	1.88	1.50	2.13	0.75	23.50
<i>A₁₀</i>	2.25	3.50	3.38	3.50	3.25	1.88	1.13	1.25	2.13	0.00	3.00	3.50	3.13	0.50	32.38
<i>A₁₁</i>	1.00	3.00	1.38	1.38	1.13	1.13	2.00	1.13	2.00	3.00	0.00	3.75	3.13	1.00	25.00
<i>A₁₂</i>	1.38	2.88	2.00	2.25	2.75	1.00	2.88	2.75	2.63	3.50	2.88	0.00	3.25	1.88	32.00
<i>A₁₃</i>	1.13	1.13	3.00	2.25	2.88	2.88	2.88	3.13	3.00	2.88	3.00	2.75	0.00	3.75	34.63*
<i>A₁₄</i>	1.00	0.63	1.88	1.00	1.38	2.25	2.00	1.88	2.00	1.25	2.13	1.13	2.00	0.00	20.50
Sum	21.76	24.88	30.38	25.63	26.75	22.63	28.25	24.75	33.25	33.00	26.50	28.50	30.13	13.13	

587 *Note: $\phi = 34.63$, refer Eq. (2).

588

589

Table A.2 Direct relation influence matrix *D*

	<i>A₁</i>	<i>A₂</i>	<i>A₃</i>	<i>A₄</i>	<i>A₅</i>	<i>A₆</i>	<i>A₇</i>	<i>A₈</i>	<i>A₉</i>	<i>A₁₀</i>	<i>A₁₁</i>	<i>A₁₂</i>	<i>A₁₃</i>	<i>A₁₄</i>	
<i>A₁</i>	0.000	0.087	0.058	0.061	0.083	0.061	0.087	0.032	0.054	0.036	0.032	0.058	0.036	0.018	
<i>A₂</i>	0.112	0.000	0.036	0.036	0.087	0.032	0.036	0.032	0.083	0.087	0.058	0.061	0.105	0.032	
<i>A₃</i>	0.065	0.032	0.000	0.083	0.029	0.032	0.061	0.087	0.101	0.097	0.058	0.058	0.083	0.014	
<i>A₄</i>	0.032	0.040	0.079	0.000	0.032	0.036	0.032	0.040	0.087	0.097	0.061	0.083	0.083	0.022	
<i>A₅</i>	0.058	0.032	0.058	0.058	0.000	0.036	0.058	0.058	0.054	0.032	0.036	0.032	0.083	0.011	
<i>A₆</i>	0.058	0.058	0.108	0.083	0.058	0.000	0.108	0.058	0.083	0.083	0.036	0.040	0.036	0.022	
<i>A₇</i>	0.036	0.032	0.087	0.032	0.083	0.101	0.000	0.058	0.079	0.101	0.083	0.090	0.032	0.014	
<i>A₈</i>	0.036	0.058	0.058	0.032	0.036	0.032	0.058	0.000	0.079	0.032	0.029	0.036	0.018	0.018	
<i>A₉</i>	0.036	0.058	0.058	0.054	0.036	0.058	0.061	0.058	0.000	0.079	0.054	0.043	0.061	0.022	
<i>A₁₀</i>	0.065	0.101	0.097	0.101	0.094	0.054	0.032	0.036	0.061	0.000	0.087	0.101	0.090	0.014	
<i>A₁₁</i>	0.029	0.087	0.040	0.040	0.032	0.032	0.058	0.032	0.058	0.087	0.000	0.108	0.090	0.029	
<i>A₁₂</i>	0.040	0.083	0.058	0.065	0.079	0.029	0.083	0.079	0.076	0.101	0.083	0.000	0.094	0.054	
<i>A₁₃</i>	0.032	0.032	0.087	0.065	0.083	0.083	0.083	0.090	0.087	0.083	0.087	0.079	0.000	0.108	
<i>A₁₄</i>	0.029	0.018	0.054	0.029	0.040	0.065	0.058	0.054	0.058	0.036	0.061	0.032	0.058	0.000	

590

591

592

Table A.3 Inverse of $(I-D)$

	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_{10}	A_{11}	A_{12}	A_{13}	A_{14}
A_1	1.148	0.246	0.254	0.230	0.256	0.207	0.263	0.196	0.268	0.256	0.208	0.245	0.236	0.106
A_2	0.268	1.192	0.261	0.233	0.285	0.202	0.244	0.219	0.321	0.326	0.256	0.275	0.324	0.136
A_3	0.224	0.225	1.228	0.275	0.230	0.202	0.264	0.268	0.340	0.340	0.258	0.274	0.303	0.118
A_4	0.185	0.218	0.285	1.186	0.220	0.192	0.224	0.215	0.310	0.325	0.248	0.282	0.292	0.119
A_5	0.180	0.176	0.229	0.205	1.154	0.166	0.214	0.199	0.241	0.223	0.189	0.198	0.249	0.091
A_6	0.226	0.249	0.335	0.281	0.261	1.175	0.311	0.248	0.332	0.336	0.243	0.263	0.268	0.123
A_7	0.207	0.232	0.317	0.240	0.286	0.267	1.216	0.250	0.329	0.353	0.286	0.309	0.269	0.118
A_8	0.144	0.179	0.202	0.160	0.166	0.143	0.190	1.123	0.236	0.196	0.160	0.176	0.167	0.083
A_9	0.178	0.219	0.251	0.222	0.209	0.201	0.236	0.216	1.213	0.290	0.226	0.230	0.254	0.110
A_{10}	0.256	0.316	0.352	0.324	0.322	0.245	0.273	0.255	0.346	1.294	0.316	0.348	0.354	0.137
A_{11}	0.184	0.261	0.250	0.223	0.225	0.190	0.248	0.208	0.286	0.317	1.193	0.306	0.300	0.128
A_{12}	0.226	0.294	0.312	0.284	0.304	0.222	0.311	0.287	0.351	0.377	0.309	1.250	0.347	0.169
A_{13}	0.228	0.259	0.354	0.297	0.316	0.282	0.328	0.311	0.377	0.376	0.324	0.334	1.273	0.223
A_{14}	0.148	0.158	0.220	0.174	0.185	0.188	0.210	0.191	0.237	0.220	0.207	0.192	0.220	1.076

593 *Note: I denotes the identity matrix in $(I-D)^{-1}$.

594

595

Table A.4 Total influence relation matrix T

	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_{10}	A_{11}	A_{12}	A_{13}	A_{14}	r_i^A
A_1	0.15	0.25	0.25	0.23	0.26	0.21	0.26	0.20	0.27	0.26	0.21	0.24	0.24	0.11	3.12
A_2	0.27	0.19	0.26	0.23	0.29	0.20	0.24	0.22	0.32	0.33	0.26	0.28	0.32	0.14	3.54
A_3	0.22	0.22	0.23	0.28	0.23	0.20	0.26	0.27	0.34	0.34	0.26	0.27	0.30	0.12	3.55
A_4	0.18	0.22	0.29	0.19	0.22	0.19	0.22	0.21	0.31	0.32	0.25	0.28	0.29	0.12	3.30
A_5	0.18	0.18	0.23	0.20	0.15	0.17	0.21	0.20	0.24	0.22	0.19	0.20	0.25	0.09	2.71
A_6	0.23	0.25	0.33	0.28	0.26	0.18	0.31	0.25	0.33	0.34	0.24	0.26	0.27	0.12	3.65
A_7	0.21	0.23	0.32	0.24	0.29	0.27	0.22	0.25	0.33	0.35	0.29	0.31	0.27	0.12	3.68
A_8	0.14	0.18	0.20	0.16	0.17	0.14	0.19	0.12	0.24	0.20	0.16	0.18	0.17	0.08	2.33
A_9	0.18	0.22	0.25	0.22	0.21	0.20	0.24	0.22	0.21	0.29	0.23	0.23	0.25	0.11	3.05
A_{10}	0.26	0.32	0.35	0.32	0.32	0.25	0.27	0.25	0.35	0.29	0.32	0.35	0.35	0.14	4.14
A_{11}	0.18	0.26	0.25	0.22	0.22	0.19	0.25	0.21	0.29	0.32	0.19	0.31	0.30	0.13	3.32
A_{12}	0.23	0.29	0.31	0.28	0.30	0.22	0.31	0.29	0.35	0.38	0.31	0.25	0.35	0.17	4.04
A_{13}	0.23	0.26	0.35	0.30	0.32	0.28	0.33	0.31	0.38	0.38	0.32	0.33	0.27	0.22	4.28
A_{14}	0.15	0.16	0.22	0.17	0.19	0.19	0.21	0.19	0.24	0.22	0.21	0.19	0.22	0.08	2.63
s_j^A	2.80	3.22	3.85	3.33	3.42	2.88	3.53	3.18	4.19	4.23	3.42	3.68	3.86	1.74	

596 Note: Since T is a square matrix, therefore, $i = j = 1, 2, \dots, 14$.

597

598

599

600

601

Table A.5 Un-weighted super-matrix W

	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_{10}	A_{11}	A_{12}	A_{13}	A_{14}
A_1	1.148	0.246	0.254	0.230	0.256	0.207	0.263	0.196	0.268	0.256	0.208	0.245	0.236	0.106
A_2	0.268	1.192	0.261	0.233	0.285	0.202	0.244	0.219	0.321	0.326	0.256	0.275	0.324	0.136
A_3	0.224	0.225	1.228	0.275	0.230	0.202	0.264	0.268	0.340	0.340	0.258	0.274	0.303	0.118
A_4	0.185	0.218	0.285	1.186	0.220	0.192	0.224	0.215	0.310	0.325	0.248	0.282	0.292	0.119
A_5	0.180	0.176	0.229	0.205	1.154	0.166	0.214	0.199	0.241	0.223	0.189	0.198	0.249	0.091
A_6	0.226	0.249	0.335	0.281	0.261	1.175	0.311	0.248	0.332	0.336	0.243	0.263	0.268	0.123
A_7	0.207	0.232	0.317	0.240	0.286	0.267	1.216	0.250	0.329	0.353	0.286	0.309	0.269	0.118
A_8	0.144	0.179	0.202	0.160	0.166	0.143	0.190	1.123	0.236	0.196	0.160	0.176	0.167	0.083
A_9	0.178	0.219	0.251	0.222	0.209	0.201	0.236	0.216	1.213	0.290	0.226	0.230	0.254	0.110
A_{10}	0.256	0.316	0.352	0.324	0.322	0.245	0.273	0.255	0.346	1.294	0.316	0.348	0.354	0.137
A_{11}	0.184	0.261	0.250	0.223	0.225	0.190	0.248	0.208	0.286	0.317	1.193	0.306	0.300	0.128
A_{12}	0.226	0.294	0.312	0.284	0.304	0.222	0.311	0.287	0.351	0.377	0.309	1.250	0.347	0.169
A_{13}	0.228	0.259	0.354	0.297	0.316	0.282	0.328	0.311	0.377	0.376	0.324	0.334	1.273	0.223
A_{14}	0.148	0.158	0.220	0.174	0.185	0.188	0.210	0.191	0.237	0.220	0.207	0.192	0.220	1.076

602 Note: A_i denotes the i th attribute, for $i = 1, 2, \dots, 14$.

603

604

Table A.6 Normalized directional influence relation matrix T_D^α

	D_1	D_2	D_3	D_4	D_5
D_1	0.1828	0.2167	0.2054	0.2234	0.1717
D_2	0.1802	0.2003	0.2117	0.2327	0.1751
D_3	0.1843	0.2202	0.2077	0.2307	0.1570
D_4	0.1892	0.2132	0.1984	0.2224	0.1769
D_5	0.1660	0.2158	0.2221	0.2305	0.1656

605

Table A.7 Initial weighted super-matrix W^N ($W^N = T_D^\alpha W$)

	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_{10}	A_{11}	A_{12}	A_{13}	A_{14}
A_1	0.068	0.106	0.090	0.083	0.092	0.087	0.087	0.083	0.083	0.085	0.078	0.083	0.078	0.080
A_2	0.115	0.077	0.090	0.097	0.088	0.098	0.098	0.101	0.101	0.104	0.112	0.106	0.088	0.086
A_3	0.074	0.074	0.062	0.082	0.078	0.084	0.084	0.084	0.081	0.075	0.077	0.075	0.080	0.082
A_4	0.067	0.065	0.076	0.054	0.070	0.070	0.062	0.066	0.073	0.068	0.068	0.068	0.067	0.065
A_5	0.076	0.080	0.062	0.064	0.052	0.066	0.075	0.068	0.068	0.068	0.068	0.072	0.071	0.069
A_6	0.045	0.043	0.040	0.042	0.042	0.033	0.052	0.044	0.048	0.044	0.040	0.038	0.049	0.051
A_7	0.058	0.051	0.053	0.051	0.055	0.060	0.042	0.056	0.056	0.048	0.054	0.054	0.056	0.056
A_8	0.043	0.045	0.053	0.049	0.051	0.048	0.050	0.037	0.052	0.046	0.044	0.050	0.053	0.051
A_9	0.060	0.068	0.068	0.070	0.061	0.064	0.064	0.071	0.052	0.062	0.062	0.060	0.064	0.064
A_{10}	0.080	0.085	0.091	0.088	0.086	0.092	0.085	0.085	0.090	0.069	0.087	0.089	0.083	0.083
A_{11}	0.065	0.067	0.070	0.067	0.072	0.067	0.069	0.069	0.069	0.073	0.053	0.073	0.071	0.076
A_{12}	0.078	0.071	0.072	0.077	0.074	0.072	0.076	0.076	0.072	0.080	0.085	0.060	0.074	0.071
A_{13}	0.118	0.120	0.126	0.124	0.128	0.108	0.108	0.105	0.110	0.127	0.124	0.119	0.091	0.123
A_{14}	0.053	0.052	0.049	0.051	0.047	0.049	0.049	0.052	0.047	0.050	0.053	0.058	0.075	0.043

606 **References**

607 1. Griliches, Z. Productivity, R&D, and basic research at the firm Level in the 1970s. *The American Economic*
608 *Rev.* **1986**, *76*(1), 141-54. DOI: 10.3386/w1547

609 2. Wang, C.H.; Lu, Y.H.; Huang, C.W.; Lee, J.Y. R&D, productivity, and market value: An empirical study
610 from high-technology firms. *Omega*. **2013**, *41*(1), 143-155. DOI: 10.1016/j.omega.2011.12.011

611 3. Bommer, M.; Jalajas, D. The innovation work environment of high-tech SMEs in the USA and Canada.
612 *R&D Management*. **2002**, *32*(5), 379-386. DOI: 10.1111/1467-9310.00269

613 4. Prajogo, D.I. The relationship between innovation and business performance—A comparative study
614 between manufacturing and service firms. *Knowl. and Process Management*. **2006**, *13*(3), 218-225. DOI:
615 10.1002/kpm.259

616 5. Cho, H.J.; Pucik, V. Relationship between innovativeness, quality, growth, profitability, and market
617 value. *Strategic Management J.* **2005**, *26*(6), 555-575. DOI: 10.1002/smj.461

618 6. Macdonald, S. When means become ends: considering the impact of patent strategy on innovation. *Inf.*
619 *Economics and Policy*. **2004**, *16*(1), 135-158. DOI: 10.1016/j.infoecopol.2003.09.008

620 7. Artz, K.W. Norman, P.M.; Hatfield, D.E.; Cardinal, L.B. A longitudinal study of the impact of R&D,
621 patents, and product innovation on firm performance. *J. of Product Innovation Management*. **2010**, *27*(5),
622 725-740. DOI: 10.1111/j.1540-5885.2010.00747.x

623 8. US International Trade Administration: http://trade.gov/topmarkets/pdf/Semiconductors_Taiwan.pdf,
624 accessed on 31/July/2016

625 9. Shen, K.Y. Compromise between short-and long-term financial sustainability: A hybrid model for
626 supporting R&D decisions. *Sustainability*. **2017**, *9*(3), 375. DOI: 10.3390/su9030375

627 10. Lai, Y.L.; Lin, F.J.; Lin, Y.H. Factors affecting firm's R&D investment decisions. *J. of Bus. Res.* **2015**, *68*(4),
628 840-844. DOI: 10.1016/j.jbusres.2014.11.038

629 11. Yan, M.R.; Chien, K.M. Evaluating the economic performance of high-technology industry and energy
630 efficiency: A case study of science parks in Taiwan. *Energies*. **2013**, *6*(2), 973-987. DOI: 10.3390/en6020973

631 12. Sher, P.J.; Yang, P.Y. The effects of innovative capabilities and R&D clustering on firm performance: the
632 evidence of Taiwan's semiconductor industry. *Technovation*. **2005**, *25*(1), 33-43. DOI:
633 10.1016/S0166-4972(03)00068-3

634 13. Booth, L.; Ntantamis, C.; Zhou, J. Financial constraints, R&D investment, and the value of cash
635 holdings. *Q. J. of Finance*. **2015**, *5*(04), 1550011. DOI: 10.1142/S2010139215500111

636 14. Li, D. Financial constraints, R&D investment, and stock returns. *Rev. of Financial Stud.* **2011**, *24*(9),
637 2974-3007. DOI: 10.1093/rfs/hhr043

638 15. Czarnitzki, D.; Hottenrott, H. R&D investment and financing constraints of small and medium-sized
639 firms. *Small Bus. Economics*. **2011**, *36*(1), 65-83. DOI: 10.1007/s11187-009-9189-3

640 16. Neuhäusler, P.; Frietsch, R.; Schubert, T.; Blind, K. *Patents and the Financial Performance of Firms-An*
641 *Analysis Based on Stock Market Data*. **2011**, No. 28. Fraunhofer ISI Discussion Papers Innovation Systems
642 and Policy Analysis. ISSN: 1612-1430

643 17. Pawlak, Z. Rough sets. *International J. of Computer & Inf. Sciences*. **1982**, *11*(5), 341-356. DOI:
644 10.1007/BF01001956

645 18. Bello R.; Falcon R. Rough sets in machine learning: A review. In *Thriving Rough Sets (Studies in*
646 *Computational Intelligence)*; Wang G., Skowron A., Yao, Y., Ślezak, D., Polkowski, L., Eds.; Springer, Cham,
647 2017; Volume 708, pp. 87-118, ISBN: 978-3-319-54966-8

648 19. Greco, S.; Matarazzo, B.; Słowiński, R. Rough approximation by dominance relations. *International J. of*
649 *Intell. Systems*. **2002**, *17*(2), 153-171. DOI: 10.1002/int.10014

650 20. Błaszczyński, J.; Słowiński, R.; Szelag, M. Sequential covering rule induction algorithm for variable
651 consistency rough set approaches. *Inf. Sciences*. **2011**, *181*(5), 987-1002. DOI: 10.1016/j.ins.2010.10.030

652 21. McKee, T.E. Rough sets bankruptcy prediction models versus auditor signaling rates. *J. of Forecasting*.
653 **2003**, *22*(8), 569-586. DOI: 10.1002/for.875

654 22. Shen, K.Y.; Tzeng, G.H. A decision rule-based soft computing model for supporting financial
655 performance improvement of the banking industry. *Soft Computing*. **2015**, *19*(4), 859-874. DOI:
656 10.1007/s00500-014-1413-7

657 23. Shen, K.Y.; Hu, S.K.; Tzeng, G.H. Financial modeling and improvement planning for the life insurance
658 industry by using a rough knowledge based hybrid MCDM model. *Inf. Sciences*. **2017**, *375*, 296-313. DOI:
659 10.1016/j.ins.2016.09.055

660 24. Shen, K.Y.; Tzeng, G.H. Fuzzy inference enhanced VC-DRSA model for technical analysis: investment
661 decision aid. *International J. of Fuzzy Systems*. **2015**, *17*(3), 375-389. DOI: 10.1007/s40815-015-0058-8

662 25. Greco, S.; Matarazzo, B.; Słowiński, R. Beyond Markowitz with multiple criteria decision aiding. *J. of Bus.*
663 *Economics*. **2013**, *83*(1), 29-60. DOI: 10.1007/s11573-012-0644-2

664 26. Shen, K.Y.; Tzeng, G.H. Combining DRSA decision-rules with FCA-based DANP evaluation for financial
665 performance improvements. *Technological and Economic Development of Economy* **2016**, *22*(5), 685-714. DOI:
666 10.3846/20294913.2015.1071295

667 27. Tzeng, G.H.; Huang, J.J. *Multiple Attribute Decision Making: Methods and Applications*; CRC Press: New
668 York, US, **2011**, ISBN: 978-1-4398-6157-8

669 28. Tzeng, G.H.; K.Y. Shen. *New Concepts and Trends of Hybrid Multiple Criteria Decision Making*; CRC Press:
670 New York, US, **2017**, ISBN: 978-1-4987-7708-7

671 29. Liou, J.J.H.; Tzeng, G.H. Comments on "Multiple criteria decision making (MCDM) methods in
672 economics: an overview". *Technological and Economic Development of Economy*. **2012**, *18*(4), 672-695. DOI:
673 10.3846/20294913.2012.753489

674 30. Spronk, J.; Steuer, R.E.; Zopounidis, C. Multiple criteria decision aid/analysis in finance. In *Multiple*
675 *Criteria Deci. Analysis: State of the Art Surveys*; Figueira, J., Greco, S., Ehrgott, M., Eds.; Springer: New
676 York, US, **2005**; pp.1011-1065, ISBN: 978-1-4939-3093-7 (DOI: 10.1007/978-1-4939-3094-4_24)

677 31. Gabus, A.; Fontela, E. *World Problems, an Invitation to Further Thought within the Framework of DEMATEL*
678 (Technical Report). Battelle Geneva Research Center, **1972**, Geneva, Switzerland.

679 32. Lee, H.S.; Tzeng, G.H.; Yeih, W.; Wang, Y.J.; Yang, S.C. Revised DEMATEL: resolving the infeasibility of
680 DEMATEL. *Appl. Mathematical Modelling*. **2013**, *37*(10), 6746-6757. DOI: 10.1016/j.apm.2013.01.016

681 33. Saaty, T.L. *Theory and Applications of the Analytic Network Process: Decision Making with Benefits,*
682 *Opportunities, Costs, and Risks*; RWS Publications: Pittsburgh, US, **2005**, ISBN: 978-1-8886-030-6-4

683 34. Zhu, B.W.; Zhang, J.R.; Tzeng, G.H.; Huang, S.L.; Xiong, L. Public open space development for elderly
684 people by using the DANP-V model to establish continuous improvement strategies towards a
685 sustainable and healthy aging society. *Sustainability*. **2017**, *9*(3), 420. DOI: 10.3390/su9030420

686 35. Shen, Y.C.; Lin, G.T.; Tzeng, G.H. A novel multi-criteria decision-making combining decision making trial
687 and evaluation laboratory technique for technology evaluation. *Foresight*. **2012**, *14*(2), 139-153. DOI:
688 10.1108/14636681211222410

689 36. Ou Yang, Y.P.; Shieh, H.M.; Tzeng, G.H. A VIKOR technique based on DEMATEL and ANP for
690 information security risk control assessment. *Inf. Sciences*. **2013**, *232*, 482-500. DOI:
691 10.1016/j.ins.2011.09.012

692 37. Zeleny, M. *Multiple Criteria Decision Making*; McGraw-Hill : New York, US, **1982**, ISBN: 0-07-072795-3

693 38. Opricovic, S.; Tzeng, G.H. Compromise solution by MCDM methods: A comparative analysis of VIKOR
694 and TOPSIS. *Eur. J. of Oper. Res.* **2004**, *156*(2), 445-455. DOI: 10.1016/S0377-2217(03)00020-1

695 39. Błaszczyński, J.; Greco, S.; Matarazzo, B.; Słowiński, R.; Szelag, M. jMAF-Dominance-based rough set data
696 analysis framework. In *Rough Sets and Intelligent Systems-Professor Zdzisław Pawlak in Memoriam (Intelligent*
697 *Systems Reference Library)*; Skowron A., Suraj Z., Eds; Springer: Berlin Heidelberg, Germany, **2013**; Volume
698 42, pp. 185-209, ISBN: 978-3-642-30343-2

699 40. Taiwan Economic Journal (TEJ): <http://www.finasia.biz/ensite/>, accessed on 31/5/2017

700 41. DTREG: <https://www.dtreg.com/>, the official website of the software company.

701

702

703

704